mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Kelly Wilson, thanks! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44043 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1244 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1244 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | 
						|
                      "http://www.w3.org/TR/html4/strict.dtd">
 | 
						|
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
  <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
 | 
						|
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | 
						|
  <meta name="author" content="Chris Lattner">
 | 
						|
  <link rel="stylesheet" href="../llvm.css" type="text/css">
 | 
						|
</head>
 | 
						|
 | 
						|
<body>
 | 
						|
 | 
						|
<div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
 | 
						|
 | 
						|
<ul>
 | 
						|
<li><a href="index.html">Up to Tutorial Index</a></li>
 | 
						|
<li>Chapter 3
 | 
						|
  <ol>
 | 
						|
    <li><a href="#intro">Chapter 3 Introduction</a></li>
 | 
						|
    <li><a href="#basics">Code Generation Setup</a></li>
 | 
						|
    <li><a href="#exprs">Expression Code Generation</a></li>
 | 
						|
    <li><a href="#funcs">Function Code Generation</a></li>
 | 
						|
    <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
 | 
						|
    <li><a href="#code">Full Code Listing</a></li>
 | 
						|
  </ol>
 | 
						|
</li>
 | 
						|
<li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer 
 | 
						|
Support</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<div class="doc_author">
 | 
						|
  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
 | 
						|
with LLVM</a>" tutorial.  This chapter shows you how to transform the <a 
 | 
						|
href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
 | 
						|
This will teach you a little bit about how LLVM does things, as well as
 | 
						|
demonstrate how easy it is to use.  It's much more work to build a lexer and
 | 
						|
parser than it is to generate LLVM IR code. :)
 | 
						|
</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="basics">Code Generation Setup</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
In order to generate LLVM IR, we want some simple setup to get started.  First,
 | 
						|
we define virtual codegen methods in each AST class:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// ExprAST - Base class for all expression nodes.
 | 
						|
class ExprAST {
 | 
						|
public:
 | 
						|
  virtual ~ExprAST() {}
 | 
						|
  <b>virtual Value *Codegen() = 0;</b>
 | 
						|
};
 | 
						|
 | 
						|
/// NumberExprAST - Expression class for numeric literals like "1.0".
 | 
						|
class NumberExprAST : public ExprAST {
 | 
						|
  double Val;
 | 
						|
public:
 | 
						|
  explicit NumberExprAST(double val) : Val(val) {}
 | 
						|
  <b>virtual Value *Codegen();</b>
 | 
						|
};
 | 
						|
...
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The Codegen() method says to emit IR for that AST node along with all the things it
 | 
						|
depends on, and they all return an LLVM Value object. 
 | 
						|
"Value" is the class used to represent a "<a 
 | 
						|
href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
 | 
						|
Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
 | 
						|
of SSA values is that their value is computed as the related instruction
 | 
						|
executes, and it does not get a new value until (and if) the instruction
 | 
						|
re-executes.  In other words, there is no way to "change" an SSA value.  For
 | 
						|
more information, please read up on <a 
 | 
						|
href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
 | 
						|
Assignment</a> - the concepts are really quite natural once you grok them.</p>
 | 
						|
 | 
						|
<p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
 | 
						|
it could also make sense to use a visitor pattern or some other way to model
 | 
						|
this.  Again, this tutorial won't dwell on good software engineering practices:
 | 
						|
for our purposes, adding a virtual method is simplest.</p>
 | 
						|
 | 
						|
<p>The
 | 
						|
second thing we want is an "Error" method like we used for the parser, which will
 | 
						|
be used to report errors found during code generation (for example, use of an
 | 
						|
undeclared parameter):</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | 
						|
 | 
						|
static Module *TheModule;
 | 
						|
static LLVMBuilder Builder;
 | 
						|
static std::map<std::string, Value*> NamedValues;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The static variables will be used during code generation.  <tt>TheModule</tt>
 | 
						|
is the LLVM construct that contains all of the functions and global variables in
 | 
						|
a chunk of code.  In many ways, it is the top-level structure that the LLVM IR
 | 
						|
uses to contain code.</p>
 | 
						|
 | 
						|
<p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
 | 
						|
LLVM instructions.  Instances of the <a 
 | 
						|
href="http://llvm.org/doxygen/LLVMBuilder_8h-source.html"><tt>LLVMBuilder</tt> 
 | 
						|
class</a> keep track of the current place to
 | 
						|
insert instructions and has methods to create new instructions.</p>
 | 
						|
 | 
						|
<p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
 | 
						|
current scope and what their LLVM representation is (in other words, it is a 
 | 
						|
symbol table for the code).  In this form of
 | 
						|
Kaleidoscope, the only things that can be referenced are function parameters.
 | 
						|
As such, function parameters will be in this map when generating code for their
 | 
						|
function body.</p>
 | 
						|
 | 
						|
<p>
 | 
						|
With these basics in place, we can start talking about how to generate code for
 | 
						|
each expression.  Note that this assumes that the <tt>Builder</tt> has been set
 | 
						|
up to generate code <em>into</em> something.  For now, we'll assume that this
 | 
						|
has already been done, and we'll just use it to emit code.
 | 
						|
</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="exprs">Expression Code Generation</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Generating LLVM code for expression nodes is very straightforward: less
 | 
						|
than 45 lines of commented code for all four of our expression nodes.  First,
 | 
						|
we'll do numeric literals:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *NumberExprAST::Codegen() {
 | 
						|
  return ConstantFP::get(Type::DoubleTy, APFloat(Val));
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>In the LLVM IR, numeric constants are represented with the
 | 
						|
<tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
 | 
						|
internally (<tt>APFloat</tt> has the capability of holding floating point
 | 
						|
constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
 | 
						|
creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
 | 
						|
that constants are all uniqued together and shared.  For this reason, the API
 | 
						|
uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::create(..)".</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *VariableExprAST::Codegen() {
 | 
						|
  // Look this variable up in the function.
 | 
						|
  Value *V = NamedValues[Name];
 | 
						|
  return V ? V : ErrorV("Unknown variable name");
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>References to variables are also quite simple using LLVM.  In the simple version
 | 
						|
of Kaleidoscope, we assume that the variable has already been emited somewhere
 | 
						|
and its value is available.  In practice, the only values that can be in the
 | 
						|
<tt>NamedValues</tt> map are function arguments.  This
 | 
						|
code simply checks to see that the specified name is in the map (if not, an 
 | 
						|
unknown variable is being referenced) and returns the value for it.  In future
 | 
						|
chapters, we'll add support for <a href="LangImpl5.html#for">loop induction 
 | 
						|
variables</a> in the symbol table, and for <a 
 | 
						|
href="LangImpl7.html#localvars">local variables</a>.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *BinaryExprAST::Codegen() {
 | 
						|
  Value *L = LHS->Codegen();
 | 
						|
  Value *R = RHS->Codegen();
 | 
						|
  if (L == 0 || R == 0) return 0;
 | 
						|
  
