2001-07-02 05:45:17 +00:00

191 lines
6.3 KiB
C++

//===- llvm/Analysis/DominatorSet.h - Dominator Set Calculation --*- C++ -*--=//
//
// This file defines the following classes:
// 1. DominatorSet: Calculates the [reverse] dominator set for a method
// 2. ImmediateDominators: Calculates and holds the immediate dominator tree
// for a method.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DOMINATOR_SET_H
#define LLVM_DOMINATOR_SET_H
#include <set>
#include <map>
#include <vector>
class Method;
class BasicBlock;
namespace cfg {
//===----------------------------------------------------------------------===//
//
// DominatorSet - Maintain a set<const BasicBlock*> for every basic block in a
// method, that represents the blocks that dominate the block.
//
class DominatorSet {
public:
typedef set<const BasicBlock*> DomSetType; // Dom set for a bb
typedef map<const BasicBlock *, DomSetType> DomSetMapType; // Map of dom sets
private:
DomSetMapType Doms;
const BasicBlock *Root;
public:
// DominatorSet ctor - Build either the dominator set or the post-dominator
// set for a method...
//
DominatorSet(const Method *M, bool PostDomSet = false);
// Accessor interface:
typedef DomSetMapType::const_iterator const_iterator;
inline const_iterator begin() const { return Doms.begin(); }
inline const_iterator end() const { return Doms.end(); }
inline const_iterator find(const BasicBlock* B) const { return Doms.find(B); }
inline const BasicBlock *getRoot() const { return Root; }
// getDominators - Return the set of basic blocks that dominate the specified
// block.
//
inline const DomSetType &getDominators(const BasicBlock *BB) const {
const_iterator I = find(BB);
assert(I != end() && "BB not in method!");
return I->second;
}
// dominates - Return true if A dominates B.
//
inline bool dominates(const BasicBlock *A, const BasicBlock *B) const {
return getDominators(B).count(A) != 0;
}
};
//===----------------------------------------------------------------------===//
//
// ImmediateDominators - Calculate the immediate dominator for each node in a
// method.
//
class ImmediateDominators {
map<const BasicBlock*, const BasicBlock*> IDoms;
const BasicBlock *Root;
void calcIDoms(const DominatorSet &DS);
public:
// ImmediateDominators ctor - Calculate the idom mapping, for a method, or
// from a dominator set calculated for something else...
//
inline ImmediateDominators(const DominatorSet &DS) : Root(DS.getRoot()) {
calcIDoms(DS); // Can be used to make rev-idoms
}
// Accessor interface:
typedef map<const BasicBlock*, const BasicBlock*> IDomMapType;
typedef IDomMapType::const_iterator const_iterator;
inline const_iterator begin() const { return IDoms.begin(); }
inline const_iterator end() const { return IDoms.end(); }
inline const_iterator find(const BasicBlock* B) const { return IDoms.find(B);}
inline const BasicBlock *getRoot() const { return Root; }
// operator[] - Return the idom for the specified basic block. The start
// node returns null, because it does not have an immediate dominator.
//
inline const BasicBlock *operator[](const BasicBlock *BB) const {
map<const BasicBlock*, const BasicBlock*>::const_iterator I =
IDoms.find(BB);
return I != IDoms.end() ? I->second : 0;
}
};
//===----------------------------------------------------------------------===//
//
// DominatorTree - Calculate the immediate dominator tree for a method.
//
class DominatorTree {
class Node;
const BasicBlock *Root;
map<const BasicBlock*, Node*> Nodes;
void calculate(const DominatorSet &DS);
typedef map<const BasicBlock*, Node*> NodeMapType;
public:
class Node : public vector<Node*> {
friend class DominatorTree;
const BasicBlock *TheNode;
Node * const IDom;
public:
inline const BasicBlock *getNode() const { return TheNode; }
inline Node *getIDom() const { return IDom; }
inline const vector<Node*> &getChildren() const { return *this; }
// dominates - Returns true iff this dominates N. Note that this is not a
// constant time operation!
inline bool dominates(const Node *N) const {
const Node *IDom;
while ((IDom = N->getIDom()) != 0 && IDom != this)
N = IDom; // Walk up the tree
return IDom != 0;
}
private:
inline Node(const BasicBlock *node, Node *iDom)
: TheNode(node), IDom(iDom) {}
inline Node *addChild(Node *C) { push_back(C); return C; }
};
public:
// DominatorTree ctors - Compute a dominator tree, given various amounts of
// previous knowledge...
//inline DominatorTree(const Method *M) { calculate(DominatorSet(M)); }
inline DominatorTree(const DominatorSet &DS) : Root(DS.getRoot()) {
calculate(DS);
}
DominatorTree(const ImmediateDominators &IDoms);
~DominatorTree();
inline const BasicBlock *getRoot() const { return Root; }
inline const Node *operator[](const BasicBlock *BB) const {
NodeMapType::const_iterator i = Nodes.find(BB);
return (i != Nodes.end()) ? i->second : 0;
}
};
//===----------------------------------------------------------------------===//
//
// DominanceFrontier - Calculate the dominance frontiers for a method.
//
class DominanceFrontier {
typedef set<const BasicBlock*> DomSetType; // Dom set for a bb
typedef map<const BasicBlock *, DomSetType> DomSetMapType; // Map of dom sets
private:
DomSetMapType Frontiers;
const BasicBlock *Root;
const DomSetType &calcDomFrontier(const DominatorTree &DT,
const DominatorTree::Node *Node);
public:
DominanceFrontier(const DominatorSet &DS) : Root(DS.getRoot()) {
const DominatorTree DT(DS);
calcDomFrontier(DT, DT[Root]);
}
DominanceFrontier(const ImmediateDominators &ID) : Root(ID.getRoot()) {
const DominatorTree DT(ID);
calcDomFrontier(DT, DT[Root]);
}
DominanceFrontier(const DominatorTree &DT) : Root(DT.getRoot()) {
calcDomFrontier(DT, DT[Root]);
}
// Accessor interface:
typedef DomSetMapType::const_iterator const_iterator;
inline const_iterator begin() const { return Frontiers.begin(); }
inline const_iterator end() const { return Frontiers.end(); }
inline const_iterator find(const BasicBlock* B) const { return Frontiers.find(B);}
inline const BasicBlock *getRoot() const { return Root; }
};
} // End namespace cfg
#endif