mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105502 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			512 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			512 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs global common subexpression elimination on machine
 | |
| // instructions using a scoped hash table based value numbering scheme. It
 | |
| // must be run while the machine function is still in SSA form.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "machine-cse"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/ScopedHashTable.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumCoalesces, "Number of copies coalesced");
 | |
| STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
 | |
| STATISTIC(NumPhysCSEs,  "Number of phyreg defining common subexpr eliminated");
 | |
| 
 | |
| namespace {
 | |
|   class MachineCSE : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     AliasAnalysis *AA;
 | |
|     MachineDominatorTree *DT;
 | |
|     MachineRegisterInfo *MRI;
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     MachineCSE() : MachineFunctionPass(&ID), LookAheadLimit(5), CurrVN(0) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     const unsigned LookAheadLimit;
 | |
|     typedef ScopedHashTableScope<MachineInstr*, unsigned,
 | |
|                                  MachineInstrExpressionTrait> ScopeType;
 | |
|     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
 | |
|     ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
 | |
|     SmallVector<MachineInstr*, 64> Exps;
 | |
|     unsigned CurrVN;
 | |
| 
 | |
|     bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
 | |
|     bool isPhysDefTriviallyDead(unsigned Reg,
 | |
|                                 MachineBasicBlock::const_iterator I,
 | |
|                                 MachineBasicBlock::const_iterator E) const ;
 | |
|     bool hasLivePhysRegDefUse(const MachineInstr *MI,
 | |
|                               const MachineBasicBlock *MBB,
 | |
|                               unsigned &PhysDef) const;
 | |
|     bool PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
 | |
|                            unsigned PhysDef) const;
 | |
|     bool isCSECandidate(MachineInstr *MI);
 | |
|     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
 | |
|                            MachineInstr *CSMI, MachineInstr *MI);
 | |
|     void EnterScope(MachineBasicBlock *MBB);
 | |
|     void ExitScope(MachineBasicBlock *MBB);
 | |
|     bool ProcessBlock(MachineBasicBlock *MBB);
 | |
|     void ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                  DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
 | |
|                  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
 | |
|     bool PerformCSE(MachineDomTreeNode *Node);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineCSE::ID = 0;
 | |
| static RegisterPass<MachineCSE>
 | |
| X("machine-cse", "Machine Common Subexpression Elimination");
 | |
| 
 | |
| FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
 | |
| 
 | |
| bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
 | |
|                                           MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
|     if (!MRI->hasOneUse(Reg))
 | |
|       // Only coalesce single use copies. This ensure the copy will be
 | |
|       // deleted.
 | |
|       continue;
 | |
|     MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | |
|     if (DefMI->getParent() != MBB)
 | |
|       continue;
 | |
|     unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
 | |
|     if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
 | |
|         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|         !SrcSubIdx && !DstSubIdx) {
 | |
|       const TargetRegisterClass *SRC   = MRI->getRegClass(SrcReg);
 | |
|       const TargetRegisterClass *RC    = MRI->getRegClass(Reg);
 | |
|       const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
 | |
|       if (!NewRC)
 | |
|         continue;
 | |
|       DEBUG(dbgs() << "Coalescing: " << *DefMI);
 | |
|       DEBUG(dbgs() << "*** to: " << *MI);
 | |
|       MO.setReg(SrcReg);
 | |
|       MRI->clearKillFlags(SrcReg);
 | |
|       if (NewRC != SRC)
 | |
|         MRI->setRegClass(SrcReg, NewRC);
 | |
|       DefMI->eraseFromParent();
 | |
|       ++NumCoalesces;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool
 | |
| MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
 | |
|                                    MachineBasicBlock::const_iterator I,
 | |
|                                    MachineBasicBlock::const_iterator E) const {
 | |
|   unsigned LookAheadLeft = LookAheadLimit;
 | |
|   while (LookAheadLeft) {
 | |
|     // Skip over dbg_value's.
