mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
e3394d4a49
instead of cloning and RAUWing it. - Make AbstractTypeUser a friend of Value so that it can offer its subclasses a way to update a Value's type in place. This is better than a universally visible setType method on Value, and it's sufficient for the immediate need. - Eliminate the constant "convert" functions. This eliminates a lot of logic duplication, and fixes a complicated bug where a constant can't actually be cloned during the type refinement process because some of the types that its folder needs are half-destroyed, being in the middle of refinement themselves. - Move the getValType functions from being static overloaded functions in Constants.cpp to be members of class template specializations in ConstantsContext.h. This means that the code ends up getting instantiated twice, however it also makes it possible to eliminate all "convert" functions, so it's not a big net code size increase. And if desired, the duplicate instantiations could be eliminated with some reorganization. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81861 91177308-0d34-0410-b5e6-96231b3b80d8
2133 lines
78 KiB
C++
2133 lines
78 KiB
C++
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Constant* classes...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Constants.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "ConstantFold.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Operator.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/System/Mutex.h"
|
|
#include "llvm/System/RWMutex.h"
|
|
#include "llvm/System/Threading.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Constructor to create a '0' constant of arbitrary type...
|
|
static const uint64_t zero[2] = {0, 0};
|
|
Constant* Constant::getNullValue(const Type* Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID:
|
|
return ConstantInt::get(Ty, 0);
|
|
case Type::FloatTyID:
|
|
return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
|
|
case Type::DoubleTyID:
|
|
return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
|
|
case Type::X86_FP80TyID:
|
|
return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
|
|
case Type::FP128TyID:
|
|
return ConstantFP::get(Ty->getContext(),
|
|
APFloat(APInt(128, 2, zero), true));
|
|
case Type::PPC_FP128TyID:
|
|
return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
|
|
case Type::PointerTyID:
|
|
return ConstantPointerNull::get(cast<PointerType>(Ty));
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::VectorTyID:
|
|
return ConstantAggregateZero::get(Ty);
|
|
default:
|
|
// Function, Label, or Opaque type?
|
|
assert(!"Cannot create a null constant of that type!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) {
|
|
const Type *ScalarTy = Ty->getScalarType();
|
|
|
|
// Create the base integer constant.
|
|
Constant *C = ConstantInt::get(Ty->getContext(), V);
|
|
|
|
// Convert an integer to a pointer, if necessary.
|
|
if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
|
|
C = ConstantExpr::getIntToPtr(C, PTy);
|
|
|
|
// Broadcast a scalar to a vector, if necessary.
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
|
|
|
|
return C;
|
|
}
|
|
|
|
Constant* Constant::getAllOnesValue(const Type* Ty) {
|
|
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
|
|
return ConstantInt::get(Ty->getContext(),
|
|
APInt::getAllOnesValue(ITy->getBitWidth()));
|
|
|
|
std::vector<Constant*> Elts;
|
|
const VectorType* VTy = cast<VectorType>(Ty);
|
|
Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
|
|
assert(Elts[0] && "Not a vector integer type!");
|
|
return cast<ConstantVector>(ConstantVector::get(Elts));
|
|
}
|
|
|
|
void Constant::destroyConstantImpl() {
|
|
// When a Constant is destroyed, there may be lingering
|
|
// references to the constant by other constants in the constant pool. These
|
|
// constants are implicitly dependent on the module that is being deleted,
|
|
// but they don't know that. Because we only find out when the CPV is
|
|
// deleted, we must now notify all of our users (that should only be
|
|
// Constants) that they are, in fact, invalid now and should be deleted.
|
|
//
|
|
while (!use_empty()) {
|
|
Value *V = use_back();
|
|
#ifndef NDEBUG // Only in -g mode...
|
|
if (!isa<Constant>(V)) {
|
|
errs() << "While deleting: " << *this
|
|
<< "\n\nUse still stuck around after Def is destroyed: "
|
|
<< *V << "\n\n";
|
|
}
|
|
#endif
|
|
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
|
|
Constant *CV = cast<Constant>(V);
|
|
CV->destroyConstant();
|
|
|
|
// The constant should remove itself from our use list...
|
|
assert((use_empty() || use_back() != V) && "Constant not removed!");
|
|
}
|
|
|
|
// Value has no outstanding references it is safe to delete it now...
|
|
delete this;
|
|
}
|
|
|
|
/// canTrap - Return true if evaluation of this constant could trap. This is
|
|
/// true for things like constant expressions that could divide by zero.
|
|
bool Constant::canTrap() const {
|
|
assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
|
|
// The only thing that could possibly trap are constant exprs.
|
|
const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
|
|
if (!CE) return false;
|
|
|
|
// ConstantExpr traps if any operands can trap.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (getOperand(i)->canTrap())
|
|
return true;
|
|
|
|
// Otherwise, only specific operations can trap.
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
// Div and rem can trap if the RHS is not known to be non-zero.
|
|
if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/// getRelocationInfo - This method classifies the entry according to
|
|
/// whether or not it may generate a relocation entry. This must be
|
|
/// conservative, so if it might codegen to a relocatable entry, it should say
|
|
/// so. The return values are:
|
|
///
|
|
/// NoRelocation: This constant pool entry is guaranteed to never have a
|
|
/// relocation applied to it (because it holds a simple constant like
|
|
/// '4').
|
|
/// LocalRelocation: This entry has relocations, but the entries are
|
|
/// guaranteed to be resolvable by the static linker, so the dynamic
|
|
/// linker will never see them.
|
|
/// GlobalRelocations: This entry may have arbitrary relocations.
|
|
///
|
|
/// FIXME: This really should not be in VMCore.
|
|
Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
|
|
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
|
|
return LocalRelocation; // Local to this file/library.
|
|
return GlobalRelocations; // Global reference.
|
|
}
|
|
|
|
PossibleRelocationsTy Result = NoRelocation;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
Result = std::max(Result, getOperand(i)->getRelocationInfo());
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// getVectorElements - This method, which is only valid on constant of vector
|
|
/// type, returns the elements of the vector in the specified smallvector.
|
|
/// This handles breaking down a vector undef into undef elements, etc. For
|
|
/// constant exprs and other cases we can't handle, we return an empty vector.
|
|
void Constant::getVectorElements(LLVMContext &Context,
|
|
SmallVectorImpl<Constant*> &Elts) const {
|
|
assert(isa<VectorType>(getType()) && "Not a vector constant!");
|
|
|
|
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
|
|
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
|
|
Elts.push_back(CV->getOperand(i));
|
|
return;
|
|
}
|
|
|
|
const VectorType *VT = cast<VectorType>(getType());
|
|
if (isa<ConstantAggregateZero>(this)) {
|
|
Elts.assign(VT->getNumElements(),
|
|
Constant::getNullValue(VT->getElementType()));
|
|
return;
|
|
}
|
|
|
|
if (isa<UndefValue>(this)) {
|
|
Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
|
|
return;
|
|
}
|
|
|
|
// Unknown type, must be constant expr etc.