 | 
						|
  switch (Op) {
 | 
						|
  case '+': return Builder.CreateAdd(L, R, "addtmp");
 | 
						|
  case '-': return Builder.CreateSub(L, R, "subtmp");
 | 
						|
  case '*': return Builder.CreateMul(L, R, "multmp");
 | 
						|
  case '<':
 | 
						|
    L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | 
						|
    // Convert bool 0/1 to double 0.0 or 1.0
 | 
						|
    return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
 | 
						|
  default: return ErrorV("invalid binary operator");
 | 
						|
  }
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Binary operators start to get more interesting.  The basic idea here is that
 | 
						|
we recursively emit code for the left-hand side of the expression, then the 
 | 
						|
right-hand side, then we compute the result of the binary expression.  In this
 | 
						|
code, we do a simple switch on the opcode to create the right LLVM instruction.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>In the example above, the LLVM builder class is starting to show its value.  
 | 
						|
LLVMBuilder knows where to insert the newly created instruction, all you have to
 | 
						|
do is specify what instruction to create (e.g. with <tt>CreateAdd</tt>), which
 | 
						|
operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
 | 
						|
for the generated instruction.  One nice thing about LLVM is that the name is 
 | 
						|
just a hint: if there are multiple additions in a single function, the first
 | 
						|
will be named "addtmp" and the second will be "autorenamed" by adding a suffix,
 | 
						|
giving it a name like "addtmp42".  Local value names for instructions are purely
 | 
						|
optional, but it makes it much easier to read the IR dumps.</p>
 | 
						|
 | 
						|
<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
 | 
						|
strict rules: for example, the Left and Right operators of
 | 
						|
an <a href="../LangRef.html#i_add">add instruction</a> must have the same
 | 
						|
type, and the result type of the add must match the operand types.  Because
 | 
						|
all values in Kaleidoscope are doubles, this makes for very simple code for add,
 | 
						|
sub and mul.</p>
 | 
						|
 | 
						|
<p>On the other hand, LLVM specifies that the <a 
 | 
						|
href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
 | 
						|
(a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
 | 
						|
a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
 | 
						|
converts its input integer into a floating point value by treating the input
 | 
						|
as an unsigned value.  In contrast, if we used the <a 
 | 
						|
href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<'
 | 
						|
operator would return 0.0 and -1.0, depending on the input value.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *CallExprAST::Codegen() {
 | 
						|
  // Look up the name in the global module table.
 | 
						|
  Function *CalleeF = TheModule->getFunction(Callee);
 | 
						|
  if (CalleeF == 0)
 | 
						|
    return ErrorV("Unknown function referenced");
 | 
						|
  
