llvm-6502/lib/Target/AArch64/AArch64ConstantIslandPass.cpp
Tim Northover 72062f5744 Add AArch64 as an experimental target.
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.

This initial commit should have support for:
    + Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
      (except the late addition CRC instructions).
    + CodeGen features required for C++03 and C99.
    + Compilation for the "small" memory model: code+static data <
      4GB.
    + Absolute and position-independent code.
    + GNU-style (i.e. "__thread") TLS.
    + Debugging information.

The principal omission, currently, is performance tuning.

This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.

Further reviews would be gratefully received.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174054 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-31 12:12:40 +00:00

1421 lines
56 KiB
C++

//===-- AArch64ConstantIslandPass.cpp - AArch64 constant islands ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that splits the constant pool up into 'islands'
// which are scattered through-out the function. This is required due to the
// limited pc-relative displacements that AArch64 has.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "aarch64-cp-islands"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64MachineFunctionInfo.h"
#include "MCTargetDesc/AArch64BaseInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumCPEs, "Number of constpool entries");
STATISTIC(NumSplit, "Number of uncond branches inserted");
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
// FIXME: This option should be removed once it has received sufficient testing.
static cl::opt<bool>
AlignConstantIslands("aarch64-align-constant-islands", cl::Hidden,
cl::init(true), cl::desc("Align constant islands in code"));
/// Return the worst case padding that could result from unknown offset bits.
/// This does not include alignment padding caused by known offset bits.
///
/// @param LogAlign log2(alignment)
/// @param KnownBits Number of known low offset bits.
static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
if (KnownBits < LogAlign)
return (1u << LogAlign) - (1u << KnownBits);
return 0;
}
namespace {
/// Due to limited PC-relative displacements, AArch64 requires constant pool
/// entries to be scattered among the instructions inside a function. To do
/// this, it completely ignores the normal LLVM constant pool; instead, it
/// places constants wherever it feels like with special instructions.
///
/// The terminology used in this pass includes:
/// Islands - Clumps of constants placed in the function.
/// Water - Potential places where an island could be formed.
/// CPE - A constant pool entry that has been placed somewhere, which
/// tracks a list of users.
class AArch64ConstantIslands : public MachineFunctionPass {
/// Information about the offset and size of a single basic block.
struct BasicBlockInfo {
/// Distance from the beginning of the function to the beginning of this
/// basic block.
///
/// Offsets are computed assuming worst case padding before an aligned
/// block. This means that subtracting basic block offsets always gives a
/// conservative estimate of the real distance which may be smaller.
///
/// Because worst case padding is used, the computed offset of an aligned
/// block may not actually be aligned.
unsigned Offset;
/// Size of the basic block in bytes. If the block contains inline
/// assembly, this is a worst case estimate.
///
/// The size does not include any alignment padding whether from the
/// beginning of the block, or from an aligned jump table at the end.
unsigned Size;
/// The number of low bits in Offset that are known to be exact. The
/// remaining bits of Offset are an upper bound.
uint8_t KnownBits;
/// When non-zero, the block contains instructions (inline asm) of unknown
/// size. The real size may be smaller than Size bytes by a multiple of 1
/// << Unalign.
uint8_t Unalign;
BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0) {}
/// Compute the number of known offset bits internally to this block.
/// This number should be used to predict worst case padding when
/// splitting the block.
unsigned internalKnownBits() const {
unsigned Bits = Unalign ? Unalign : KnownBits;
// If the block size isn't a multiple of the known bits, assume the
// worst case padding.
if (Size & ((1u << Bits) - 1))
Bits = CountTrailingZeros_32(Size);
return Bits;
}
/// Compute the offset immediately following this block. If LogAlign is
/// specified, return the offset the successor block will get if it has
/// this alignment.
unsigned postOffset(unsigned LogAlign = 0) const {
unsigned PO = Offset + Size;
if (!LogAlign)
return PO;
// Add alignment padding from the terminator.
return PO + UnknownPadding(LogAlign, internalKnownBits());
}
/// Compute the number of known low bits of postOffset. If this block
/// contains inline asm, the number of known bits drops to the
/// instruction alignment. An aligned terminator may increase the number
/// of know bits.
/// If LogAlign is given, also consider the alignment of the next block.
unsigned postKnownBits(unsigned LogAlign = 0) const {
return std::max(LogAlign, internalKnownBits());
}
};
std::vector<BasicBlockInfo> BBInfo;
/// A sorted list of basic blocks where islands could be placed (i.e. blocks
/// that don't fall through to the following block, due to a return,
/// unreachable, or unconditional branch).
std::vector<MachineBasicBlock*> WaterList;
/// The subset of WaterList that was created since the previous iteration by
/// inserting unconditional branches.
SmallSet<MachineBasicBlock*, 4> NewWaterList;
typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
/// One user of a constant pool, keeping the machine instruction pointer,
/// the constant pool being referenced, and the number of bits used by the
/// instruction for displacement. The HighWaterMark records the highest
/// basic block where a new CPEntry can be placed. To ensure this pass
/// terminates, the CP entries are initially placed at the end of the
/// function and then move monotonically to lower addresses. The exception
/// to this rule is when the current CP entry for a particular CPUser is out
/// of range, but there is another CP entry for the same constant value in
/// range. We want to use the existing in-range CP entry, but if it later
/// moves out of range, the search for new water should resume where it left
/// off. The HighWaterMark is used to record that point.
struct CPUser {
MachineInstr *MI;
MachineInstr *CPEMI;
MachineBasicBlock *HighWaterMark;
private:
unsigned OffsetBits;
public:
CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned offsetbits)
: MI(mi), CPEMI(cpemi), OffsetBits(offsetbits) {
HighWaterMark = CPEMI->getParent();
}
/// Returns the number of bits used to specify the offset.