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantInt
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
|
|
: Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
|
|
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
|
|
}
|
|
|
|
ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
|
|
if (pImpl->TheTrueVal)
|
|
return pImpl->TheTrueVal;
|
|
else
|
|
return (pImpl->TheTrueVal =
|
|
ConstantInt::get(IntegerType::get(Context, 1), 1));
|
|
}
|
|
|
|
ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
|
|
if (pImpl->TheFalseVal)
|
|
return pImpl->TheFalseVal;
|
|
else
|
|
return (pImpl->TheFalseVal =
|
|
ConstantInt::get(IntegerType::get(Context, 1), 0));
|
|
}
|
|
|
|
|
|
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
|
|
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
|
|
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
|
|
// compare APInt's of different widths, which would violate an APInt class
|
|
// invariant which generates an assertion.
|
|
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
|
|
// Get the corresponding integer type for the bit width of the value.
|
|
const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
|
|
// get an existing value or the insertion position
|
|
DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
|
|
|
|
Context.pImpl->ConstantsLock.reader_acquire();
|
|
ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
|
|
Context.pImpl->ConstantsLock.reader_release();
|
|
|
|
if (!Slot) {
|
|
sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock);
|
|
ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key];
|
|
if (!Slot) {
|
|
NewSlot = new ConstantInt(ITy, V);
|
|
}
|
|
|
|
return NewSlot;
|
|
} else {
|
|
return Slot;
|
|
}
|
|
}
|
|
|
|
Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
|
|
Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
|
|
V, isSigned);
|
|
|
|
// For vectors, broadcast the value.
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return ConstantVector::get(
|
|
std::vector<Constant *>(VTy->getNumElements(), C));
|
|
|
|
return C;
|
|
}
|
|
|
|
ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
|
|
bool isSigned) {
|
|
return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
|
|
}
|
|
|
|
ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
|
|
return get(Ty, V, true);
|
|
}
|
|
|
|
Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
|
|
return get(Ty, V, true);
|
|
}
|
|
|
|
Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
|
|
ConstantInt *C = get(Ty->getContext(), V);
|
|
assert(C->getType() == Ty->getScalarType() &&
|
|
"ConstantInt type doesn't match the type implied by its value!");
|
|
|
|
// For vectors, broadcast the value.
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return ConstantVector::get(
|
|
std::vector<Constant *>(VTy->getNumElements(), C));
|
|
|
|
return C;
|
|
}
|
|
|
|
ConstantInt* ConstantInt::get(const IntegerType* Ty, const StringRef& Str,
|
|
uint8_t radix) {
|
|
return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantFP
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
|
|
if (Ty == Type::getFloatTy(Ty->getContext()))
|
|
return &APFloat::IEEEsingle;
|
|
if (Ty == Type::getDoubleTy(Ty->getContext()))
|
|
return &APFloat::IEEEdouble;
|
|
if (Ty == Type::getX86_FP80Ty(Ty->getContext()))
|
|
return &APFloat::x87DoubleExtended;
|
|
else if (Ty == Type::getFP128Ty(Ty->getContext()))
|
|
return &APFloat::IEEEquad;
|
|
|
|
assert(Ty == Type::getPPC_FP128Ty(Ty->getContext()) && "Unknown FP format");
|
|
return &APFloat::PPCDoubleDouble;
|
|
}
|
|
|
|
/// get() - This returns a constant fp for the specified value in the
|
|
/// specified type. This should only be used for simple constant values like
|
|
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
|
|
Constant* ConstantFP::get(const Type* Ty, double V) {
|
|
LLVMContext &Context = Ty->getContext();
|
|
|
|
APFloat FV(V);
|
|
bool ignored;
|
|
FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
|
|
APFloat::rmNearestTiesToEven, &ignored);
|
|
Constant *C = get(Context, FV);
|
|
|
|
// For vectors, broadcast the value.
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return ConstantVector::get(
|
|
std::vector<Constant *>(VTy->getNumElements(), C));
|
|
|
|
return C;
|
|
}
|
|
|
|
|
|
Constant* ConstantFP::get(const Type* Ty, const StringRef& Str) {
|
|
LLVMContext &Context = Ty->getContext();
|
|
|
|
APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
|
|
Constant *C = get(Context, FV);
|
|
|
|
// For vectors, broadcast the value.
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return ConstantVector::get(
|
|
std::vector<Constant *>(VTy->getNumElements(), C));
|
|
|
|
return C;
|
|
}
|
|
|
|
|
|
ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
|
|
LLVMContext &Context = Ty->getContext();
|
|
APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
|
|
apf.changeSign();
|
|
return get(Context, apf);
|
|
}
|
|
|
|
|
|
Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
|
|
if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
|
|
if (PTy->getElementType()->isFloatingPoint()) {
|
|
std::vector<Constant*> zeros(PTy->getNumElements(),
|
|
getNegativeZero(PTy->getElementType()));
|
|
return ConstantVector::get(PTy, zeros);
|
|
}
|
|
|
|
if (Ty->isFloatingPoint())
|
|
return getNegativeZero(Ty);
|
|
|
|
return Constant::getNullValue(Ty);
|
|
}
|
|
|
|
|
|
// ConstantFP accessors.
|
|
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
|
|
DenseMapAPFloatKeyInfo::KeyTy Key(V);
|
|
|
|
LLVMContextImpl* pImpl = Context.pImpl;
|
|
|
|
pImpl->ConstantsLock.reader_acquire();
|
|
ConstantFP *&Slot = pImpl->FPConstants[Key];
|
|
pImpl->ConstantsLock.reader_release();
|
|
|
|
if (!Slot) {
|
|
sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
|
|
ConstantFP *&NewSlot = pImpl->FPConstants[Key];
|
|
if (!NewSlot) {
|
|
const Type *Ty;
|
|
if (&V.getSemantics() == &APFloat::IEEEsingle)
|
|
Ty = Type::getFloatTy(Context);
|
|
else if (&V.getSemantics() == &APFloat::IEEEdouble)
|
|
Ty = Type::getDoubleTy(Context);
|
|
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
|
|
Ty = Type::getX86_FP80Ty(Context);
|
|
else if (&V.getSemantics() == &APFloat::IEEEquad)
|
|
Ty = Type::getFP128Ty(Context);
|
|
else {
|
|
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
|
|
"Unknown FP format");
|
|
Ty = Type::getPPC_FP128Ty(Context);
|
|
}
|
|
NewSlot = new ConstantFP(Ty, V);
|
|
}
|
|
|
|
return NewSlot;
|
|
}
|
|
|
|
return Slot;
|
|
}
|
|
|
|
ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
|
|
: Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
|
|
assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
|
|
"FP type Mismatch");
|
|
}
|
|
|
|
bool ConstantFP::isNullValue() const {
|
|
return Val.isZero() && !Val.isNegative();
|
|
}
|
|
|
|
bool ConstantFP::isExactlyValue(const APFloat& V) const {
|
|
return Val.bitwiseIsEqual(V);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantXXX Classes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
ConstantArray::ConstantArray(const ArrayType *T,
|
|
const std::vector<Constant*> &V)
|
|
: Constant(T, ConstantArrayVal,
|
|
OperandTraits<ConstantArray>::op_end(this) - V.size(),
|
|
V.size()) {
|
|
assert(V.size() == T->getNumElements() &&
|
|
"Invalid initializer vector for constant array");
|
|
Use *OL = OperandList;
|
|
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
|
|
I != E; ++I, ++OL) {
|
|
Constant *C = *I;
|
|
assert((C->getType() == T->getElementType() ||
|
|
(T->isAbstract() &&
|
|
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
|
|
"Initializer for array element doesn't match array element type!");
|
|
*OL = C;
|
|
}
|
|
}
|
|
|
|
Constant *ConstantArray::get(const ArrayType *Ty,
|
|
const std::vector<Constant*> &V) {
|
|
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
|
|
// If this is an all-zero array, return a ConstantAggregateZero object
|
|
if (!V.empty()) {
|
|
Constant *C = V[0];
|
|
if (!C->isNullValue()) {
|
|
// Implicitly locked.
|
|
return pImpl->ArrayConstants.getOrCreate(Ty, V);
|
|
}
|
|
for (unsigned i = 1, e = V.size(); i != e; ++i)
|
|
if (V[i] != C) {
|
|
// Implicitly locked.