 | 
						|
  // If argument mismatch error.
 | 
						|
  if (CalleeF->arg_size() != Args.size())
 | 
						|
    return ErrorV("Incorrect # arguments passed");
 | 
						|
 | 
						|
  std::vector<Value*> ArgsV;
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
    ArgsV.push_back(Args[i]->Codegen());
 | 
						|
    if (ArgsV.back() == 0) return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Code generation for function calls is quite straightforward with LLVM.  The
 | 
						|
code above initially does a function name lookup in the LLVM Module's symbol
 | 
						|
table.  Recall that the LLVM Module is the container that holds all of the
 | 
						|
functions we are JIT'ing.  By giving each function the same name as what the
 | 
						|
user specifies, we can use the LLVM symbol table to resolve function names for
 | 
						|
us.</p>
 | 
						|
 | 
						|
<p>Once we have the function to call, we recursively codegen each argument that
 | 
						|
is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
 | 
						|
instruction</a>.  Note that LLVM uses the native C calling conventions by
 | 
						|
default, allowing these calls to also call into standard library functions like
 | 
						|
"sin" and "cos", with no additional effort.</p>
 | 
						|
 | 
						|
<p>This wraps up our handling of the four basic expressions that we have so far
 | 
						|
in Kaleidoscope.  Feel free to go in and add some more.  For example, by 
 | 
						|
browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
 | 
						|
several other interesting instructions that are really easy to plug into our
 | 
						|
basic framework.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="funcs">Function Code Generation</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Code generation for prototypes and functions must handle a number of
 | 
						|
details, which make their code less beautiful than expression code
 | 
						|
generation, but allows us to  illustrate some important points.  First, lets
 | 
						|
talk about code generation for prototypes: they are used both for function 
 | 
						|
bodies and external function declarations.  The code starts with:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Function *PrototypeAST::Codegen() {
 | 
						|
  // Make the function type:  double(double,double) etc.
 | 
						|
  std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
 | 
						|
  FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
 | 
						|
  
 | 
						|
  Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This code packs a lot of power into a few lines.  Note first that this 
 | 
						|
function returns a "Function*" instead of a "Value*".  Because a "prototype"
 | 
						|
really talks about the external interface for a function (not the value computed
 | 
						|
by an expression), it makes sense for it to return the LLVM Function it
 | 
						|
corresponds to when codegen'd.</p>
 | 
						|
 | 
						|
<p>The call to <tt>FunctionType::get</tt> creates
 | 
						|
the <tt>FunctionType</tt> that should be used for a given Prototype.  Since all
 | 
						|
function arguments in Kaleidoscope are of type double, the first line creates
 | 
						|
a vector of "N" LLVM double types.  It then uses the <tt>FunctionType::get</tt>
 | 
						|
method to create a function type that takes "N" doubles as arguments, returns
 | 
						|
one double as a result, and that is not vararg (the false parameter indicates
 | 
						|
this).  Note that Types in LLVM are uniqued just like Constants are, so you
 | 
						|
don't "new" a type, you "get" it.</p>
 | 
						|
 | 
						|
<p>The final line above actually creates the function that the prototype will
 | 
						|
correspond to.  This indicates the type, linkage and name to use, as well as which
 | 
						|
module to insert into.  "<a href="LangRef.html#linkage">external linkage</a>"
 | 
						|
means that the function may be defined outside the current module and/or that it
 | 
						|
is callable by functions outside the module.  The Name passed in is the name the
 | 
						|
user specified: since "<tt>TheModule</tt>" is specified, this name is registered
 | 
						|
in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
 | 
						|
above.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // If F conflicted, there was already something named 'Name'.  If it has a
 | 
						|
  // body, don't allow redefinition or reextern.
 | 
						|
  if (F->getName() != Name) {
 | 
						|
    // Delete the one we just made and get the existing one.
 | 
						|
    F->eraseFromParent();
 | 
						|
    F = TheModule->getFunction(Name);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The Module symbol table works just like the Function symbol table when it
 | 
						|
comes to name conflicts: if a new function is created with a name was previously
 | 
						|
added to the symbol table, it will get implicitly renamed when added to the
 | 
						|
Module.  The code above exploits this fact to determine if there was a previous
 | 
						|
definition of this function.</p>
 | 
						|
 | 
						|
<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
 | 
						|
first, we want to allow 'extern'ing a function more than once, as long as the
 | 
						|
prototypes for the externs match (since all arguments have the same type, we
 | 
						|
just have to check that the number of arguments match).  Second, we want to
 | 
						|
allow 'extern'ing a function and then definining a body for it.  This is useful
 | 
						|
when defining mutually recursive functions.</p>
 | 
						|
 | 
						|
<p>In order to implement this, the code above first checks to see if there is
 | 
						|
a collision on the name of the function.  If so, it deletes the function we just
 | 
						|
created (by calling <tt>eraseFromParent</tt>) and then calling 
 | 
						|
<tt>getFunction</tt> to get the existing function with the specified name.  Note
 | 
						|
that many APIs in LLVM have "erase" forms and "remove" forms.  The "remove" form
 | 
						|
unlinks the object from its parent (e.g. a Function from a Module) and returns
 | 
						|
it.  The "erase" form unlinks the object and then deletes it.</p>
 | 
						|
   