unsigned getOffsetBits() const {
return OffsetBits;
}
/// Returns the maximum positive displacement possible from this CPUser
/// (essentially INT<N>_MAX * 4).
unsigned getMaxPosDisp() const {
return (1 << (OffsetBits - 1)) - 1;
}
};
/// Keep track of all of the machine instructions that use various constant
/// pools and their max displacement.
std::vector<CPUser> CPUsers;
/// One per constant pool entry, keeping the machine instruction pointer,
/// the constpool index, and the number of CPUser's which reference this
/// entry.
struct CPEntry {
MachineInstr *CPEMI;
unsigned CPI;
unsigned RefCount;
CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
: CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
};
/// Keep track of all of the constant pool entry machine instructions. For
/// each original constpool index (i.e. those that existed upon entry to
/// this pass), it keeps a vector of entries. Original elements are cloned
/// as we go along; the clones are put in the vector of the original
/// element, but have distinct CPIs.
std::vector<std::vector<CPEntry> > CPEntries;
/// One per immediate branch, keeping the machine instruction pointer,
/// conditional or unconditional, the max displacement, and (if IsCond is
/// true) the corresponding inverted branch opcode.
struct ImmBranch {
MachineInstr *MI;
unsigned OffsetBits : 31;
bool IsCond : 1;
ImmBranch(MachineInstr *mi, unsigned offsetbits, bool cond)
: MI(mi), OffsetBits(offsetbits), IsCond(cond) {}
};
/// Keep track of all the immediate branch instructions.
///
std::vector<ImmBranch> ImmBranches;
MachineFunction *MF;
MachineConstantPool *MCP;
const AArch64InstrInfo *TII;
const AArch64Subtarget *STI;
AArch64MachineFunctionInfo *AFI;
public:
static char ID;
AArch64ConstantIslands() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "AArch64 constant island placement pass";
}
private:
void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
unsigned getCPELogAlign(const MachineInstr *CPEMI);
void scanFunctionJumpTables();
void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
void adjustBBOffsetsAfter(MachineBasicBlock *BB);
bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
bool findAvailableWater(CPUser&U, unsigned UserOffset,
water_iterator &WaterIter);
void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
MachineBasicBlock *&NewMBB);
bool handleConstantPoolUser(unsigned CPUserIndex);
void removeDeadCPEMI(MachineInstr *CPEMI);
bool removeUnusedCPEntries();
bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
MachineInstr *CPEMI, unsigned OffsetBits,
bool DoDump = false);
bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
CPUser &U, unsigned &Growth);
bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB,
unsigned OffsetBits);
bool fixupImmediateBr(ImmBranch &Br);
bool fixupConditionalBr(ImmBranch &Br);
void computeBlockSize(MachineBasicBlock *MBB);
unsigned getOffsetOf(MachineInstr *MI) const;
unsigned getUserOffset(CPUser&) const;
void dumpBBs();
void verify();
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
unsigned BitsAvailable);
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
const CPUser &U) {
return isOffsetInRange(UserOffset, TrialOffset, U.getOffsetBits());
}
};
char AArch64ConstantIslands::ID = 0;
}
/// check BBOffsets, BBSizes, alignment of islands
void AArch64ConstantIslands::verify() {
#ifndef NDEBUG
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
unsigned MBBId = MBB->getNumber();
assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
}
DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
CPUser &U = CPUsers[i];
unsigned UserOffset = getUserOffset(U);
// Verify offset using the real max displacement without the safety
// adjustment.
if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getOffsetBits(),
/* DoDump = */ true)) {
DEBUG(dbgs() << "OK\n");
continue;
}
DEBUG(dbgs() << "Out of range.\n");
dumpBBs();
DEBUG(MF->dump());
llvm_unreachable("Constant pool entry out of range!");
}
#endif
}
/// print block size and offset information - debugging
void AArch64ConstantIslands::dumpBBs() {
DEBUG({
for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
const BasicBlockInfo &BBI = BBInfo[J];
dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
<< " kb=" << unsigned(BBI.KnownBits)
<< " ua=" << unsigned(BBI.Unalign)
<< format(" size=%#x\n", BBInfo[J].Size);
}
});
}
/// Returns an instance of the constpool island pass.
FunctionPass *llvm::createAArch64ConstantIslandPass() {
return new AArch64ConstantIslands();
}
bool AArch64ConstantIslands::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
MCP = mf.getConstantPool();
DEBUG(dbgs() << "***** AArch64ConstantIslands: "
<< MCP->getConstants().size() << " CP entries, aligned to "
<< MCP->getConstantPoolAlignment() << " bytes *****\n");
TII = (const AArch64InstrInfo*)MF->getTarget().getInstrInfo();
AFI = MF->getInfo<AArch64MachineFunctionInfo>();
STI = &MF->getTarget().getSubtarget<AArch64Subtarget>();
// This pass invalidates liveness information when it splits basic blocks.
MF->getRegInfo().invalidateLiveness();
// Renumber all of the machine basic blocks in the function, guaranteeing that
// the numbers agree with the position of the block in the function.
MF->RenumberBlocks();
// Perform the initial placement of the constant pool entries. To start with,
// we put them all at the end of the function.
std::vector<MachineInstr*> CPEMIs;
if (!MCP->isEmpty())
doInitialPlacement(CPEMIs);
/// The next UID to take is the first unused one.