|
|
return pImpl->ArrayConstants.getOrCreate(Ty, V);
|
|
}
|
|
}
|
|
|
|
return ConstantAggregateZero::get(Ty);
|
|
}
|
|
|
|
|
|
Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
|
|
unsigned NumVals) {
|
|
// FIXME: make this the primary ctor method.
|
|
return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
|
|
}
|
|
|
|
/// ConstantArray::get(const string&) - Return an array that is initialized to
|
|
/// contain the specified string. If length is zero then a null terminator is
|
|
/// added to the specified string so that it may be used in a natural way.
|
|
/// Otherwise, the length parameter specifies how much of the string to use
|
|
/// and it won't be null terminated.
|
|
///
|
|
Constant* ConstantArray::get(LLVMContext &Context, const StringRef &Str,
|
|
bool AddNull) {
|
|
std::vector<Constant*> ElementVals;
|
|
for (unsigned i = 0; i < Str.size(); ++i)
|
|
ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
|
|
|
|
// Add a null terminator to the string...
|
|
if (AddNull) {
|
|
ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
|
|
}
|
|
|
|
ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
|
|
return get(ATy, ElementVals);
|
|
}
|
|
|
|
|
|
|
|
ConstantStruct::ConstantStruct(const StructType *T,
|
|
const std::vector<Constant*> &V)
|
|
: Constant(T, ConstantStructVal,
|
|
OperandTraits<ConstantStruct>::op_end(this) - V.size(),
|
|
V.size()) {
|
|
assert(V.size() == T->getNumElements() &&
|
|
"Invalid initializer vector for constant structure");
|
|
Use *OL = OperandList;
|
|
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
|
|
I != E; ++I, ++OL) {
|
|
Constant *C = *I;
|
|
assert((C->getType() == T->getElementType(I-V.begin()) ||
|
|
((T->getElementType(I-V.begin())->isAbstract() ||
|
|
C->getType()->isAbstract()) &&
|
|
T->getElementType(I-V.begin())->getTypeID() ==
|
|
C->getType()->getTypeID())) &&
|
|
"Initializer for struct element doesn't match struct element type!");
|
|
*OL = C;
|
|
}
|
|
}
|
|
|
|
// ConstantStruct accessors.
|
|
Constant* ConstantStruct::get(const StructType* T,
|
|
const std::vector<Constant*>& V) {
|
|
LLVMContextImpl* pImpl = T->getContext().pImpl;
|
|
|
|
// Create a ConstantAggregateZero value if all elements are zeros...
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i)
|
|
if (!V[i]->isNullValue())
|
|
// Implicitly locked.
|
|
return pImpl->StructConstants.getOrCreate(T, V);
|
|
|
|
return ConstantAggregateZero::get(T);
|
|
}
|
|
|
|
Constant* ConstantStruct::get(LLVMContext &Context,
|
|
const std::vector<Constant*>& V, bool packed) {
|
|
std::vector<const Type*> StructEls;
|
|
StructEls.reserve(V.size());
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i)
|
|
StructEls.push_back(V[i]->getType());
|
|
return get(StructType::get(Context, StructEls, packed), V);
|
|
}
|
|
|
|
Constant* ConstantStruct::get(LLVMContext &Context,
|
|
Constant* const *Vals, unsigned NumVals,
|
|
bool Packed) {
|
|
// FIXME: make this the primary ctor method.
|
|
return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
|
|
}
|
|
|
|
ConstantVector::ConstantVector(const VectorType *T,
|
|
const std::vector<Constant*> &V)
|
|
: Constant(T, ConstantVectorVal,
|
|
OperandTraits<ConstantVector>::op_end(this) - V.size(),
|
|
V.size()) {
|
|
Use *OL = OperandList;
|
|
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
|
|
I != E; ++I, ++OL) {
|
|
Constant *C = *I;
|
|
assert((C->getType() == T->getElementType() ||
|
|
(T->isAbstract() &&
|
|
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
|
|
"Initializer for vector element doesn't match vector element type!");
|
|
*OL = C;
|
|
}
|
|
}
|
|
|
|
// ConstantVector accessors.
|
|
Constant* ConstantVector::get(const VectorType* T,
|
|
const std::vector<Constant*>& V) {
|
|
assert(!V.empty() && "Vectors can't be empty");
|
|
LLVMContext &Context = T->getContext();
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
|
|
// If this is an all-undef or alll-zero vector, return a
|
|
// ConstantAggregateZero or UndefValue.
|
|
Constant *C = V[0];
|
|
bool isZero = C->isNullValue();
|
|
bool isUndef = isa<UndefValue>(C);
|
|
|
|
if (isZero || isUndef) {
|
|
for (unsigned i = 1, e = V.size(); i != e; ++i)
|
|
if (V[i] != C) {
|
|
isZero = isUndef = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isZero)
|
|
return ConstantAggregateZero::get(T);
|
|
if (isUndef)
|
|
return UndefValue::get(T);
|
|
|
|
// Implicitly locked.
|
|
return pImpl->VectorConstants.getOrCreate(T, V);
|
|
}
|
|
|
|
Constant* ConstantVector::get(const std::vector<Constant*>& V) {
|
|
assert(!V.empty() && "Cannot infer type if V is empty");
|
|
return get(VectorType::get(V.front()->getType(),V.size()), V);
|
|
}
|
|
|
|
Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
|
|
// FIXME: make this the primary ctor method.
|
|
return get(std::vector<Constant*>(Vals, Vals+NumVals));
|
|
}
|
|
|
|
Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
|
|
return getTy(C1->getType(), Instruction::Add, C1, C2,
|
|
OverflowingBinaryOperator::NoSignedWrap);
|
|
}
|
|
|
|
Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
|
|
return getTy(C1->getType(), Instruction::SDiv, C1, C2,
|
|
SDivOperator::IsExact);
|
|
}
|
|
|
|
// Utility function for determining if a ConstantExpr is a CastOp or not. This
|
|
// can't be inline because we don't want to #include Instruction.h into
|
|
// Constant.h
|
|
bool ConstantExpr::isCast() const {
|
|
return Instruction::isCast(getOpcode());
|
|
}
|
|
|
|
bool ConstantExpr::isCompare() const {
|
|
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
|
|
}
|
|
|
|
bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
|
|
if (getOpcode() != Instruction::GetElementPtr) return false;
|
|
|
|
gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
|
|
User::const_op_iterator OI = next(this->op_begin());
|
|
|
|
// Skip the first index, as it has no static limit.
|
|
++GEPI;
|
|
++OI;
|
|
|
|
// The remaining indices must be compile-time known integers within the
|
|
// bounds of the corresponding notional static array types.
|
|
for (; GEPI != E; ++GEPI, ++OI) {
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
|
|
if (!CI) return false;
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
|
|
if (CI->getValue().getActiveBits() > 64 ||
|
|
CI->getZExtValue() >= ATy->getNumElements())
|
|
return false;
|
|
}
|
|
|
|
// All the indices checked out.
|
|
return true;
|
|
}
|
|
|
|
bool ConstantExpr::hasIndices() const {
|
|
return getOpcode() == Instruction::ExtractValue ||
|
|
getOpcode() == Instruction::InsertValue;
|
|
}
|
|
|
|
const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
|
|
if (const ExtractValueConstantExpr *EVCE =
|
|
dyn_cast<ExtractValueConstantExpr>(this))
|
|
return EVCE->Indices;
|
|
|
|
return cast<InsertValueConstantExpr>(this)->Indices;
|
|
}
|
|
|
|
unsigned ConstantExpr::getPredicate() const {
|
|
assert(getOpcode() == Instruction::FCmp ||
|
|
getOpcode() == Instruction::ICmp);
|
|
return ((const CompareConstantExpr*)this)->predicate;
|
|
}
|
|
|
|
/// getWithOperandReplaced - Return a constant expression identical to this
|
|
/// one, but with the specified operand set to the specified value.