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
    // If F already has a body, reject this.
 | 
						|
    if (!F->empty()) {
 | 
						|
      ErrorF("redefinition of function");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If F took a different number of args, reject.
 | 
						|
    if (F->arg_size() != Args.size()) {
 | 
						|
      ErrorF("redefinition of function with different # args");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>In order to verify the logic above, we first check to see if the pre-existing
 | 
						|
function is "empty".  In this case, empty means that it has no basic blocks in
 | 
						|
it, which means it has no body.  If it has no body, it is a forward 
 | 
						|
declaration.  Since we don't allow anything after a full definition of the
 | 
						|
function, the code rejects this case.  If the previous reference to a function
 | 
						|
was an 'extern', we simply verify that the number of arguments for that
 | 
						|
definition and this one match up.  If not, we emit an error.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Set names for all arguments.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | 
						|
       ++AI, ++Idx) {
 | 
						|
    AI->setName(Args[Idx]);
 | 
						|
    
 | 
						|
    // Add arguments to variable symbol table.
 | 
						|
    NamedValues[Args[Idx]] = AI;
 | 
						|
  }
 | 
						|
  return F;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The last bit of code for prototypes loops over all of the arguments in the
 | 
						|
function, setting the name of the LLVM Argument objects to match, and registering
 | 
						|
the arguments in the <tt>NamedValues</tt> map for future use by the
 | 
						|
<tt>VariableExprAST</tt> AST node.  Once this is set up, it returns the Function
 | 
						|
object to the caller.  Note that we don't check for conflicting 
 | 
						|
argument names here (e.g. "extern foo(a b a)").  Doing so would be very
 | 
						|
straight-forward with the mechanics we have already used above.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Function *FunctionAST::Codegen() {
 | 
						|
  NamedValues.clear();
 | 
						|
  
 | 
						|
  Function *TheFunction = Proto->Codegen();
 | 
						|
  if (TheFunction == 0)
 | 
						|
    return 0;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Code generation for function definitions starts out simply enough: we just
 | 
						|
codegen the prototype (Proto) and verify that it is ok.  We then clear out the
 | 
						|
<tt>NamedValues</tt> map to make sure that there isn't anything in it from the
 | 
						|
last function we compiled.  Code generation of the prototype ensures that there
 | 
						|
is an LLVM Function object that is ready to go for us.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Create a new basic block to start insertion into.
 | 
						|
  BasicBlock *BB = new BasicBlock("entry", TheFunction);
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  
 | 
						|
  if (Value *RetVal = Body->Codegen()) {
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Now we get to the point where the <tt>Builder</tt> is set up.  The first
 | 
						|
line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
 | 
						|
block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>.  The
 | 
						|
second line then tells the builder that new instructions should be inserted into
 | 
						|
the end of the new basic block.  Basic blocks in LLVM are an important part
 | 
						|
of functions that define the <a 
 | 
						|
href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
 | 
						|
Since we don't have any control flow, our functions will only contain one 
 | 
						|
block at this point.  We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  if (Value *RetVal = Body->Codegen()) {
 | 
						|
    // Finish off the function.
 | 
						|
    Builder.CreateRet(RetVal);
 | 
						|
    
 | 
						|
    // Validate the generated code, checking for consistency.
 | 
						|
    verifyFunction(*TheFunction);
 | 
						|
    return TheFunction;
 | 
						|
  }
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
 | 
						|
the root expression of the function.  If no error happens, this emits code to
 | 
						|
compute the expression into the entry block and returns the value that was
 | 
						|
computed.  Assuming no error, we then create an LLVM <a 
 | 
						|
href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
 | 
						|
Once the function is built, we call <tt>verifyFunction</tt>, which
 | 
						|
is provided by LLVM.  This function does a variety of consistency checks on the
 | 
						|
generated code, to determine if our compiler is doing everything right.  Using
 | 
						|
this is important: it can catch a lot of bugs.  Once the function is finished
 | 
						|
and validated, we return it.</p>
 | 
						|
  