AFI->initPICLabelUId(CPEMIs.size());
// Do the initial scan of the function, building up information about the
// sizes of each block, the location of all the water, and finding all of the
// constant pool users.
initializeFunctionInfo(CPEMIs);
CPEMIs.clear();
DEBUG(dumpBBs());
/// Remove dead constant pool entries.
bool MadeChange = removeUnusedCPEntries();
// Iteratively place constant pool entries and fix up branches until there
// is no change.
unsigned NoCPIters = 0, NoBRIters = 0;
while (true) {
DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
bool CPChange = false;
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
CPChange |= handleConstantPoolUser(i);
if (CPChange && ++NoCPIters > 30)
report_fatal_error("Constant Island pass failed to converge!");
DEBUG(dumpBBs());
// Clear NewWaterList now. If we split a block for branches, it should
// appear as "new water" for the next iteration of constant pool placement.
NewWaterList.clear();
DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
bool BRChange = false;
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
BRChange |= fixupImmediateBr(ImmBranches[i]);
if (BRChange && ++NoBRIters > 30)
report_fatal_error("Branch Fix Up pass failed to converge!");
DEBUG(dumpBBs());
if (!CPChange && !BRChange)
break;
MadeChange = true;
}
// After a while, this might be made debug-only, but it is not expensive.
verify();
DEBUG(dbgs() << '\n'; dumpBBs());
BBInfo.clear();
WaterList.clear();
CPUsers.clear();
CPEntries.clear();
ImmBranches.clear();
return MadeChange;
}
/// Perform the initial placement of the constant pool entries. To start with,
/// we put them all at the end of the function.
void
AArch64ConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
// Create the basic block to hold the CPE's.
MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
MF->push_back(BB);
// MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
// Mark the basic block as required by the const-pool.
// If AlignConstantIslands isn't set, use 4-byte alignment for everything.
BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
// The function needs to be as aligned as the basic blocks. The linker may
// move functions around based on their alignment.
MF->ensureAlignment(BB->getAlignment());
// Order the entries in BB by descending alignment. That ensures correct
// alignment of all entries as long as BB is sufficiently aligned. Keep
// track of the insertion point for each alignment. We are going to bucket
// sort the entries as they are created.
SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
// Add all of the constants from the constant pool to the end block, use an
// identity mapping of CPI's to CPE's.
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
const DataLayout &TD = *MF->getTarget().getDataLayout();
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
assert(Size >= 4 && "Too small constant pool entry");
unsigned Align = CPs[i].getAlignment();
assert(isPowerOf2_32(Align) && "Invalid alignment");
// Verify that all constant pool entries are a multiple of their alignment.
// If not, we would have to pad them out so that instructions stay aligned.
assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
// Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
unsigned LogAlign = Log2_32(Align);
MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
MachineInstr *CPEMI =
BuildMI(*BB, InsAt, DebugLoc(), TII->get(AArch64::CONSTPOOL_ENTRY))
.addImm(i).addConstantPoolIndex(i).addImm(Size);
CPEMIs.push_back(CPEMI);
// Ensure that future entries with higher alignment get inserted before
// CPEMI. This is bucket sort with iterators.
for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
if (InsPoint[a] == InsAt)
InsPoint[a] = CPEMI;
// Add a new CPEntry, but no corresponding CPUser yet.
std::vector<CPEntry> CPEs;
CPEs.push_back(CPEntry(CPEMI, i));
CPEntries.push_back(CPEs);
++NumCPEs;
DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
<< Size << ", align = " << Align <<'\n');
}
DEBUG(BB->dump());
}
/// Return true if the specified basic block can fallthrough into the block
/// immediately after it.
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
// Get the next machine basic block in the function.
MachineFunction::iterator MBBI = MBB;
// Can't fall off end of function.
if (llvm::next(MBBI) == MBB->getParent()->end())
return false;
MachineBasicBlock *NextBB = llvm::next(MBBI);
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I)
if (*I == NextBB)
return true;
return false;
}
/// Given the constpool index and CONSTPOOL_ENTRY MI, look up the corresponding
/// CPEntry.
AArch64ConstantIslands::CPEntry
*AArch64ConstantIslands::findConstPoolEntry(unsigned CPI,
const MachineInstr *CPEMI) {
std::vector<CPEntry> &CPEs = CPEntries[CPI];
// Number of entries per constpool index should be small, just do a
// linear search.
for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
if (CPEs[i].CPEMI == CPEMI)
return &CPEs[i];
}
return NULL;
}
/// Returns the required alignment of the constant pool entry represented by
/// CPEMI. Alignment is measured in log2(bytes) units.
unsigned AArch64ConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
assert(CPEMI && CPEMI->getOpcode() == AArch64::CONSTPOOL_ENTRY);
// Everything is 4-byte aligned unless AlignConstantIslands is set.
if (!AlignConstantIslands)
return 2;
unsigned CPI = CPEMI->getOperand(1).getIndex();
assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
unsigned Align = MCP->getConstants()[CPI].getAlignment();
assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
return Log2_32(Align);
}
/// Do the initial scan of the function, building up information about the sizes
/// of each block, the location of all the water, and finding all of the
/// constant pool users.
void AArch64ConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
BBInfo.clear();
BBInfo.resize(MF->getNumBlockIDs());
// First thing, compute the size of all basic blocks, and see if the function
// has any inline assembly in it. If so, we have to be conservative about
// alignment assumptions, as we don't know for sure the size of any
// instructions in the inline assembly.
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
computeBlockSize(I);
// The known bits of the entry block offset are determined by the function
// alignment.
BBInfo.front().KnownBits = MF->getAlignment();
// Compute block offsets and known bits.
adjustBBOffsetsAfter(MF->begin());
// Now go back through the instructions and build up our data structures.