|
|
Constant *
|
|
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
|
|
assert(OpNo < getNumOperands() && "Operand num is out of range!");
|
|
assert(Op->getType() == getOperand(OpNo)->getType() &&
|
|
"Replacing operand with value of different type!");
|
|
if (getOperand(OpNo) == Op)
|
|
return const_cast<ConstantExpr*>(this);
|
|
|
|
Constant *Op0, *Op1, *Op2;
|
|
switch (getOpcode()) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
return ConstantExpr::getCast(getOpcode(), Op, getType());
|
|
case Instruction::Select:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
Op2 = (OpNo == 2) ? Op : getOperand(2);
|
|
return ConstantExpr::getSelect(Op0, Op1, Op2);
|
|
case Instruction::InsertElement:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
Op2 = (OpNo == 2) ? Op : getOperand(2);
|
|
return ConstantExpr::getInsertElement(Op0, Op1, Op2);
|
|
case Instruction::ExtractElement:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
return ConstantExpr::getExtractElement(Op0, Op1);
|
|
case Instruction::ShuffleVector:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
Op2 = (OpNo == 2) ? Op : getOperand(2);
|
|
return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
case Instruction::GetElementPtr: {
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.resize(getNumOperands()-1);
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
|
|
Ops[i-1] = getOperand(i);
|
|
if (OpNo == 0)
|
|
return cast<GEPOperator>(this)->isInBounds() ?
|
|
ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
|
|
ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
|
|
Ops[OpNo-1] = Op;
|
|
return cast<GEPOperator>(this)->isInBounds() ?
|
|
ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0], Ops.size()) :
|
|
ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
|
|
}
|
|
default:
|
|
assert(getNumOperands() == 2 && "Must be binary operator?");
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassData);
|
|
}
|
|
}
|
|
|
|
/// getWithOperands - This returns the current constant expression with the
|
|
/// operands replaced with the specified values. The specified operands must
|
|
/// match count and type with the existing ones.
|
|
Constant *ConstantExpr::
|
|
getWithOperands(Constant* const *Ops, unsigned NumOps) const {
|
|
assert(NumOps == getNumOperands() && "Operand count mismatch!");
|
|
bool AnyChange = false;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
assert(Ops[i]->getType() == getOperand(i)->getType() &&
|
|
"Operand type mismatch!");
|
|
AnyChange |= Ops[i] != getOperand(i);
|
|
}
|
|
if (!AnyChange) // No operands changed, return self.
|
|
return const_cast<ConstantExpr*>(this);
|
|
|
|
switch (getOpcode()) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
|
|
case Instruction::Select:
|
|
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::InsertElement:
|
|
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::ExtractElement:
|
|
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
|
|
case Instruction::ShuffleVector:
|
|
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::GetElementPtr:
|
|
return cast<GEPOperator>(this)->isInBounds() ?
|
|
ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
|
|
ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
|
|
default:
|
|
assert(getNumOperands() == 2 && "Must be binary operator?");
|
|
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassData);
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// isValueValidForType implementations
|
|
|
|
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
|
|
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
|
|
if (Ty == Type::getInt1Ty(Ty->getContext()))
|
|
return Val == 0 || Val == 1;
|
|
if (NumBits >= 64)
|
|
return true; // always true, has to fit in largest type
|
|
uint64_t Max = (1ll << NumBits) - 1;
|
|
return Val <= Max;
|
|
}
|
|
|
|
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
|
|
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
|
|
if (Ty == Type::getInt1Ty(Ty->getContext()))
|
|
return Val == 0 || Val == 1 || Val == -1;
|
|
if (NumBits >= 64)
|
|
return true; // always true, has to fit in largest type
|
|
int64_t Min = -(1ll << (NumBits-1));
|
|
int64_t Max = (1ll << (NumBits-1)) - 1;
|
|
return (Val >= Min && Val <= Max);
|
|
}
|
|
|
|
bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
|
|
// convert modifies in place, so make a copy.
|
|
APFloat Val2 = APFloat(Val);
|
|
bool losesInfo;
|
|
switch (Ty->getTypeID()) {
|
|
default:
|
|
return false; // These can't be represented as floating point!
|
|
|
|
// FIXME rounding mode needs to be more flexible
|
|
case Type::FloatTyID: {
|
|
if (&Val2.getSemantics() == &APFloat::IEEEsingle)
|
|
return true;
|
|
Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
|
|
return !losesInfo;
|
|
}
|
|
case Type::DoubleTyID: {
|
|
if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
|
|
&Val2.getSemantics() == &APFloat::IEEEdouble)
|
|
return true;
|
|
Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
|
|
return !losesInfo;
|
|
}
|
|
case Type::X86_FP80TyID:
|
|
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
|
|
&Val2.getSemantics() == &APFloat::IEEEdouble ||
|
|
&Val2.getSemantics() == &APFloat::x87DoubleExtended;
|
|
case Type::FP128TyID:
|
|
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
|
|
&Val2.getSemantics() == &APFloat::IEEEdouble ||
|
|
&Val2.getSemantics() == &APFloat::IEEEquad;
|
|
case Type::PPC_FP128TyID:
|
|
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
|
|
&Val2.getSemantics() == &APFloat::IEEEdouble ||
|
|
&Val2.getSemantics() == &APFloat::PPCDoubleDouble;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Factory Function Implementation
|
|
|
|
ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
|
|
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
|
|
"Cannot create an aggregate zero of non-aggregate type!");
|
|
|
|
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
|
|
// Implicitly locked.
|
|
return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
|
|
}
|
|
|
|
/// destroyConstant - Remove the constant from the constant table...
|
|
///
|
|
void ConstantAggregateZero::destroyConstant() {
|
|
// Implicitly locked.
|
|
getType()->getContext().pImpl->AggZeroConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
/// destroyConstant - Remove the constant from the constant table...
|
|
///
|
|
void ConstantArray::destroyConstant() {
|
|
// Implicitly locked.
|
|
getType()->getContext().pImpl->ArrayConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
/// isString - This method returns true if the array is an array of i8, and
|
|
/// if the elements of the array are all ConstantInt's.
|
|
bool ConstantArray::isString() const {
|
|
// Check the element type for i8...
|
|
if (getType()->getElementType() != Type::getInt8Ty(getContext()))
|
|
return false;
|
|
// Check the elements to make sure they are all integers, not constant
|
|
// expressions.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (!isa<ConstantInt>(getOperand(i)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isCString - This method returns true if the array is a string (see
|
|
/// isString) and it ends in a null byte \\0 and does not contains any other
|
|
/// null bytes except its terminator.
|
|
bool ConstantArray::isCString() const {
|
|
// Check the element type for i8...
|
|
if (getType()->getElementType() != Type::getInt8Ty(getContext()))
|
|
return false;
|
|
|
|
// Last element must be a null.
|
|
if (!getOperand(getNumOperands()-1)->isNullValue())
|
|
return false;
|
|
// Other elements must be non-null integers.
|
|
for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
|
|
if (!isa<ConstantInt>(getOperand(i)))
|
|
return false;
|
|
if (getOperand(i)->isNullValue())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// getAsString - If the sub-element type of this array is i8
|
|
/// then this method converts the array to an std::string and returns it.
|
|
/// Otherwise, it asserts out.
|
|
///
|
|
std::string ConstantArray::getAsString() const {
|
|
assert(isString() && "Not a string!");
|
|
std::string Result;
|
|
Result.reserve(getNumOperands());
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
|
|
return Result;
|
|
}
|
|
|
|
|
|
//---- ConstantStruct::get() implementation...