 | |
|     while (I != E && I->isDebugValue())
 | |
|       ++I;
 | |
| 
 | |
|     if (I == E)
 | |
|       // Reached end of block, register is obviously dead.
 | |
|       return true;
 | |
| 
 | |
|     bool SeenDef = false;
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = I->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.getReg())
 | |
|         continue;
 | |
|       if (!TRI->regsOverlap(MO.getReg(), Reg))
 | |
|         continue;
 | |
|       if (MO.isUse())
 | |
|         // Found a use!
 | |
|         return false;
 | |
|       SeenDef = true;
 | |
|     }
 | |
|     if (SeenDef)
 | |
|       // See a def of Reg (or an alias) before encountering any use, it's 
 | |
|       // trivially dead.
 | |
|       return true;
 | |
| 
 | |
|     --LookAheadLeft;
 | |
|     ++I;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasLivePhysRegDefUse - Return true if the specified instruction read / write
 | |
| /// physical registers (except for dead defs of physical registers). It also
 | |
| /// returns the physical register def by reference if it's the only one and the
 | |
| /// instruction does not uses a physical register.
 | |
| bool MachineCSE::hasLivePhysRegDefUse(const MachineInstr *MI,
 | |
|                                       const MachineBasicBlock *MBB,
 | |
|                                       unsigned &PhysDef) const {
 | |
|   PhysDef = 0;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     if (MO.isUse()) {
 | |
|       // Can't touch anything to read a physical register.
 | |
|       PhysDef = 0;
 | |
|       return true;
 | |
|     }
 | |
|     if (MO.isDead())
 | |
|       // If the def is dead, it's ok.
 | |
|       continue;
 | |
|     // Ok, this is a physical register def that's not marked "dead". That's
 | |
|     // common since this pass is run before livevariables. We can scan
 | |
|     // forward a few instructions and check if it is obviously dead.
 | |
|     if (PhysDef) {
 | |
|       // Multiple physical register defs. These are rare, forget about it.
 | |
|       PhysDef = 0;
 | |
|       return true;
 | |
|     }
 | |
|     PhysDef = Reg;
 | |
|   }
 | |
| 
 | |
|   if (PhysDef) {
 | |
|     MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
 | |
|     if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
 | |
|                                   unsigned PhysDef) const {
 | |
|   // For now conservatively returns false if the common subexpression is
 | |
|   // not in the same basic block as the given instruction.
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   if (CSMI->getParent() != MBB)
 | |
|     return false;
 | |
|   MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
 | |
|   MachineBasicBlock::const_iterator E = MI;
 | |
|   unsigned LookAheadLeft = LookAheadLimit;
 | |
|   while (LookAheadLeft) {
 | |
|     // Skip over dbg_value's.
 | |
|     while (I != E && I->isDebugValue())
 | |
|       ++I;
 | |
| 
 | |
|     if (I == E)
 | |
|       return true;
 | |
|     if (I->modifiesRegister(PhysDef, TRI))
 | |
|       return false;
 | |
| 
 | |
|     --LookAheadLeft;
 | |
|     ++I;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isCopy(const MachineInstr *MI, const TargetInstrInfo *TII) {
 | |
|   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
 | |
|   return TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
 | |
|     MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg();
 | |
| }
 | |
| 
 | |
| bool MachineCSE::isCSECandidate(MachineInstr *MI) {
 | |
|   if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
 | |
|       MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore copies.
 | |
|   if (isCopy(MI, TII))
 | |
|     return false;
 | |
| 
 | |
|   // Ignore stuff that we obviously can't move.
 | |
|   const TargetInstrDesc &TID = MI->getDesc();  
 | |
|   if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
 | |
|       TID.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   if (TID.mayLoad()) {
 | |
|     // Okay, this instruction does a load. As a refinement, we allow the target
 | |
|     // to decide whether the loaded value is actually a constant. If so, we can
 | |
|     // actually use it as a load.
 | |
|     if (!MI->isInvariantLoad(AA))
 | |
|       // FIXME: we should be able to hoist loads with no other side effects if
 | |
|       // there are no other instructions which can change memory in this loop.
 | |
|       // This is a trivial form of alias analysis.