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
MBBI != E; ++MBBI) {
MachineBasicBlock &MBB = *MBBI;
// If this block doesn't fall through into the next MBB, then this is
// 'water' that a constant pool island could be placed.
if (!BBHasFallthrough(&MBB))
WaterList.push_back(&MBB);
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
if (I->isDebugValue())
continue;
int Opc = I->getOpcode();
if (I->isBranch()) {
bool IsCond = false;
// The offsets encoded in instructions here scale by the instruction
// size (4 bytes), effectively increasing their range by 2 bits.
unsigned Bits = 0;
switch (Opc) {
default:
continue; // Ignore other JT branches
case AArch64::TBZxii:
case AArch64::TBZwii:
case AArch64::TBNZxii:
case AArch64::TBNZwii:
IsCond = true;
Bits = 14 + 2;
break;
case AArch64::Bcc:
case AArch64::CBZx:
case AArch64::CBZw:
case AArch64::CBNZx:
case AArch64::CBNZw:
IsCond = true;
Bits = 19 + 2;
break;
case AArch64::Bimm:
Bits = 26 + 2;
break;
}
// Record this immediate branch.
ImmBranches.push_back(ImmBranch(I, Bits, IsCond));
}
if (Opc == AArch64::CONSTPOOL_ENTRY)
continue;
// Scan the instructions for constant pool operands.
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
if (I->getOperand(op).isCPI()) {
// We found one. The addressing mode tells us the max displacement
// from the PC that this instruction permits.
// The offsets encoded in instructions here scale by the instruction
// size (4 bytes), effectively increasing their range by 2 bits.
unsigned Bits = 0;
switch (Opc) {
default:
llvm_unreachable("Unknown addressing mode for CP reference!");
case AArch64::LDRw_lit:
case AArch64::LDRx_lit:
case AArch64::LDRs_lit:
case AArch64::LDRd_lit:
case AArch64::LDRq_lit:
case AArch64::LDRSWx_lit:
case AArch64::PRFM_lit:
Bits = 19 + 2;
}
// Remember that this is a user of a CP entry.
unsigned CPI = I->getOperand(op).getIndex();
MachineInstr *CPEMI = CPEMIs[CPI];
CPUsers.push_back(CPUser(I, CPEMI, Bits));
// Increment corresponding CPEntry reference count.
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
assert(CPE && "Cannot find a corresponding CPEntry!");
CPE->RefCount++;
// Instructions can only use one CP entry, don't bother scanning the
// rest of the operands.
break;
}
}
}
}
/// Compute the size and some alignment information for MBB. This function
/// updates BBInfo directly.
void AArch64ConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
BBI.Size = 0;
BBI.Unalign = 0;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I) {
BBI.Size += TII->getInstSizeInBytes(*I);
// For inline asm, GetInstSizeInBytes returns a conservative estimate.
// The actual size may be smaller, but still a multiple of the instr size.
if (I->isInlineAsm())
BBI.Unalign = 2;
}
}
/// Return the current offset of the specified machine instruction from the
/// start of the function. This offset changes as stuff is moved around inside
/// the function.
unsigned AArch64ConstantIslands::getOffsetOf(MachineInstr *MI) const {
MachineBasicBlock *MBB = MI->getParent();
// The offset is composed of two things: the sum of the sizes of all MBB's
// before this instruction's block, and the offset from the start of the block
// it is in.
unsigned Offset = BBInfo[MBB->getNumber()].Offset;
// Sum instructions before MI in MBB.
for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
Offset += TII->getInstSizeInBytes(*I);
}
return Offset;
}
/// Little predicate function to sort the WaterList by MBB ID.
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
const MachineBasicBlock *RHS) {
return LHS->getNumber() < RHS->getNumber();
}
/// When a block is newly inserted into the machine function, it upsets all of
/// the block numbers. Renumber the blocks and update the arrays that parallel
/// this numbering.
void AArch64ConstantIslands::
updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
// Renumber the MBB's to keep them consecutive.
NewBB->getParent()->RenumberBlocks(NewBB);
// Insert an entry into BBInfo to align it properly with the (newly
// renumbered) block numbers.
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
// Next, update WaterList. Specifically, we need to add NewMBB as having
// available water after it.
water_iterator IP =
std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
CompareMBBNumbers);
WaterList.insert(IP, NewBB);
}
/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch. Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *
AArch64ConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
MachineBasicBlock *OrigBB = MI->getParent();
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
MachineFunction::iterator MBBI = OrigBB; ++MBBI;
MF->insert(MBBI, NewBB);
// Splice the instructions starting with MI over to NewBB.
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
// Add an unconditional branch from OrigBB to NewBB.
// Note the new unconditional branch is not being recorded.
// There doesn't seem to be meaningful DebugInfo available; this doesn't
// correspond to anything in the source.
BuildMI(OrigBB, DebugLoc(), TII->get(AArch64::Bimm)).addMBB(NewBB);
++NumSplit;
// Update the CFG. All succs of OrigBB are now succs of NewBB.
NewBB->transferSuccessors(OrigBB);
// OrigBB branches to NewBB.
OrigBB->addSuccessor(NewBB);
// Update internal data structures to account for the newly inserted MBB.
// This is almost the same as updateForInsertedWaterBlock, except that
// the Water goes after OrigBB, not NewBB.
MF->RenumberBlocks(NewBB);
// Insert an entry into BBInfo to align it properly with the (newly
// renumbered) block numbers.