|
|
//
|
|
|
|
namespace llvm {
|
|
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantStruct::destroyConstant() {
|
|
// Implicitly locked.
|
|
getType()->getContext().pImpl->StructConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantVector::destroyConstant() {
|
|
// Implicitly locked.
|
|
getType()->getContext().pImpl->VectorConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
/// This function will return true iff every element in this vector constant
|
|
/// is set to all ones.
|
|
/// @returns true iff this constant's emements are all set to all ones.
|
|
/// @brief Determine if the value is all ones.
|
|
bool ConstantVector::isAllOnesValue() const {
|
|
// Check out first element.
|
|
const Constant *Elt = getOperand(0);
|
|
const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
|
|
if (!CI || !CI->isAllOnesValue()) return false;
|
|
// Then make sure all remaining elements point to the same value.
|
|
for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
|
|
if (getOperand(I) != Elt) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// getSplatValue - If this is a splat constant, where all of the
|
|
/// elements have the same value, return that value. Otherwise return null.
|
|
Constant *ConstantVector::getSplatValue() {
|
|
// Check out first element.
|
|
Constant *Elt = getOperand(0);
|
|
// Then make sure all remaining elements point to the same value.
|
|
for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
|
|
if (getOperand(I) != Elt) return 0;
|
|
return Elt;
|
|
}
|
|
|
|
//---- ConstantPointerNull::get() implementation...
|
|
//
|
|
|
|
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
|
|
// Implicitly locked.
|
|
return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantPointerNull::destroyConstant() {
|
|
// Implicitly locked.
|
|
getType()->getContext().pImpl->NullPtrConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
|
|
//---- UndefValue::get() implementation...
|
|
//
|
|
|
|
UndefValue *UndefValue::get(const Type *Ty) {
|
|
// Implicitly locked.
|
|
return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table.
|
|
//
|
|
void UndefValue::destroyConstant() {
|
|
// Implicitly locked.
|
|
getType()->getContext().pImpl->UndefValueConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
//---- ConstantExpr::get() implementations...
|
|
//
|
|
|
|
/// This is a utility function to handle folding of casts and lookup of the
|
|
/// cast in the ExprConstants map. It is used by the various get* methods below.
|
|
static inline Constant *getFoldedCast(
|
|
Instruction::CastOps opc, Constant *C, const Type *Ty) {
|
|
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
|
|
// Fold a few common cases
|
|
if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty))
|
|
return FC;
|
|
|
|
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> argVec(1, C);
|
|
ExprMapKeyType Key(opc, argVec);
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(Ty, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
|
|
Instruction::CastOps opc = Instruction::CastOps(oc);
|
|
assert(Instruction::isCast(opc) && "opcode out of range");
|
|
assert(C && Ty && "Null arguments to getCast");
|
|
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
|
|
|
|
switch (opc) {
|
|
default:
|
|
llvm_unreachable("Invalid cast opcode");
|
|
break;
|
|
case Instruction::Trunc: return getTrunc(C, Ty);
|
|
case Instruction::ZExt: return getZExt(C, Ty);
|
|
case Instruction::SExt: return getSExt(C, Ty);
|
|
case Instruction::FPTrunc: return getFPTrunc(C, Ty);
|
|
case Instruction::FPExt: return getFPExtend(C, Ty);
|
|
case Instruction::UIToFP: return getUIToFP(C, Ty);
|
|
case Instruction::SIToFP: return getSIToFP(C, Ty);
|
|
case Instruction::FPToUI: return getFPToUI(C, Ty);
|
|
case Instruction::FPToSI: return getFPToSI(C, Ty);
|
|
case Instruction::PtrToInt: return getPtrToInt(C, Ty);
|
|
case Instruction::IntToPtr: return getIntToPtr(C, Ty);
|
|
case Instruction::BitCast: return getBitCast(C, Ty);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
|
|
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return getCast(Instruction::BitCast, C, Ty);
|
|
return getCast(Instruction::ZExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
|
|
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return getCast(Instruction::BitCast, C, Ty);
|
|
return getCast(Instruction::SExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
|
|
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return getCast(Instruction::BitCast, C, Ty);
|
|
return getCast(Instruction::Trunc, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
|
|
assert(isa<PointerType>(S->getType()) && "Invalid cast");
|
|
assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
|
|
|
|
if (Ty->isInteger())
|
|
return getCast(Instruction::PtrToInt, S, Ty);
|
|
return getCast(Instruction::BitCast, S, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
|
|
bool isSigned) {
|
|
assert(C->getType()->isIntOrIntVector() &&
|
|
Ty->isIntOrIntVector() && "Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::Trunc :
|
|
(isSigned ? Instruction::SExt : Instruction::ZExt)));
|
|
return getCast(opcode, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
if (SrcBits == DstBits)
|
|
return C; // Avoid a useless cast
|
|
Instruction::CastOps opcode =
|
|
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
|
|
return getCast(opcode, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer");
|
|
assert(Ty->isIntOrIntVector() && "Trunc produces only integral");
|
|
assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
|
|
"SrcTy must be larger than DestTy for Trunc!");
|
|
|
|
return getFoldedCast(Instruction::Trunc, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral");
|
|
assert(Ty->isIntOrIntVector() && "SExt produces only integer");
|
|
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
|
|
"SrcTy must be smaller than DestTy for SExt!");
|
|
|
|
return getFoldedCast(Instruction::SExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
|
|
assert(Ty->isIntOrIntVector() && "ZExt produces only integer");
|
|
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
|
|
"SrcTy must be smaller than DestTy for ZExt!");
|
|
|
|
return getFoldedCast(Instruction::ZExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
|
|
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
|
|
"This is an illegal floating point truncation!");
|
|
return getFoldedCast(Instruction::FPTrunc, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
|
|
C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
|
|
"This is an illegal floating point extension!");
|
|
return getFoldedCast(Instruction::FPExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
|
|
"This is an illegal uint to floating point cast!");
|
|
return getFoldedCast(Instruction::UIToFP, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
|
|
"This is an illegal sint to floating point cast!");
|
|
return getFoldedCast(Instruction::SIToFP, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
|
|
"This is an illegal floating point to uint cast!");
|
|
return getFoldedCast(Instruction::FPToUI, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
|
|
#ifndef NDEBUG
|
|
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
|
|
bool toVec = Ty->getTypeID() == Type::VectorTyID;
|
|
#endif
|
|
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
|
|
assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
|
|
"This is an illegal floating point to sint cast!");
|
|
return getFoldedCast(Instruction::FPToSI, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
|
|
assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
|
|
assert(DstTy->isInteger() && "PtrToInt destination must be integral");
|
|
return getFoldedCast(Instruction::PtrToInt, C, DstTy);
|
|
}
|
|
|
|
Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
|
|
assert(C->getType()->isInteger() && "IntToPtr source must be integral");
|
|
assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
|
|
return getFoldedCast(Instruction::IntToPtr, C, DstTy);
|
|
}
|
|
|
|
Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
|
|
// BitCast implies a no-op cast of type only. No bits change. However, you
|
|
// can't cast pointers to anything but pointers.
|
|
#ifndef NDEBUG
|
|
const Type *SrcTy = C->getType();
|
|
assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
|
|
"BitCast cannot cast pointer to non-pointer and vice versa");
|
|
|
|
// Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
|
|
// or nonptr->ptr). For all the other types, the cast is okay if source and
|
|
// destination bit widths are identical.