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Error reading body, remove function.
 | 
						|
  TheFunction->eraseFromParent();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The only piece left here is handling of the error case.  For simplicity, we
 | 
						|
handle this by merely deleting the function we produced with the 
 | 
						|
<tt>eraseFromParent</tt> method.  This allows the user to redefine a function
 | 
						|
that they incorrectly typed in before: if we didn't delete it, it would live in
 | 
						|
the symbol table, with a body, preventing future redefinition.</p>
 | 
						|
 | 
						|
<p>This code does have a bug, though.  Since the <tt>PrototypeAST::Codegen</tt>
 | 
						|
can return a previously defined forward declaration, our code can actually delete
 | 
						|
a forward declaration.  There are a number of ways to fix this bug, see what you
 | 
						|
can come up with!  Here is a testcase:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
extern foo(a b);     # ok, defines foo.
 | 
						|
def foo(a b) c;      # error, 'c' is invalid.
 | 
						|
def bar() foo(1, 2); # error, unknown function "foo"
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="driver">Driver Changes and 
 | 
						|
Closing Thoughts</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
For now, code generation to LLVM doesn't really get us much, except that we can
 | 
						|
look at the pretty IR calls.  The sample code inserts calls to Codegen into the
 | 
						|
"<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
 | 
						|
dumps out the LLVM IR.  This gives a nice way to look at the LLVM IR for simple
 | 
						|
functions.  For example:
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
ready> <b>4+5</b>;
 | 
						|
Read top-level expression:
 | 
						|
define double @""() {
 | 
						|
entry:
 | 
						|
        %addtmp = add double 4.000000e+00, 5.000000e+00
 | 
						|
        ret double %addtmp
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Note how the parser turns the top-level expression into anonymous functions
 | 
						|
for us.  This will be handy when we add <a href="LangImpl4.html#jit">JIT 
 | 
						|
support</a> in the next chapter.  Also note that the code is very literally
 | 
						|
transcribed, no optimizations are being performed.  We will 
 | 
						|
<a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
 | 
						|
the next chapter.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b>
 | 
						|
Read function definition:
 | 
						|
define double @foo(double %a, double %b) {
 | 
						|
entry:
 | 
						|
        %multmp = mul double %a, %a
 | 
						|
        %multmp1 = mul double 2.000000e+00, %a
 | 
						|
        %multmp2 = mul double %multmp1, %b
 | 
						|
        %addtmp = add double %multmp, %multmp2
 | 
						|
        %multmp3 = mul double %b, %b
 | 
						|
        %addtmp4 = add double %addtmp, %multmp3
 | 
						|
        ret double %addtmp4
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This shows some simple arithmetic. Notice the striking similarity to the
 | 
						|
LLVM builder calls that we use to create the instructions.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
 | 
						|
Read function definition:
 | 
						|
define double @bar(double %a) {
 | 
						|
entry:
 | 
						|
        %calltmp = call double @foo( double %a, double 4.000000e+00 )
 | 
						|
        %calltmp1 = call double @bar( double 3.133700e+04 )
 | 
						|
        %addtmp = add double %calltmp, %calltmp1
 | 
						|
        ret double %addtmp
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This shows some function calls.  Note that this function will take a long
 | 
						|
time to execute if you call it.  In the future we'll add conditional control 
 | 
						|
flow to actually make recursion useful :).</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
ready> <b>extern cos(x);</b>
 | 
						|
Read extern: 
 | 
						|
declare double @cos(double)
 | 
						|
 | 
						|
ready> <b>cos(1.234);</b>
 | 
						|
Read top-level expression:
 | 
						|
define double @""() {
 | 
						|
entry:
 | 
						|
        %calltmp = call double @cos( double 1.234000e+00 )
 | 
						|
        ret double %calltmp
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This shows an extern for the libm "cos" function, and a call to it.</p>
 | 
						|
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
ready> <b>^D</b>
 | 
						|
; ModuleID = 'my cool jit'
 | 
						|
 | 
						|
define double @""() {
 | 
						|
entry:
 | 
						|
        %addtmp = add double 4.000000e+00, 5.000000e+00
 | 
						|
        ret double %addtmp
 | 
						|
}
 | 
						|
 | 
						|
define double @foo(double %a, double %b) {
 | 
						|
entry:
 | 
						|
        %multmp = mul double %a, %a
 | 
						|
        %multmp1 = mul double 2.000000e+00, %a
 | 
						|
        %multmp2 = mul double %multmp1, %b
 | 
						|
        %addtmp = add double %multmp, %multmp2
 | 
						|
        %multmp3 = mul double %b, %b
 | 
						|
        %addtmp4 = add double %addtmp, %multmp3
 | 
						|
        ret double %addtmp4
 | 
						|
}
 | 
						|
 | 
						|
define double @bar(double %a) {
 | 
						|
entry:
 | 
						|
        %calltmp = call double @foo( double %a, double 4.000000e+00 )
 | 
						|
        %calltmp1 = call double @bar( double 3.133700e+04 )
 | 
						|
        %addtmp = add double %calltmp, %calltmp1
 | 
						|
        ret double %addtmp
 | 
						|
}
 | 
						|
 | 
						|
declare double @cos(double)
 | 
						|
 | 
						|
define double @""() {
 | 
						|
entry:
 | 
						|
        %calltmp = call double @cos( double 1.234000e+00 )
 | 
						|
        ret double %calltmp
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>When you quit the current demo, it dumps out the IR for the entire module
 | 
						|
generated.  Here you can see the big picture with all the functions referencing
 | 
						|
each other.</p>
 | 
						|
 | 
						|
<p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
 | 
						|
describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
 | 
						|
support</a> to this so we can actually start running code!</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="code">Full Code Listing</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
Here is the complete code listing for our running example, enhanced with the
 | 
						|
LLVM code generator.    Because this uses the LLVM libraries, we need to link
 | 
						|
them in.  To do this, we use the <a 
 | 
						|
href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
 | 
						|
our makefile/command line about which options to use:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
   # Compile
 | 
						|
   g++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
 | 
						|
   # Run
 | 
						|
   ./toy
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Here is the code:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
// To build this:
 | 
						|
// See example below.
 | 
						|
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Analysis/Verifier.h"
 | 
						|
#include "llvm/Support/LLVMBuilder.h"
 | 
						|
#include <cstdio>
 | 
						|
#include <string>
 | 
						|
#include <map>
 | 
						|
#include <vector>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Lexer
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | 
						|
// of these for known things.
 | 
						|
enum Token {
 | 
						|
  tok_eof = -1,
 | 
						|
 | 
						|
  // commands
 | 
						|
  tok_def = -2, tok_extern = -3,
 | 
						|
 | 
						|
  // primary
 | 
						|
  tok_identifier = -4, tok_number = -5,
 | 
						|
};
 | 
						|
 | 
						|
static std::string IdentifierStr;  // Filled in if tok_identifier
 | 
						|
static double NumVal;              // Filled in if tok_number
 | 
						|
 | 
						|
/// gettok - Return the next token from standard input.
 | 
						|
static int gettok() {
 | 
						|
  static int LastChar = ' ';
 | 
						|
 | 
						|
  // Skip any whitespace.
 | 
						|
  while (isspace(LastChar))
 | 
						|
    LastChar = getchar();
 | 
						|
 | 
						|
  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | 
						|
    IdentifierStr = LastChar;
 | 
						|
    while (isalnum((LastChar = getchar())))
 | 
						|
      IdentifierStr += LastChar;
 | 
						|
 | 
						|
    if (IdentifierStr == "def") return tok_def;
 | 
						|
    if (IdentifierStr == "extern") return tok_extern;
 | 
						|
    return tok_identifier;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | 
						|
    std::string NumStr;
 | 
						|
    do {
 | 
						|
      NumStr += LastChar;
 | 
						|
      LastChar = getchar();
 | 
						|
    } while (isdigit(LastChar) || LastChar == '.');
 | 
						|
 | 
						|
    NumVal = strtod(NumStr.c_str(), 0);
 | 
						|
    return tok_number;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LastChar == '#') {
 | 
						|
    // Comment until end of line.
 | 
						|
    do LastChar = getchar();
 | 
						|
    while (LastChar != EOF && LastChar != '\n' & LastChar != '\r');
 | 
						|
    