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
// Next, update WaterList. Specifically, we need to add OrigMBB as having
// available water after it (but not if it's already there, which happens
// when splitting before a conditional branch that is followed by an
// unconditional branch - in that case we want to insert NewBB).
water_iterator IP =
std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
CompareMBBNumbers);
MachineBasicBlock* WaterBB = *IP;
if (WaterBB == OrigBB)
WaterList.insert(llvm::next(IP), NewBB);
else
WaterList.insert(IP, OrigBB);
NewWaterList.insert(OrigBB);
// Figure out how large the OrigBB is. As the first half of the original
// block, it cannot contain a tablejump. The size includes
// the new jump we added. (It should be possible to do this without
// recounting everything, but it's very confusing, and this is rarely
// executed.)
computeBlockSize(OrigBB);
// Figure out how large the NewMBB is. As the second half of the original
// block, it may contain a tablejump.
computeBlockSize(NewBB);
// All BBOffsets following these blocks must be modified.
adjustBBOffsetsAfter(OrigBB);
return NewBB;
}
/// Compute the offset of U.MI as seen by the hardware displacement computation.
unsigned AArch64ConstantIslands::getUserOffset(CPUser &U) const {
return getOffsetOf(U.MI);
}
/// Checks whether UserOffset (the location of a constant pool reference) is
/// within OffsetBits of TrialOffset (a proposed location of a constant pool
/// entry).
bool AArch64ConstantIslands::isOffsetInRange(unsigned UserOffset,
unsigned TrialOffset,
unsigned OffsetBits) {
return isIntN(OffsetBits, static_cast<int64_t>(TrialOffset) - UserOffset);
}
/// Returns true if a CPE placed after the specified Water (a basic block) will
/// be in range for the specific MI.
///
/// Compute how much the function will grow by inserting a CPE after Water.
bool AArch64ConstantIslands::isWaterInRange(unsigned UserOffset,
MachineBasicBlock* Water, CPUser &U,
unsigned &Growth) {
unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
unsigned NextBlockOffset, NextBlockAlignment;
MachineFunction::const_iterator NextBlock = Water;
if (++NextBlock == MF->end()) {
NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
NextBlockAlignment = 0;
} else {
NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
NextBlockAlignment = NextBlock->getAlignment();
}
unsigned Size = U.CPEMI->getOperand(2).getImm();
unsigned CPEEnd = CPEOffset + Size;
// The CPE may be able to hide in the alignment padding before the next
// block. It may also cause more padding to be required if it is more aligned
// that the next block.
if (CPEEnd > NextBlockOffset) {
Growth = CPEEnd - NextBlockOffset;
// Compute the padding that would go at the end of the CPE to align the next
// block.
Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
// If the CPE is to be inserted before the instruction, that will raise
// the offset of the instruction. Also account for unknown alignment padding
// in blocks between CPE and the user.
if (CPEOffset < UserOffset)
UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
} else
// CPE fits in existing padding.
Growth = 0;
return isOffsetInRange(UserOffset, CPEOffset, U);
}
/// Returns true if the distance between specific MI and specific ConstPool
/// entry instruction can fit in MI's displacement field.
bool AArch64ConstantIslands::isCPEntryInRange(MachineInstr *MI,
unsigned UserOffset,
MachineInstr *CPEMI,
unsigned OffsetBits, bool DoDump) {
unsigned CPEOffset = getOffsetOf(CPEMI);
if (DoDump) {
DEBUG({
unsigned Block = MI->getParent()->getNumber();
const BasicBlockInfo &BBI = BBInfo[Block];
dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
<< " bits available=" << OffsetBits
<< format(" insn address=%#x", UserOffset)
<< " in BB#" << Block << ": "
<< format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
<< format("CPE address=%#x offset=%+d: ", CPEOffset,
int(CPEOffset-UserOffset));
});
}
return isOffsetInRange(UserOffset, CPEOffset, OffsetBits);
}
#ifndef NDEBUG
/// Return true of the specified basic block's only predecessor unconditionally
/// branches to its only successor.
static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
return false;
MachineBasicBlock *Succ = *MBB->succ_begin();
MachineBasicBlock *Pred = *MBB->pred_begin();
MachineInstr *PredMI = &Pred->back();
if (PredMI->getOpcode() == AArch64::Bimm)
return PredMI->getOperand(0).getMBB() == Succ;
return false;
}
#endif // NDEBUG
void AArch64ConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
unsigned BBNum = BB->getNumber();
for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
// Get the offset and known bits at the end of the layout predecessor.
// Include the alignment of the current block.
unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
// This is where block i begins. Stop if the offset is already correct,
// and we have updated 2 blocks. This is the maximum number of blocks
// changed before calling this function.
if (i > BBNum + 2 &&
BBInfo[i].Offset == Offset &&
BBInfo[i].KnownBits == KnownBits)
break;
BBInfo[i].Offset = Offset;
BBInfo[i].KnownBits = KnownBits;
}
}
/// Find the constant pool entry with index CPI and instruction CPEMI, and
/// decrement its refcount. If the refcount becomes 0 remove the entry and
/// instruction. Returns true if we removed the entry, false if we didn't.
bool AArch64ConstantIslands::decrementCPEReferenceCount(unsigned CPI,
MachineInstr *CPEMI) {
// Find the old entry. Eliminate it if it is no longer used.
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
assert(CPE && "Unexpected!");
if (--CPE->RefCount == 0) {
removeDeadCPEMI(CPEMI);
CPE->CPEMI = NULL;
--NumCPEs;
return true;
}
return false;
}
/// See if the currently referenced CPE is in range; if not, see if an in-range
/// clone of the CPE is in range, and if so, change the data structures so the
/// user references the clone. Returns:
/// 0 = no existing entry found
/// 1 = entry found, and there were no code insertions or deletions
/// 2 = entry found, and there were code insertions or deletions
int AArch64ConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
{
MachineInstr *UserMI = U.MI;
MachineInstr *CPEMI = U.CPEMI;
// Check to see if the CPE is already in-range.
if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getOffsetBits(), true)) {
DEBUG(dbgs() << "In range\n");
return 1;
}
// No. Look for previously created clones of the CPE that are in range.
unsigned CPI = CPEMI->getOperand(1).getIndex();
std::vector<CPEntry> &CPEs = CPEntries[CPI];
for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
// We already tried this one
if (CPEs[i].CPEMI == CPEMI)
continue;
// Removing CPEs can leave empty entries, skip
if (CPEs[i].CPEMI == NULL)
continue;
if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getOffsetBits())) {
DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
<< CPEs[i].CPI << "\n");
// Point the CPUser node to the replacement
U.CPEMI = CPEs[i].CPEMI;
// Change the CPI in the instruction operand to refer to the clone.
for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
if (UserMI->getOperand(j).isCPI()) {
UserMI->getOperand(j).setIndex(CPEs[i].CPI);
break;
}
// Adjust the refcount of the clone...
