384 lines
12 KiB
C++

//===-- Briggs.h --- Briggs Heuristic for PBQP -----------------*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements the Briggs test for "allocability" of nodes in a
// PBQP graph representing a register allocation problem. Nodes which can be
// proven allocable (by a safe and relatively accurate test) are removed from
// the PBQP graph first. If no provably allocable node is present in the graph
// then the node with the minimal spill-cost to degree ratio is removed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#include "../HeuristicSolver.h"
#include <set>
namespace PBQP {
namespace Heuristics {
class Briggs {
public:
class NodeData;
class EdgeData;
private:
typedef HeuristicSolverImpl<Briggs> Solver;
typedef HSITypes<NodeData, EdgeData> HSIT;
typedef HSIT::SolverGraph SolverGraph;
typedef HSIT::GraphNodeIterator GraphNodeIterator;
typedef HSIT::GraphEdgeIterator GraphEdgeIterator;
class LinkDegreeComparator {
public:
LinkDegreeComparator() : g(0) {}
LinkDegreeComparator(SolverGraph *g) : g(g) {}
bool operator()(const GraphNodeIterator &node1Itr,
const GraphNodeIterator &node2Itr) const {
assert((g != 0) && "Graph object not set, cannot access node data.");
unsigned n1Degree = g->getNodeData(node1Itr).getLinkDegree(),
n2Degree = g->getNodeData(node2Itr).getLinkDegree();
if (n1Degree > n2Degree) {
return true;
}
else if (n1Degree < n2Degree) {
return false;
}
// else they're "equal" by degree, differentiate based on ID.
return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
}
private:
SolverGraph *g;
};
class SpillPriorityComparator {
public:
SpillPriorityComparator() : g(0) {}
SpillPriorityComparator(SolverGraph *g) : g(g) {}
bool operator()(const GraphNodeIterator &node1Itr,
const GraphNodeIterator &node2Itr) const {
assert((g != 0) && "Graph object not set, cannot access node data.");
PBQPNum cost1 =
g->getNodeCosts(node1Itr)[0] /
g->getNodeData(node1Itr).getLinkDegree(),
cost2 =
g->getNodeCosts(node2Itr)[0] /
g->getNodeData(node2Itr).getLinkDegree();
if (cost1 < cost2) {
return true;
}
else if (cost1 > cost2) {
return false;
}
// else they'er "equal" again, differentiate based on address again.
return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
}
private:
SolverGraph *g;
};
typedef std::set<GraphNodeIterator, LinkDegreeComparator>
RNAllocableNodeList;
typedef RNAllocableNodeList::iterator RNAllocableNodeListIterator;
typedef std::set<GraphNodeIterator, SpillPriorityComparator>
RNUnallocableNodeList;
typedef RNUnallocableNodeList::iterator RNUnallocableNodeListIterator;
public:
class NodeData {
private:
RNAllocableNodeListIterator rNAllocableNodeListItr;
RNUnallocableNodeListIterator rNUnallocableNodeListItr;
unsigned numRegOptions, numDenied, numSafe;
std::vector<unsigned> unsafeDegrees;
bool allocable;
void addRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
const GraphEdgeIterator &edgeItr, bool add) {
//assume we're adding...