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
|
|
#endif
|
|
assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
|
|
|
|
// It is common to ask for a bitcast of a value to its own type, handle this
|
|
// speedily.
|
|
if (C->getType() == DstTy) return C;
|
|
|
|
return getFoldedCast(Instruction::BitCast, C, DstTy);
|
|
}
|
|
|
|
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
|
|
Constant *C1, Constant *C2,
|
|
unsigned Flags) {
|
|
// Check the operands for consistency first
|
|
assert(Opcode >= Instruction::BinaryOpsBegin &&
|
|
Opcode < Instruction::BinaryOpsEnd &&
|
|
"Invalid opcode in binary constant expression");
|
|
assert(C1->getType() == C2->getType() &&
|
|
"Operand types in binary constant expression should match");
|
|
|
|
if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
|
|
if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(),
|
|
Opcode, C1, C2))
|
|
return FC; // Fold a few common cases...
|
|
|
|
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
|
|
ExprMapKeyType Key(Opcode, argVec, 0, Flags);
|
|
|
|
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
|
|
Constant *C1, Constant *C2) {
|
|
switch (predicate) {
|
|
default: llvm_unreachable("Invalid CmpInst predicate");
|
|
case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
|
|
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
|
|
case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
|
|
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
|
|
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
|
|
case CmpInst::FCMP_TRUE:
|
|
return getFCmp(predicate, C1, C2);
|
|
|
|
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
|
|
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
|
|
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
|
|
case CmpInst::ICMP_SLE:
|
|
return getICmp(predicate, C1, C2);
|
|
}
|
|
}
|
|
|
|
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
|
|
unsigned Flags) {
|
|
// API compatibility: Adjust integer opcodes to floating-point opcodes.
|
|
if (C1->getType()->isFPOrFPVector()) {
|
|
if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
|
|
else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub;
|
|
else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul;
|
|
}
|
|
#ifndef NDEBUG
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isIntOrIntVector() &&
|
|
"Tried to create an integer operation on a non-integer type!");
|
|
break;
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isFPOrFPVector() &&
|
|
"Tried to create a floating-point operation on a "
|
|
"non-floating-point type!");
|
|
break;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isIntOrIntVector() &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::FDiv:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isFPOrFPVector() &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isIntOrIntVector() &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::FRem:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isFPOrFPVector() &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isIntOrIntVector() &&
|
|
"Tried to create a logical operation on a non-integral type!");
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert(C1->getType()->isIntOrIntVector() &&
|
|
"Tried to create a shift operation on a non-integer type!");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
return getTy(C1->getType(), Opcode, C1, C2, Flags);
|
|
}
|
|
|
|
Constant* ConstantExpr::getSizeOf(const Type* Ty) {
|
|
// sizeof is implemented as: (i64) gep (Ty*)null, 1
|
|
// Note that a non-inbounds gep is used, as null isn't within any object.
|
|
Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
|
|
Constant *GEP = getGetElementPtr(
|
|
Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
|
|
return getCast(Instruction::PtrToInt, GEP,
|
|
Type::getInt64Ty(Ty->getContext()));
|
|
}
|
|
|
|
Constant* ConstantExpr::getAlignOf(const Type* Ty) {
|
|
// alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
|
|
// Note that a non-inbounds gep is used, as null isn't within any object.
|
|
const Type *AligningTy = StructType::get(Ty->getContext(),
|
|
Type::getInt8Ty(Ty->getContext()), Ty, NULL);
|
|
Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
|
|
Constant *Zero = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 0);
|
|
Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
|
|
Constant *Indices[2] = { Zero, One };
|
|
Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
|
|
return getCast(Instruction::PtrToInt, GEP,
|
|
Type::getInt32Ty(Ty->getContext()));
|
|
}
|
|
|
|
Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
|
|
// offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
|
|
// Note that a non-inbounds gep is used, as null isn't within any object.
|
|
Constant *GEPIdx[] = {
|
|
ConstantInt::get(Type::getInt64Ty(STy->getContext()), 0),
|
|
ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)
|
|
};
|
|
Constant *GEP = getGetElementPtr(
|
|
Constant::getNullValue(PointerType::getUnqual(STy)), GEPIdx, 2);
|
|
return getCast(Instruction::PtrToInt, GEP,
|
|
Type::getInt64Ty(STy->getContext()));
|
|
}
|
|
|
|
Constant *ConstantExpr::getCompare(unsigned short pred,
|
|
Constant *C1, Constant *C2) {
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
return getCompareTy(pred, C1, C2);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
|
|
Constant *V1, Constant *V2) {
|
|
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
|
|
|
|
if (ReqTy == V1->getType())
|
|
if (Constant *SC = ConstantFoldSelectInstruction(
|
|
ReqTy->getContext(), C, V1, V2))
|
|
return SC; // Fold common cases
|
|
|
|
std::vector<Constant*> argVec(3, C);
|
|
argVec[1] = V1;
|
|
argVec[2] = V2;
|
|
ExprMapKeyType Key(Instruction::Select, argVec);
|
|
|
|
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
|
|
Value* const *Idxs,
|
|
unsigned NumIdx) {
|
|
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
|
|
Idxs+NumIdx) ==
|
|
cast<PointerType>(ReqTy)->getElementType() &&
|
|
"GEP indices invalid!");
|
|
|
|
if (Constant *FC = ConstantFoldGetElementPtr(
|
|
ReqTy->getContext(), C, /*inBounds=*/false,
|
|
(Constant**)Idxs, NumIdx))
|
|
return FC; // Fold a few common cases...
|
|
|
|
assert(isa<PointerType>(C->getType()) &&
|
|
"Non-pointer type for constant GetElementPtr expression");
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec;
|
|
ArgVec.reserve(NumIdx+1);
|
|
ArgVec.push_back(C);
|
|
for (unsigned i = 0; i != NumIdx; ++i)
|
|
ArgVec.push_back(cast<Constant>(Idxs[i]));
|
|
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
|
|
|
|
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
|
|
Constant *C,
|
|
Value* const *Idxs,
|
|
unsigned NumIdx) {
|
|
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
|
|
Idxs+NumIdx) ==
|
|
cast<PointerType>(ReqTy)->getElementType() &&
|
|
"GEP indices invalid!");
|
|
|
|
if (Constant *FC = ConstantFoldGetElementPtr(
|
|
ReqTy->getContext(), C, /*inBounds=*/true,
|
|
(Constant**)Idxs, NumIdx))
|
|
return FC; // Fold a few common cases...
|
|
|
|
assert(isa<PointerType>(C->getType()) &&
|
|
"Non-pointer type for constant GetElementPtr expression");
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec;
|
|
ArgVec.reserve(NumIdx+1);
|
|
ArgVec.push_back(C);
|
|
for (unsigned i = 0; i != NumIdx; ++i)
|
|
ArgVec.push_back(cast<Constant>(Idxs[i]));
|
|
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
|
|
GEPOperator::IsInBounds);
|
|
|
|
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
|
|
unsigned NumIdx) {
|
|
// Get the result type of the getelementptr!
|
|
const Type *Ty =
|
|
GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
|
|
assert(Ty && "GEP indices invalid!");
|
|
unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
|
|
return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
|
|
Value* const *Idxs,
|
|
unsigned NumIdx) {
|
|
// Get the result type of the getelementptr!
|
|
const Type *Ty =
|
|
GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
|
|
assert(Ty && "GEP indices invalid!");
|
|
unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
|
|
return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
|
|
unsigned NumIdx) {
|
|
return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
|
|
Constant* const *Idxs,
|
|
unsigned NumIdx) {
|
|
return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
|
|
}
|
|
|
|
Constant *
|
|
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
|
|
assert(LHS->getType() == RHS->getType());
|
|
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
|
|
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
|
|
|
|
if (Constant *FC = ConstantFoldCompareInstruction(
|
|
LHS->getContext(), pred, LHS, RHS))
|
|
return FC; // Fold a few common cases...