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
 | |
| /// common expression that defines Reg.
 | |
| bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
 | |
|                                    MachineInstr *CSMI, MachineInstr *MI) {
 | |
|   // FIXME: Heuristics that works around the lack the live range splitting.
 | |
| 
 | |
|   // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
 | |
|   // immediate predecessor. We don't want to increase register pressure and end up
 | |
|   // causing other computation to be spilled.
 | |
|   if (MI->getDesc().isAsCheapAsAMove()) {
 | |
|     MachineBasicBlock *CSBB = CSMI->getParent();
 | |
|     MachineBasicBlock *BB = MI->getParent();
 | |
|     if (CSBB != BB && 
 | |
|         find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #2: If the expression doesn't not use a vr and the only use
 | |
|   // of the redundant computation are copies, do not cse.
 | |
|   bool HasVRegUse = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isUse() && MO.getReg() &&
 | |
|         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|       HasVRegUse = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!HasVRegUse) {
 | |
|     bool HasNonCopyUse = false;
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
 | |
|            E = MRI->use_nodbg_end(); I != E; ++I) {
 | |
|       MachineInstr *Use = &*I;
 | |
|       // Ignore copies.
 | |
|       if (!isCopy(Use, TII)) {
 | |
|         HasNonCopyUse = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!HasNonCopyUse)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
 | |
|   // it unless the defined value is already used in the BB of the new use.
 | |
|   bool HasPHI = false;
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
 | |
|   for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
 | |
|        E = MRI->use_nodbg_end(); I != E; ++I) {
 | |
|     MachineInstr *Use = &*I;
 | |
|     HasPHI |= Use->isPHI();
 | |
|     CSBBs.insert(Use->getParent());
 | |
|   }
 | |
| 
 | |
|   if (!HasPHI)
 | |
|     return true;
 | |
|   return CSBBs.count(MI->getParent());
 | |
| }
 | |
| 
 | |
| void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
 | |
|   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
 | |
|   ScopeType *Scope = new ScopeType(VNT);
 | |
|   ScopeMap[MBB] = Scope;
 | |
| }
 | |
| 
 | |
| void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
 | |
|   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
 | |
|   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
 | |
|   assert(SI != ScopeMap.end());
 | |
|   ScopeMap.erase(SI);
 | |
|   delete SI->second;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     ++I;
 | |
| 
 | |
|     if (!isCSECandidate(MI))
 | |
|       continue;
 | |
| 
 | |
|     bool DefPhys = false;
 | |
|     bool FoundCSE = VNT.count(MI);
 | |
|     if (!FoundCSE) {
 | |
|       // Look for trivial copy coalescing opportunities.
 | |
|       if (PerformTrivialCoalescing(MI, MBB)) {
 | |
|         // After coalescing MI itself may become a copy.
 | |
|         if (isCopy(MI, TII))
 | |
|           continue;
 | |
|         FoundCSE = VNT.count(MI);
 | |
|       }
 | |
|     }
 | |
|     // FIXME: commute commutable instructions?
 | |
| 
 | |
|     // If the instruction defines a physical register and the value *may* be
 | |
|     // used, then it's not safe to replace it with a common subexpression.
 | |
|     unsigned PhysDef = 0;
 | |
|     if (FoundCSE && hasLivePhysRegDefUse(MI, MBB, PhysDef)) {
 | |
|       FoundCSE = false;
 | |
| 
 | |
|       // ... Unless the CS is local and it also defines the physical register
 | |
|       // which is not clobbered in between.