 | 
						|
    if (LastChar != EOF)
 | 
						|
      return gettok();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for end of file.  Don't eat the EOF.
 | 
						|
  if (LastChar == EOF)
 | 
						|
    return tok_eof;
 | 
						|
 | 
						|
  // Otherwise, just return the character as its ascii value.
 | 
						|
  int ThisChar = LastChar;
 | 
						|
  LastChar = getchar();
 | 
						|
  return ThisChar;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Abstract Syntax Tree (aka Parse Tree)
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ExprAST - Base class for all expression nodes.
 | 
						|
class ExprAST {
 | 
						|
public:
 | 
						|
  virtual ~ExprAST() {}
 | 
						|
  virtual Value *Codegen() = 0;
 | 
						|
};
 | 
						|
 | 
						|
/// NumberExprAST - Expression class for numeric literals like "1.0".
 | 
						|
class NumberExprAST : public ExprAST {
 | 
						|
  double Val;
 | 
						|
public:
 | 
						|
  explicit NumberExprAST(double val) : Val(val) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// VariableExprAST - Expression class for referencing a variable, like "a".
 | 
						|
class VariableExprAST : public ExprAST {
 | 
						|
  std::string Name;
 | 
						|
public:
 | 
						|
  explicit VariableExprAST(const std::string &name) : Name(name) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// BinaryExprAST - Expression class for a binary operator.
 | 
						|
class BinaryExprAST : public ExprAST {
 | 
						|
  char Op;
 | 
						|
  ExprAST *LHS, *RHS;
 | 
						|
public:
 | 
						|
  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | 
						|
    : Op(op), LHS(lhs), RHS(rhs) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// CallExprAST - Expression class for function calls.
 | 
						|
class CallExprAST : public ExprAST {
 | 
						|
  std::string Callee;
 | 
						|
  std::vector<ExprAST*> Args;
 | 
						|
public:
 | 
						|
  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | 
						|
    : Callee(callee), Args(args) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// PrototypeAST - This class represents the "prototype" for a function,
 | 
						|
/// which captures its argument names as well as if it is an operator.
 | 
						|
class PrototypeAST {
 | 
						|
  std::string Name;
 | 
						|
  std::vector<std::string> Args;
 | 
						|
public:
 | 
						|
  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
 | 
						|
    : Name(name), Args(args) {}
 | 
						|
  