CPEs[i].RefCount++;
// ...and the original. If we didn't remove the old entry, none of the
// addresses changed, so we don't need another pass.
return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
}
}
return 0;
}
/// Look for an existing entry in the WaterList in which we can place the CPE
/// referenced from U so it's within range of U's MI. Returns true if found,
/// false if not. If it returns true, WaterIter is set to the WaterList
/// entry. To ensure that this pass terminates, the CPE location for a
/// particular CPUser is only allowed to move to a lower address, so search
/// backward from the end of the list and prefer the first water that is in
/// range.
bool AArch64ConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
water_iterator &WaterIter) {
if (WaterList.empty())
return false;
unsigned BestGrowth = ~0u;
for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
--IP) {
MachineBasicBlock* WaterBB = *IP;
// Check if water is in range and is either at a lower address than the
// current "high water mark" or a new water block that was created since
// the previous iteration by inserting an unconditional branch. In the
// latter case, we want to allow resetting the high water mark back to
// this new water since we haven't seen it before. Inserting branches
// should be relatively uncommon and when it does happen, we want to be
// sure to take advantage of it for all the CPEs near that block, so that
// we don't insert more branches than necessary.
unsigned Growth;
if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
(WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
// This is the least amount of required padding seen so far.
BestGrowth = Growth;
WaterIter = IP;
DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
<< " Growth=" << Growth << '\n');
// Keep looking unless it is perfect.
if (BestGrowth == 0)
return true;
}
if (IP == B)
break;
}
return BestGrowth != ~0u;
}
/// No existing WaterList entry will work for CPUsers[CPUserIndex], so create a
/// place to put the CPE. The end of the block is used if in range, and the
/// conditional branch munged so control flow is correct. Otherwise the block
/// is split to create a hole with an unconditional branch around it. In either
/// case NewMBB is set to a block following which the new island can be inserted
/// (the WaterList is not adjusted).
void AArch64ConstantIslands::createNewWater(unsigned CPUserIndex,
unsigned UserOffset,
MachineBasicBlock *&NewMBB) {
CPUser &U = CPUsers[CPUserIndex];
MachineInstr *UserMI = U.MI;
MachineInstr *CPEMI = U.CPEMI;
unsigned CPELogAlign = getCPELogAlign(CPEMI);
MachineBasicBlock *UserMBB = UserMI->getParent();
const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
// If the block does not end in an unconditional branch already, and if the
// end of the block is within range, make new water there.
if (BBHasFallthrough(UserMBB)) {
// Size of branch to insert.
unsigned InstrSize = 4;
// Compute the offset where the CPE will begin.
unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + InstrSize;
if (isOffsetInRange(UserOffset, CPEOffset, U)) {
DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
<< format(", expected CPE offset %#x\n", CPEOffset));
NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
// Add an unconditional branch from UserMBB to fallthrough block. Record
// it for branch lengthening; this new branch will not get out of range,
// but if the preceding conditional branch is out of range, the targets
// will be exchanged, and the altered branch may be out of range, so the
// machinery has to know about it.
BuildMI(UserMBB, DebugLoc(), TII->get(AArch64::Bimm)).addMBB(NewMBB);
// 26 bits written down, specifying a multiple of 4.
unsigned OffsetBits = 26 + 2;
ImmBranches.push_back(ImmBranch(&UserMBB->back(), OffsetBits, false));
BBInfo[UserMBB->getNumber()].Size += InstrSize;
adjustBBOffsetsAfter(UserMBB);
return;
}
}
// What a big block. Find a place within the block to split it. We make a
// first guess, then walk through the instructions between the one currently
// being looked at and the possible insertion point, and make sure any other
// instructions that reference CPEs will be able to use the same island area;
// if not, we back up the insertion point.
// Try to split the block so it's fully aligned. Compute the latest split
// point where we can add a 4-byte branch instruction, and then align to
// LogAlign which is the largest possible alignment in the function.
unsigned LogAlign = MF->getAlignment();
assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
unsigned KnownBits = UserBBI.internalKnownBits();
unsigned UPad = UnknownPadding(LogAlign, KnownBits);
unsigned BaseInsertOffset = UserOffset + U.getMaxPosDisp() - UPad;
DEBUG(dbgs() << format("Split in middle of big block before %#x",
BaseInsertOffset));
// The 4 in the following is for the unconditional branch we'll be inserting
// Alignment of the island is handled inside isOffsetInRange.
BaseInsertOffset -= 4;
DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
<< " la=" << LogAlign
<< " kb=" << KnownBits
<< " up=" << UPad << '\n');
// This could point off the end of the block if we've already got constant
// pool entries following this block; only the last one is in the water list.
// Back past any possible branches (allow for a conditional and a maximally
// long unconditional).
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
}
unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
CPEMI->getOperand(2).getImm();
MachineBasicBlock::iterator MI = UserMI;
++MI;
unsigned CPUIndex = CPUserIndex+1;
unsigned NumCPUsers = CPUsers.size();
for (unsigned Offset = UserOffset+TII->getInstSizeInBytes(*UserMI);
Offset < BaseInsertOffset;
Offset += TII->getInstSizeInBytes(*MI),
MI = llvm::next(MI)) {
assert(MI != UserMBB->end() && "Fell off end of block");
if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
CPUser &U = CPUsers[CPUIndex];
if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
// Shift intertion point by one unit of alignment so it is within reach.