 | |
|       if (PhysDef) {
 | |
|         unsigned CSVN = VNT.lookup(MI);
 | |
|         MachineInstr *CSMI = Exps[CSVN];
 | |
|         if (PhysRegDefReaches(CSMI, MI, PhysDef)) {
 | |
|           FoundCSE = true;
 | |
|           DefPhys = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!FoundCSE) {
 | |
|       VNT.insert(MI, CurrVN++);
 | |
|       Exps.push_back(MI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Found a common subexpression, eliminate it.
 | |
|     unsigned CSVN = VNT.lookup(MI);
 | |
|     MachineInstr *CSMI = Exps[CSVN];
 | |
|     DEBUG(dbgs() << "Examining: " << *MI);
 | |
|     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
 | |
| 
 | |
|     // Check if it's profitable to perform this CSE.
 | |
|     bool DoCSE = true;
 | |
|     unsigned NumDefs = MI->getDesc().getNumDefs();
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       unsigned OldReg = MO.getReg();
 | |
|       unsigned NewReg = CSMI->getOperand(i).getReg();
 | |
|       if (OldReg == NewReg)
 | |
|         continue;
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
 | |
|              TargetRegisterInfo::isVirtualRegister(NewReg) &&
 | |
|              "Do not CSE physical register defs!");
 | |
|       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
 | |
|         DoCSE = false;
 | |
|         break;
 | |
|       }
 | |
|       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
 | |
|       --NumDefs;
 | |
|     }
 | |
| 
 | |
|     // Actually perform the elimination.
 | |
|     if (DoCSE) {
 | |
|       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
 | |
|         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
 | |
|         MRI->clearKillFlags(CSEPairs[i].second);
 | |
|       }
 | |
|       MI->eraseFromParent();
 | |
|       ++NumCSEs;
 | |
|       if (DefPhys)
 | |
|         ++NumPhysCSEs;
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
 | |
|       VNT.insert(MI, CurrVN++);
 | |
|       Exps.push_back(MI);
 | |
|     }
 | |
|     CSEPairs.clear();
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
 | |
| /// dominator tree node if its a leaf or all of its children are done. Walk
 | |
| /// up the dominator tree to destroy ancestors which are now done.
 | |
| void
 | |
| MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
 | |
|                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
 | |
|   if (OpenChildren[Node])
 | |
|     return;
 | |
| 
 | |
|   // Pop scope.
 | |
|   ExitScope(Node->getBlock());
 | |
| 
 | |
|   // Now traverse upwards to pop ancestors whose offsprings are all done.
 | |
|   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
 | |
|     unsigned Left = --OpenChildren[Parent];
 | |
|     if (Left != 0)
 | |
|       break;
 | |
|     ExitScope(Parent->getBlock());
 | |
|     Node = Parent;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
 | |
|   SmallVector<MachineDomTreeNode*, 32> Scopes;
 | |
|   SmallVector<MachineDomTreeNode*, 8> WorkList;
 | |
|   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
 | |
|   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
 | |
| 
 | |
|   // Perform a DFS walk to determine the order of visit.
 | |
|   WorkList.push_back(Node);
 | |
|   do {
 | |
|     Node = WorkList.pop_back_val();
 | |
|     Scopes.push_back(Node);
 | |
|     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
 | |
|     unsigned NumChildren = Children.size();
 | |
|     OpenChildren[Node] = NumChildren;
 | |
|     for (unsigned i = 0; i != NumChildren; ++i) {
 | |
|       MachineDomTreeNode *Child = Children[i];
 | |
|       ParentMap[Child] = Node;
 | |
|       WorkList.push_back(Child);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| 
 | |
|   // Now perform CSE.
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
 | |
|     MachineDomTreeNode *Node = Scopes[i];
 | |
|     MachineBasicBlock *MBB = Node->getBlock();
 | |
|     EnterScope(MBB);
 | |
|     Changed |= ProcessBlock(MBB);
 | |
|     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
 | |
|     ExitScopeIfDone(Node, OpenChildren, ParentMap);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
|   TRI = MF.getTarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   return PerformCSE(DT->getRootNode());
 | |
| }
 |