 | 
						|
  Function *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// FunctionAST - This class represents a function definition itself.
 | 
						|
class FunctionAST {
 | 
						|
  PrototypeAST *Proto;
 | 
						|
  ExprAST *Body;
 | 
						|
public:
 | 
						|
  FunctionAST(PrototypeAST *proto, ExprAST *body)
 | 
						|
    : Proto(proto), Body(body) {}
 | 
						|
  
 | 
						|
  Function *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Parser
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | 
						|
/// token the parser it looking at.  getNextToken reads another token from the
 | 
						|
/// lexer and updates CurTok with its results.
 | 
						|
static int CurTok;
 | 
						|
static int getNextToken() {
 | 
						|
  return CurTok = gettok();
 | 
						|
}
 | 
						|
 | 
						|
/// BinopPrecedence - This holds the precedence for each binary operator that is
 | 
						|
/// defined.
 | 
						|
static std::map<char, int> BinopPrecedence;
 | 
						|
 | 
						|
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | 
						|
static int GetTokPrecedence() {
 | 
						|
  if (!isascii(CurTok))
 | 
						|
    return -1;
 | 
						|
  
 | 
						|
  // Make sure it's a declared binop.
 | 
						|
  int TokPrec = BinopPrecedence[CurTok];
 | 
						|
  if (TokPrec <= 0) return -1;
 | 
						|
  return TokPrec;
 | 
						|
}
 | 
						|
 | 
						|
/// Error* - These are little helper functions for error handling.
 | 
						|
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | 
						|
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | 
						|
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | 
						|
 | 
						|
static ExprAST *ParseExpression();
 | 
						|
 | 
						|
/// identifierexpr
 | 
						|
///   ::= identifier
 | 
						|
///   ::= identifier '(' expression* ')'
 | 
						|
static ExprAST *ParseIdentifierExpr() {
 | 
						|
  std::string IdName = IdentifierStr;
 | 
						|
  
 | 
						|
  getNextToken();  // eat identifier.
 | 
						|
  
 | 
						|
  if (CurTok != '(') // Simple variable ref.
 | 
						|
    return new VariableExprAST(IdName);
 | 
						|
  
 | 
						|
  // Call.
 | 
						|
  getNextToken();  // eat (
 | 
						|
  std::vector<ExprAST*> Args;
 | 
						|
  if (CurTok != ')') {
 | 
						|
    while (1) {
 | 
						|
      ExprAST *Arg = ParseExpression();
 | 
						|
      if (!Arg) return 0;
 | 
						|
      Args.push_back(Arg);
 | 
						|
    
 | 
						|
      if (CurTok == ')') break;
 | 
						|
    
 | 
						|
      if (CurTok != ',')
 | 
						|
        return Error("Expected ')'");
 | 
						|
      getNextToken();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Eat the ')'.
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  return new CallExprAST(IdName, Args);
 | 
						|
}
 | 
						|
 | 
						|
/// numberexpr ::= number
 | 
						|
static ExprAST *ParseNumberExpr() {
 | 
						|
  ExprAST *Result = new NumberExprAST(NumVal);
 | 
						|
  getNextToken(); // consume the number
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// parenexpr ::= '(' expression ')'
 | 
						|
static ExprAST *ParseParenExpr() {
 | 
						|
  getNextToken();  // eat (.
 | 
						|
  ExprAST *V = ParseExpression();
 | 
						|
  if (!V) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != ')')
 | 
						|
    return Error("expected ')'");
 | 
						|
  getNextToken();  // eat ).
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// primary
 | 
						|
///   ::= identifierexpr
 | 
						|
///   ::= numberexpr
 | 
						|
///   ::= parenexpr
 | 
						|
static ExprAST *ParsePrimary() {
 | 
						|
  switch (CurTok) {
 | 
						|
  default: return Error("unknown token when expecting an expression");
 | 
						|
  case tok_identifier: return ParseIdentifierExpr();
 | 
						|
  case tok_number:     return ParseNumberExpr();
 | 
						|
  case '(':            return ParseParenExpr();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// binoprhs
 | 
						|
///   ::= ('+' primary)*
 | 
						|
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | 
						|
  // If this is a binop, find its precedence.
 | 
						|
  while (1) {
 | 
						|
    int TokPrec = GetTokPrecedence();
 | 
						|
    
 | 
						|
    // If this is a binop that binds at least as tightly as the current binop,
 | 
						|
    // consume it, otherwise we are done.
 | 
						|
    if (TokPrec < ExprPrec)
 | 
						|
      return LHS;
 | 
						|
    
 | 
						|
    // Okay, we know this is a binop.
 | 
						|
    int BinOp = CurTok;
 | 
						|
    getNextToken();  // eat binop
 | 
						|
    