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec;
|
|
ArgVec.push_back(LHS);
|
|
ArgVec.push_back(RHS);
|
|
// Get the key type with both the opcode and predicate
|
|
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
|
|
|
|
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return
|
|
pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
|
|
}
|
|
|
|
Constant *
|
|
ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
|
|
assert(LHS->getType() == RHS->getType());
|
|
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
|
|
|
|
if (Constant *FC = ConstantFoldCompareInstruction(
|
|
LHS->getContext(), pred, LHS, RHS))
|
|
return FC; // Fold a few common cases...
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec;
|
|
ArgVec.push_back(LHS);
|
|
ArgVec.push_back(RHS);
|
|
// Get the key type with both the opcode and predicate
|
|
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
|
|
|
|
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return
|
|
pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
|
|
Constant *Idx) {
|
|
if (Constant *FC = ConstantFoldExtractElementInstruction(
|
|
ReqTy->getContext(), Val, Idx))
|
|
return FC; // Fold a few common cases...
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec(1, Val);
|
|
ArgVec.push_back(Idx);
|
|
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
|
|
|
|
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
|
|
assert(isa<VectorType>(Val->getType()) &&
|
|
"Tried to create extractelement operation on non-vector type!");
|
|
assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
|
|
"Extractelement index must be i32 type!");
|
|
return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
|
|
Val, Idx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
|
|
Constant *Elt, Constant *Idx) {
|
|
if (Constant *FC = ConstantFoldInsertElementInstruction(
|
|
ReqTy->getContext(), Val, Elt, Idx))
|
|
return FC; // Fold a few common cases...
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec(1, Val);
|
|
ArgVec.push_back(Elt);
|
|
ArgVec.push_back(Idx);
|
|
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
|
|
|
|
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
|
|
Constant *Idx) {
|
|
assert(isa<VectorType>(Val->getType()) &&
|
|
"Tried to create insertelement operation on non-vector type!");
|
|
assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
|
|
&& "Insertelement types must match!");
|
|
assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
|
|
"Insertelement index must be i32 type!");
|
|
return getInsertElementTy(Val->getType(), Val, Elt, Idx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
|
|
Constant *V2, Constant *Mask) {
|
|
if (Constant *FC = ConstantFoldShuffleVectorInstruction(
|
|
ReqTy->getContext(), V1, V2, Mask))
|
|
return FC; // Fold a few common cases...
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec(1, V1);
|
|
ArgVec.push_back(V2);
|
|
ArgVec.push_back(Mask);
|
|
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
|
|
|
|
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
|
|
|
|
// Implicitly locked.
|
|
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
|
|
Constant *Mask) {
|
|
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector constant expr operands!");
|
|
|
|
unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
|
|
const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
|
|
const Type *ShufTy = VectorType::get(EltTy, NElts);
|
|
return getShuffleVectorTy(ShufTy, V1, V2, Mask);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
|
|
Constant *Val,
|
|
const unsigned *Idxs, unsigned NumIdx) {
|
|
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
|
|
Idxs+NumIdx) == Val->getType() &&
|
|
"insertvalue indices invalid!");
|
|
assert(Agg->getType() == ReqTy &&
|
|
"insertvalue type invalid!");
|
|
assert(Agg->getType()->isFirstClassType() &&
|
|
"Non-first-class type for constant InsertValue expression");
|
|
Constant *FC = ConstantFoldInsertValueInstruction(
|
|
ReqTy->getContext(), Agg, Val, Idxs, NumIdx);
|
|
assert(FC && "InsertValue constant expr couldn't be folded!");
|
|
return FC;
|
|
}
|
|
|
|
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
|
|
const unsigned *IdxList, unsigned NumIdx) {
|
|
assert(Agg->getType()->isFirstClassType() &&
|
|
"Tried to create insertelement operation on non-first-class type!");
|
|
|
|
const Type *ReqTy = Agg->getType();
|
|
#ifndef NDEBUG
|
|
const Type *ValTy =
|
|
ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
|
|
#endif
|
|
assert(ValTy == Val->getType() && "insertvalue indices invalid!");
|
|
return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
|
|
const unsigned *Idxs, unsigned NumIdx) {
|
|
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
|
|
Idxs+NumIdx) == ReqTy &&
|
|
"extractvalue indices invalid!");
|
|
assert(Agg->getType()->isFirstClassType() &&
|
|
"Non-first-class type for constant extractvalue expression");
|
|
Constant *FC = ConstantFoldExtractValueInstruction(
|
|
ReqTy->getContext(), Agg, Idxs, NumIdx);
|
|
assert(FC && "ExtractValue constant expr couldn't be folded!");
|
|
return FC;
|
|
}
|
|
|
|
Constant *ConstantExpr::getExtractValue(Constant *Agg,
|
|
const unsigned *IdxList, unsigned NumIdx) {
|
|
assert(Agg->getType()->isFirstClassType() &&
|
|
"Tried to create extractelement operation on non-first-class type!");
|
|
|
|
const Type *ReqTy =
|
|
ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
|
|
assert(ReqTy && "extractvalue indices invalid!");
|
|
return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
|
|
}
|
|
|
|
Constant* ConstantExpr::getNeg(Constant* C) {
|
|
// API compatibility: Adjust integer opcodes to floating-point opcodes.
|
|
if (C->getType()->isFPOrFPVector())
|
|
return getFNeg(C);
|
|
assert(C->getType()->isIntOrIntVector() &&
|
|
"Cannot NEG a nonintegral value!");
|
|
return get(Instruction::Sub,
|
|
ConstantFP::getZeroValueForNegation(C->getType()),
|
|
C);
|
|
}
|
|
|
|
Constant* ConstantExpr::getFNeg(Constant* C) {
|
|
assert(C->getType()->isFPOrFPVector() &&
|
|
"Cannot FNEG a non-floating-point value!");
|
|
return get(Instruction::FSub,
|
|
ConstantFP::getZeroValueForNegation(C->getType()),
|
|
C);
|
|
}
|
|
|
|
Constant* ConstantExpr::getNot(Constant* C) {
|
|
assert(C->getType()->isIntOrIntVector() &&
|
|
"Cannot NOT a nonintegral value!");
|
|
return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
|
|
}
|
|
|
|
Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
|
|
return get(Instruction::Add, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
|
|
return get(Instruction::FAdd, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
|
|
return get(Instruction::Sub, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
|
|
return get(Instruction::FSub, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
|
|
return get(Instruction::Mul, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
|
|
return get(Instruction::FMul, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
|
|
return get(Instruction::UDiv, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
|
|
return get(Instruction::SDiv, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
|
|
return get(Instruction::FDiv, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
|
|
return get(Instruction::URem, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
|
|
return get(Instruction::SRem, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
|
|
return get(Instruction::FRem, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
|
|
return get(Instruction::And, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
|
|
return get(Instruction::Or, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
|
|
return get(Instruction::Xor, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
|
|
return get(Instruction::Shl, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
|
|
return get(Instruction::LShr, C1, C2);
|
|
}
|
|
|
|
Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
|
|
return get(Instruction::AShr, C1, C2);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantExpr::destroyConstant() {
|
|
// Implicitly locked.
|
|
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
|
|
pImpl->ExprConstants.remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
const char *ConstantExpr::getOpcodeName() const {
|
|
return Instruction::getOpcodeName(getOpcode());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// replaceUsesOfWithOnConstant implementations
|
|
|
|
/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
|
|
/// 'From' to be uses of 'To'. This must update the uniquing data structures
|
|
/// etc.