BaseInsertOffset -= 1u << LogAlign;
EndInsertOffset -= 1u << LogAlign;
}
// This is overly conservative, as we don't account for CPEMIs being
// reused within the block, but it doesn't matter much. Also assume CPEs
// are added in order with alignment padding. We may eventually be able
// to pack the aligned CPEs better.
EndInsertOffset += U.CPEMI->getOperand(2).getImm();
CPUIndex++;
}
}
--MI;
NewMBB = splitBlockBeforeInstr(MI);
}
/// Analyze the specified user, checking to see if it is out-of-range. If so,
/// pick up the constant pool value and move it some place in-range. Return
/// true if we changed any addresses, false otherwise.
bool AArch64ConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
CPUser &U = CPUsers[CPUserIndex];
MachineInstr *UserMI = U.MI;
MachineInstr *CPEMI = U.CPEMI;
unsigned CPI = CPEMI->getOperand(1).getIndex();
unsigned Size = CPEMI->getOperand(2).getImm();
// Compute this only once, it's expensive.
unsigned UserOffset = getUserOffset(U);
// See if the current entry is within range, or there is a clone of it
// in range.
int result = findInRangeCPEntry(U, UserOffset);
if (result==1) return false;
else if (result==2) return true;
// No existing clone of this CPE is within range.
// We will be generating a new clone. Get a UID for it.
unsigned ID = AFI->createPICLabelUId();
// Look for water where we can place this CPE.
MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
MachineBasicBlock *NewMBB;
water_iterator IP;
if (findAvailableWater(U, UserOffset, IP)) {
DEBUG(dbgs() << "Found water in range\n");
MachineBasicBlock *WaterBB = *IP;
// If the original WaterList entry was "new water" on this iteration,
// propagate that to the new island. This is just keeping NewWaterList
// updated to match the WaterList, which will be updated below.
if (NewWaterList.count(WaterBB)) {
NewWaterList.erase(WaterBB);
NewWaterList.insert(NewIsland);
}
// The new CPE goes before the following block (NewMBB).
NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
} else {
// No water found.
DEBUG(dbgs() << "No water found\n");
createNewWater(CPUserIndex, UserOffset, NewMBB);
// splitBlockBeforeInstr adds to WaterList, which is important when it is
// called while handling branches so that the water will be seen on the
// next iteration for constant pools, but in this context, we don't want
// it. Check for this so it will be removed from the WaterList.
// Also remove any entry from NewWaterList.
MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
if (IP != WaterList.end())
NewWaterList.erase(WaterBB);
// We are adding new water. Update NewWaterList.
NewWaterList.insert(NewIsland);
}
// Remove the original WaterList entry; we want subsequent insertions in
// this vicinity to go after the one we're about to insert. This
// considerably reduces the number of times we have to move the same CPE
// more than once and is also important to ensure the algorithm terminates.
if (IP != WaterList.end())
WaterList.erase(IP);
// Okay, we know we can put an island before NewMBB now, do it!
MF->insert(NewMBB, NewIsland);
// Update internal data structures to account for the newly inserted MBB.
updateForInsertedWaterBlock(NewIsland);
// Decrement the old entry, and remove it if refcount becomes 0.
decrementCPEReferenceCount(CPI, CPEMI);
// Now that we have an island to add the CPE to, clone the original CPE and
// add it to the island.
U.HighWaterMark = NewIsland;
U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(AArch64::CONSTPOOL_ENTRY))
.addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
++NumCPEs;
// Mark the basic block as aligned as required by the const-pool entry.
NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
// Increase the size of the island block to account for the new entry.
BBInfo[NewIsland->getNumber()].Size += Size;
adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
// Finally, change the CPI in the instruction operand to be ID.
for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
if (UserMI->getOperand(i).isCPI()) {
UserMI->getOperand(i).setIndex(ID);
break;
}
DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
<< format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
return true;
}
/// Remove a dead constant pool entry instruction. Update sizes and offsets of
/// impacted basic blocks.
void AArch64ConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
MachineBasicBlock *CPEBB = CPEMI->getParent();
unsigned Size = CPEMI->getOperand(2).getImm();
CPEMI->eraseFromParent();
BBInfo[CPEBB->getNumber()].Size -= Size;
// All succeeding offsets have the current size value added in, fix this.
if (CPEBB->empty()) {
BBInfo[CPEBB->getNumber()].Size = 0;
// This block no longer needs to be aligned. <rdar://problem/10534709>.
CPEBB->setAlignment(0);
} else
// Entries are sorted by descending alignment, so realign from the front.
CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
adjustBBOffsetsAfter(CPEBB);
// An island has only one predecessor BB and one successor BB. Check if
// this BB's predecessor jumps directly to this BB's successor. This
// shouldn't happen currently.
assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
// FIXME: remove the empty blocks after all the work is done?