unsigned udTarget = 0, dir = 1;
if (!add) {
udTarget = 1;
dir = -1;
}
EdgeData &linkEdgeData = g.getEdgeData(edgeItr).getHeuristicData();
EdgeData::ConstUnsafeIterator edgeUnsafeBegin, edgeUnsafeEnd;
if (nodeItr == g.getEdgeNode1Itr(edgeItr)) {
numDenied += (dir * linkEdgeData.getWorstDegree());
edgeUnsafeBegin = linkEdgeData.unsafeBegin();
edgeUnsafeEnd = linkEdgeData.unsafeEnd();
}
else {
numDenied += (dir * linkEdgeData.getReverseWorstDegree());
edgeUnsafeBegin = linkEdgeData.reverseUnsafeBegin();
edgeUnsafeEnd = linkEdgeData.reverseUnsafeEnd();
}
assert((unsafeDegrees.size() ==
static_cast<unsigned>(
std::distance(edgeUnsafeBegin, edgeUnsafeEnd)))
&& "Unsafe array size mismatch.");
std::vector<unsigned>::iterator unsafeDegreesItr =
unsafeDegrees.begin();
for (EdgeData::ConstUnsafeIterator edgeUnsafeItr = edgeUnsafeBegin;
edgeUnsafeItr != edgeUnsafeEnd;
++edgeUnsafeItr, ++unsafeDegreesItr) {
if ((*edgeUnsafeItr == 1) && (*unsafeDegreesItr == udTarget)) {
numSafe -= dir;
}
*unsafeDegreesItr += (dir * (*edgeUnsafeItr));
}
allocable = (numDenied < numRegOptions) || (numSafe > 0);
}
public:
void setup(SolverGraph &g, const GraphNodeIterator &nodeItr) {
numRegOptions = g.getNodeCosts(nodeItr).getLength() - 1;
numSafe = numRegOptions; // Optimistic, correct below.
numDenied = 0; // Also optimistic.
unsafeDegrees.resize(numRegOptions, 0);
HSIT::NodeData &nodeData = g.getNodeData(nodeItr);
for (HSIT::NodeData::AdjLinkIterator
adjLinkItr = nodeData.adjLinksBegin(),
adjLinkEnd = nodeData.adjLinksEnd();
adjLinkItr != adjLinkEnd; ++adjLinkItr) {
addRemoveLink(g, nodeItr, *adjLinkItr, true);
}
}
bool isAllocable() const { return allocable; }
void handleAddLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
const GraphEdgeIterator &adjEdge) {
addRemoveLink(g, nodeItr, adjEdge, true);
}
void handleRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
const GraphEdgeIterator &adjEdge) {
addRemoveLink(g, nodeItr, adjEdge, false);
}
void setRNAllocableNodeListItr(
const RNAllocableNodeListIterator &rNAllocableNodeListItr) {
this->rNAllocableNodeListItr = rNAllocableNodeListItr;
}
RNAllocableNodeListIterator getRNAllocableNodeListItr() const {
return rNAllocableNodeListItr;
}
void setRNUnallocableNodeListItr(
const RNUnallocableNodeListIterator &rNUnallocableNodeListItr) {
this->rNUnallocableNodeListItr = rNUnallocableNodeListItr;
}
RNUnallocableNodeListIterator getRNUnallocableNodeListItr() const {
return rNUnallocableNodeListItr;
}
};
class EdgeData {
private:
typedef std::vector<unsigned> UnsafeArray;
unsigned worstDegree,
reverseWorstDegree;
UnsafeArray unsafe, reverseUnsafe;
public:
EdgeData() : worstDegree(0), reverseWorstDegree(0) {}
typedef UnsafeArray::const_iterator ConstUnsafeIterator;
void setup(SolverGraph &g, const GraphEdgeIterator &edgeItr) {
const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
unsigned numRegs = edgeCosts.getRows() - 1,
numReverseRegs = edgeCosts.getCols() - 1;
unsafe.resize(numRegs, 0);
reverseUnsafe.resize(numReverseRegs, 0);
std::vector<unsigned> rowInfCounts(numRegs, 0),
colInfCounts(numReverseRegs, 0);
for (unsigned i = 0; i < numRegs; ++i) {
for (unsigned j = 0; j < numReverseRegs; ++j) {
if (edgeCosts[i + 1][j + 1] ==
std::numeric_limits<PBQPNum>::infinity()) {
unsafe[i] = 1;
reverseUnsafe[j] = 1;