|
|
///
|
|
/// Note that we intentionally replace all uses of From with To here. Consider
|
|
/// a large array that uses 'From' 1000 times. By handling this case all here,
|
|
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
|
|
/// single invocation handles all 1000 uses. Handling them one at a time would
|
|
/// work, but would be really slow because it would have to unique each updated
|
|
/// array instance.
|
|
|
|
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
Use *U) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
Constant *ToC = cast<Constant>(To);
|
|
|
|
LLVMContext &Context = getType()->getContext();
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
|
|
std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
|
|
Lookup.first.first = getType();
|
|
Lookup.second = this;
|
|
|
|
std::vector<Constant*> &Values = Lookup.first.second;
|
|
Values.reserve(getNumOperands()); // Build replacement array.
|
|
|
|
// Fill values with the modified operands of the constant array. Also,
|
|
// compute whether this turns into an all-zeros array.
|
|
bool isAllZeros = false;
|
|
unsigned NumUpdated = 0;
|
|
if (!ToC->isNullValue()) {
|
|
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
|
|
Constant *Val = cast<Constant>(O->get());
|
|
if (Val == From) {
|
|
Val = ToC;
|
|
++NumUpdated;
|
|
}
|
|
Values.push_back(Val);
|
|
}
|
|
} else {
|
|
isAllZeros = true;
|
|
for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
|
|
Constant *Val = cast<Constant>(O->get());
|
|
if (Val == From) {
|
|
Val = ToC;
|
|
++NumUpdated;
|
|
}
|
|
Values.push_back(Val);
|
|
if (isAllZeros) isAllZeros = Val->isNullValue();
|
|
}
|
|
}
|
|
|
|
Constant *Replacement = 0;
|
|
if (isAllZeros) {
|
|
Replacement = ConstantAggregateZero::get(getType());
|
|
} else {
|
|
// Check to see if we have this array type already.
|
|
sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
|
|
bool Exists;
|
|
LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
|
|
pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
|
|
|
|
if (Exists) {
|
|
Replacement = I->second;
|
|
} else {
|
|
// Okay, the new shape doesn't exist in the system yet. Instead of
|
|
// creating a new constant array, inserting it, replaceallusesof'ing the
|
|
// old with the new, then deleting the old... just update the current one
|
|
// in place!
|
|
pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
|
|
|
|
// Update to the new value. Optimize for the case when we have a single
|
|
// operand that we're changing, but handle bulk updates efficiently.
|
|
if (NumUpdated == 1) {
|
|
unsigned OperandToUpdate = U - OperandList;
|
|
assert(getOperand(OperandToUpdate) == From &&
|
|
"ReplaceAllUsesWith broken!");
|
|
setOperand(OperandToUpdate, ToC);
|
|
} else {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (getOperand(i) == From)
|
|
setOperand(i, ToC);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, I do need to replace this with an existing value.
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
Use *U) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
Constant *ToC = cast<Constant>(To);
|
|
|
|
unsigned OperandToUpdate = U-OperandList;
|
|
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
|
|
|
|
std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
|
|
Lookup.first.first = getType();
|
|
Lookup.second = this;
|
|
std::vector<Constant*> &Values = Lookup.first.second;
|
|
Values.reserve(getNumOperands()); // Build replacement struct.
|
|
|
|
|
|
// Fill values with the modified operands of the constant struct. Also,
|
|
// compute whether this turns into an all-zeros struct.
|
|
bool isAllZeros = false;
|
|
if (!ToC->isNullValue()) {
|
|
for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
|
|
Values.push_back(cast<Constant>(O->get()));
|
|
} else {
|
|
isAllZeros = true;
|
|
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
|
|
Constant *Val = cast<Constant>(O->get());
|
|
Values.push_back(Val);
|
|
if (isAllZeros) isAllZeros = Val->isNullValue();
|
|
}
|
|
}
|
|
Values[OperandToUpdate] = ToC;
|
|
|
|
LLVMContext &Context = getType()->getContext();
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
|
|
Constant *Replacement = 0;
|
|
if (isAllZeros) {
|
|
Replacement = ConstantAggregateZero::get(getType());
|
|
} else {
|
|
// Check to see if we have this array type already.
|
|
sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
|
|
bool Exists;
|
|
LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
|
|
pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
|
|
|
|
if (Exists) {
|
|
Replacement = I->second;
|
|
} else {
|
|
// Okay, the new shape doesn't exist in the system yet. Instead of
|
|
// creating a new constant struct, inserting it, replaceallusesof'ing the
|
|
// old with the new, then deleting the old... just update the current one
|
|
// in place!
|
|
pImpl->StructConstants.MoveConstantToNewSlot(this, I);
|
|
|
|
// Update to the new value.
|
|
setOperand(OperandToUpdate, ToC);
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
Use *U) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
|
|
std::vector<Constant*> Values;
|
|
Values.reserve(getNumOperands()); // Build replacement array...
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
Constant *Val = getOperand(i);
|
|
if (Val == From) Val = cast<Constant>(To);
|
|
Values.push_back(Val);
|
|
}
|
|
|
|
Constant *Replacement = get(getType(), Values);
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
|
|
Use *U) {
|
|
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
|
|
Constant *To = cast<Constant>(ToV);
|
|
|
|
Constant *Replacement = 0;
|
|
if (getOpcode() == Instruction::GetElementPtr) {
|
|
SmallVector<Constant*, 8> Indices;
|
|
Constant *Pointer = getOperand(0);
|
|
Indices.reserve(getNumOperands()-1);
|
|
if (Pointer == From) Pointer = To;
|
|
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
Constant *Val = getOperand(i);
|
|
if (Val == From) Val = To;
|
|
Indices.push_back(Val);
|
|
}
|
|
Replacement = ConstantExpr::getGetElementPtr(Pointer,
|
|
&Indices[0], Indices.size());
|
|
} else if (getOpcode() == Instruction::ExtractValue) {
|
|
Constant *Agg = getOperand(0);
|
|
if (Agg == From) Agg = To;
|
|
|
|
const SmallVector<unsigned, 4> &Indices = getIndices();
|
|
Replacement = ConstantExpr::getExtractValue(Agg,
|
|
&Indices[0], Indices.size());
|
|
} else if (getOpcode() == Instruction::InsertValue) {
|
|
Constant *Agg = getOperand(0);
|
|
Constant *Val = getOperand(1);
|
|
if (Agg == From) Agg = To;
|
|
if (Val == From) Val = To;
|
|
|
|
const SmallVector<unsigned, 4> &Indices = getIndices();
|
|
Replacement = ConstantExpr::getInsertValue(Agg, Val,
|
|
&Indices[0], Indices.size());
|
|
} else if (isCast()) {
|
|
assert(getOperand(0) == From && "Cast only has one use!");
|
|
Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
|
|
} else if (getOpcode() == Instruction::Select) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
Constant *C3 = getOperand(2);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (C3 == From) C3 = To;
|
|
Replacement = ConstantExpr::getSelect(C1, C2, C3);
|
|
} else if (getOpcode() == Instruction::ExtractElement) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
Replacement = ConstantExpr::getExtractElement(C1, C2);
|
|
} else if (getOpcode() == Instruction::InsertElement) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
Constant *C3 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (C3 == From) C3 = To;
|
|
Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
|
|
} else if (getOpcode() == Instruction::ShuffleVector) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
Constant *C3 = getOperand(2);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (C3 == From) C3 = To;
|
|
Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
|
|
} else if (isCompare()) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (getOpcode() == Instruction::ICmp)
|
|
Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
|
|
else {
|
|
assert(getOpcode() == Instruction::FCmp);
|
|
Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
|
|
}
|
|
} else if (getNumOperands() == 2) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassData);
|
|
} else {
|
|
llvm_unreachable("Unknown ConstantExpr type!");
|
|
return;
|
|
}
|
|
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|