}
/// Remove constant pool entries whose refcounts are zero.
bool AArch64ConstantIslands::removeUnusedCPEntries() {
unsigned MadeChange = false;
for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
std::vector<CPEntry> &CPEs = CPEntries[i];
for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
removeDeadCPEMI(CPEs[j].CPEMI);
CPEs[j].CPEMI = NULL;
MadeChange = true;
}
}
}
return MadeChange;
}
/// Returns true if the distance between specific MI and specific BB can fit in
/// MI's displacement field.
bool AArch64ConstantIslands::isBBInRange(MachineInstr *MI,
MachineBasicBlock *DestBB,
unsigned OffsetBits) {
int64_t BrOffset = getOffsetOf(MI);
int64_t DestOffset = BBInfo[DestBB->getNumber()].Offset;
DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
<< " from BB#" << MI->getParent()->getNumber()
<< " bits available=" << OffsetBits
<< " from " << getOffsetOf(MI) << " to " << DestOffset
<< " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
return isIntN(OffsetBits, DestOffset - BrOffset);
}
/// Fix up an immediate branch whose destination is too far away to fit in its
/// displacement field.
bool AArch64ConstantIslands::fixupImmediateBr(ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *DestBB = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isMBB()) {
DestBB = MI->getOperand(i).getMBB();
break;
}
}
assert(DestBB && "Branch with no destination BB?");
// Check to see if the DestBB is already in-range.
if (isBBInRange(MI, DestBB, Br.OffsetBits))
return false;
assert(Br.IsCond && "Only conditional branches should need fixup");
return fixupConditionalBr(Br);
}
/// Fix up a conditional branch whose destination is too far away to fit in its
/// displacement field. It is converted to an inverse conditional branch + an
/// unconditional branch to the destination.
bool
AArch64ConstantIslands::fixupConditionalBr(ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *MBB = MI->getParent();
unsigned CondBrMBBOperand = 0;
// The general idea is to add an unconditional branch to the destination and
// invert the conditional branch to jump over it. Complications occur around
// fallthrough and unreachable ends to the block.
// b.lt L1
// =>
// b.ge L2
// b L1
// L2:
// First we invert the conditional branch, by creating a replacement if
// necessary. This if statement contains all the special handling of different
// branch types.
if (MI->getOpcode() == AArch64::Bcc) {
// The basic block is operand number 1 for Bcc
CondBrMBBOperand = 1;
A64CC::CondCodes CC = (A64CC::CondCodes)MI->getOperand(0).getImm();
CC = A64InvertCondCode(CC);
MI->getOperand(0).setImm(CC);
} else {
MachineInstrBuilder InvertedMI;
int InvertedOpcode;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown branch type");
case AArch64::TBZxii: InvertedOpcode = AArch64::TBNZxii; break;
case AArch64::TBZwii: InvertedOpcode = AArch64::TBNZwii; break;
case AArch64::TBNZxii: InvertedOpcode = AArch64::TBZxii; break;
case AArch64::TBNZwii: InvertedOpcode = AArch64::TBZwii; break;
case AArch64::CBZx: InvertedOpcode = AArch64::CBNZx; break;
case AArch64::CBZw: InvertedOpcode = AArch64::CBNZw; break;
case AArch64::CBNZx: InvertedOpcode = AArch64::CBZx; break;
case AArch64::CBNZw: InvertedOpcode = AArch64::CBZw; break;
}
InvertedMI = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(InvertedOpcode));
for (unsigned i = 0, e= MI->getNumOperands(); i != e; ++i) {
InvertedMI.addOperand(MI->getOperand(i));
if (MI->getOperand(i).isMBB())
CondBrMBBOperand = i;
}
MI->eraseFromParent();
MI = Br.MI = InvertedMI;
}
// If the branch is at the end of its MBB and that has a fall-through block,
// direct the updated conditional branch to the fall-through
// block. Otherwise, split the MBB before the next instruction.
MachineInstr *BMI = &MBB->back();
bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
++NumCBrFixed;
if (BMI != MI) {
if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
BMI->getOpcode() == AArch64::Bimm) {
// Last MI in the BB is an unconditional branch. We can swap destinations:
// b.eq L1 (temporarily b.ne L1 after first change)
// b L2
// =>
// b.ne L2
// b L1
MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
if (isBBInRange(MI, NewDest, Br.OffsetBits)) {
DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
<< *BMI);
MachineBasicBlock *DestBB = MI->getOperand(CondBrMBBOperand).getMBB();
BMI->getOperand(0).setMBB(DestBB);
MI->getOperand(CondBrMBBOperand).setMBB(NewDest);
return true;
}
}
}
if (NeedSplit) {
MachineBasicBlock::iterator MBBI = MI; ++MBBI;
splitBlockBeforeInstr(MBBI);
// No need for the branch to the next block. We're adding an unconditional
// branch to the destination.
int delta = TII->getInstSizeInBytes(MBB->back());
BBInfo[MBB->getNumber()].Size -= delta;
MBB->back().eraseFromParent();
// BBInfo[SplitBB].Offset is wrong temporarily, fixed below
}
// After splitting and removing the unconditional branch from the original BB,
// the structure is now:
// oldbb:
// [things]
// b.invertedCC L1
// splitbb/fallthroughbb:
// [old b L2/real continuation]
//
// We now have to change the conditional branch to point to splitbb and add an
// unconditional branch after it to L1, giving the final structure:
// oldbb:
// [things]
// b.invertedCC splitbb
// b L1
// splitbb/fallthroughbb:
// [old b L2/real continuation]
MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
DEBUG(dbgs() << " Insert B to BB#"
<< MI->getOperand(CondBrMBBOperand).getMBB()->getNumber()
<< " also invert condition and change dest. to BB#"
<< NextBB->getNumber() << "\n");
// Insert a new unconditional branch and fixup the destination of the
// conditional one. Also update the ImmBranch as well as adding a new entry
// for the new branch.
BuildMI(MBB, DebugLoc(), TII->get(AArch64::Bimm))
.addMBB(MI->getOperand(CondBrMBBOperand).getMBB());
MI->getOperand(CondBrMBBOperand).setMBB(NextBB);
BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
// 26 bits written down in Bimm, specifying a multiple of 4.
unsigned OffsetBits = 26 + 2;
ImmBranches.push_back(ImmBranch(&MBB->back(), OffsetBits, false));
adjustBBOffsetsAfter(MBB);
return true;
}