++rowInfCounts[i];
++colInfCounts[j];
if (colInfCounts[j] > worstDegree) {
worstDegree = colInfCounts[j];
}
if (rowInfCounts[i] > reverseWorstDegree) {
reverseWorstDegree = rowInfCounts[i];
}
}
}
}
}
unsigned getWorstDegree() const { return worstDegree; }
unsigned getReverseWorstDegree() const { return reverseWorstDegree; }
ConstUnsafeIterator unsafeBegin() const { return unsafe.begin(); }
ConstUnsafeIterator unsafeEnd() const { return unsafe.end(); }
ConstUnsafeIterator reverseUnsafeBegin() const {
return reverseUnsafe.begin();
}
ConstUnsafeIterator reverseUnsafeEnd() const {
return reverseUnsafe.end();
}
};
void initialise(Solver &solver) {
this->s = &solver;
g = &s->getGraph();
rNAllocableBucket = RNAllocableNodeList(LinkDegreeComparator(g));
rNUnallocableBucket =
RNUnallocableNodeList(SpillPriorityComparator(g));
for (GraphEdgeIterator
edgeItr = g->edgesBegin(), edgeEnd = g->edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
}
for (GraphNodeIterator
nodeItr = g->nodesBegin(), nodeEnd = g->nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
g->getNodeData(nodeItr).getHeuristicData().setup(*g, nodeItr);
}
}
void addToRNBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
if (nodeData.isAllocable()) {
nodeData.setRNAllocableNodeListItr(
rNAllocableBucket.insert(rNAllocableBucket.begin(), nodeItr));
}
else {
nodeData.setRNUnallocableNodeListItr(
rNUnallocableBucket.insert(rNUnallocableBucket.begin(), nodeItr));
}
}
void removeFromRNBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
if (nodeData.isAllocable()) {
rNAllocableBucket.erase(nodeData.getRNAllocableNodeListItr());
}
else {
rNUnallocableBucket.erase(nodeData.getRNUnallocableNodeListItr());
}
}
void handleAddLink(const GraphEdgeIterator &edgeItr) {
// We assume that if we got here this edge is attached to at least
// one high degree node.
g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
GraphNodeIterator n1Itr = g->getEdgeNode1Itr(edgeItr),
n2Itr = g->getEdgeNode2Itr(edgeItr);
HSIT::NodeData &n1Data = g->getNodeData(n1Itr),
&n2Data = g->getNodeData(n2Itr);
if (n1Data.getLinkDegree() > 2) {
n1Data.getHeuristicData().handleAddLink(*g, n1Itr, edgeItr);
}
if (n2Data.getLinkDegree() > 2) {
n2Data.getHeuristicData().handleAddLink(*g, n2Itr, edgeItr);
}
}
void handleRemoveLink(const GraphEdgeIterator &edgeItr,
const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
nodeData.handleRemoveLink(*g, nodeItr, edgeItr);
}
void processRN() {
if (!rNAllocableBucket.empty()) {
GraphNodeIterator selectedNodeItr = *rNAllocableBucket.begin();
//std::cerr << "RN safely pushing " << g->getNodeID(selectedNodeItr) << "\n";
rNAllocableBucket.erase(rNAllocableBucket.begin());
s->pushStack(selectedNodeItr);
s->unlinkNode(selectedNodeItr);
}
else {
GraphNodeIterator selectedNodeItr = *rNUnallocableBucket.begin();
//std::cerr << "RN optimistically pushing " << g->getNodeID(selectedNodeItr) << "\n";
rNUnallocableBucket.erase(rNUnallocableBucket.begin());
s->pushStack(selectedNodeItr);
s->unlinkNode(selectedNodeItr);
}
}
bool rNBucketEmpty() const {
return (rNAllocableBucket.empty() && rNUnallocableBucket.empty());
}
private:
Solver *s;
SolverGraph *g;
RNAllocableNodeList rNAllocableBucket;
RNUnallocableNodeList rNUnallocableBucket;
};
}
}
#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H