 | 
						|
    // Parse the primary expression after the binary operator.
 | 
						|
    ExprAST *RHS = ParsePrimary();
 | 
						|
    if (!RHS) return 0;
 | 
						|
    
 | 
						|
    // If BinOp binds less tightly with RHS than the operator after RHS, let
 | 
						|
    // the pending operator take RHS as its LHS.
 | 
						|
    int NextPrec = GetTokPrecedence();
 | 
						|
    if (TokPrec < NextPrec) {
 | 
						|
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | 
						|
      if (RHS == 0) return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Merge LHS/RHS.
 | 
						|
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// expression
 | 
						|
///   ::= primary binoprhs
 | 
						|
///
 | 
						|
static ExprAST *ParseExpression() {
 | 
						|
  ExprAST *LHS = ParsePrimary();
 | 
						|
  if (!LHS) return 0;
 | 
						|
  
 | 
						|
  return ParseBinOpRHS(0, LHS);
 | 
						|
}
 | 
						|
 | 
						|
/// prototype
 | 
						|
///   ::= id '(' id* ')'
 | 
						|
static PrototypeAST *ParsePrototype() {
 | 
						|
  if (CurTok != tok_identifier)
 | 
						|
    return ErrorP("Expected function name in prototype");
 | 
						|
 | 
						|
  std::string FnName = IdentifierStr;
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  if (CurTok != '(')
 | 
						|
    return ErrorP("Expected '(' in prototype");
 | 
						|
  
 | 
						|
  std::vector<std::string> ArgNames;
 | 
						|
  while (getNextToken() == tok_identifier)
 | 
						|
    ArgNames.push_back(IdentifierStr);
 | 
						|
  if (CurTok != ')')
 | 
						|
    return ErrorP("Expected ')' in prototype");
 | 
						|
  
 | 
						|
  // success.
 | 
						|
  getNextToken();  // eat ')'.
 | 
						|
  
 | 
						|
  return new PrototypeAST(FnName, ArgNames);
 | 
						|
}
 | 
						|
 | 
						|
/// definition ::= 'def' prototype expression
 | 
						|
static FunctionAST *ParseDefinition() {
 | 
						|
  getNextToken();  // eat def.
 | 
						|
  PrototypeAST *Proto = ParsePrototype();
 | 
						|
  if (Proto == 0) return 0;
 | 
						|
 | 
						|
  if (ExprAST *E = ParseExpression())
 | 
						|
    return new FunctionAST(Proto, E);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// toplevelexpr ::= expression
 | 
						|
static FunctionAST *ParseTopLevelExpr() {
 | 
						|
  if (ExprAST *E = ParseExpression()) {
 | 
						|
    // Make an anonymous proto.
 | 
						|
    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | 
						|
    return new FunctionAST(Proto, E);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// external ::= 'extern' prototype
 | 
						|
static PrototypeAST *ParseExtern() {
 | 
						|
  getNextToken();  // eat extern.
 | 
						|
  return ParsePrototype();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Code Generation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Module *TheModule;
 | 
						|
static LLVMBuilder Builder;
 | 
						|
static std::map<std::string, Value*> NamedValues;
 | 
						|
 | 
						|
Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | 
						|
 | 
						|
Value *NumberExprAST::Codegen() {
 | 
						|
  return ConstantFP::get(Type::DoubleTy, APFloat(Val));
 | 
						|
}
 | 
						|
 | 
						|
Value *VariableExprAST::Codegen() {
 | 
						|
  // Look this variable up in the function.
 | 
						|
  Value *V = NamedValues[Name];
 | 
						|
  return V ? V : ErrorV("Unknown variable name");
 | 
						|
}
 | 
						|
 | 
						|
Value *BinaryExprAST::Codegen() {
 | 
						|
  Value *L = LHS->Codegen();
 | 
						|
  Value *R = RHS->Codegen();
 | 
						|
  if (L == 0 || R == 0) return 0;
 | 
						|
  
 | 
						|
  switch (Op) {
 | 
						|
  case '+': return Builder.CreateAdd(L, R, "addtmp");
 | 
						|
  case '-': return Builder.CreateSub(L, R, "subtmp");
 | 
						|
  case '*': return Builder.CreateMul(L, R, "multmp");
 | 
						|
  case '<':
 | 
						|
    L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | 
						|
    // Convert bool 0/1 to double 0.0 or 1.0
 | 
						|
    return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
 | 
						|
  default: return ErrorV("invalid binary operator");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *CallExprAST::Codegen() {
 | 
						|
  // Look up the name in the global module table.
 | 
						|
  Function *CalleeF = TheModule->getFunction(Callee);
 | 
						|
  if (CalleeF == 0)
 | 
						|
    return ErrorV("Unknown function referenced");
 | 
						|
  
 | 
						|
  // If argument mismatch error.
 | 
						|
  if (CalleeF->arg_size() != Args.size())
 | 
						|
    return ErrorV("Incorrect # arguments passed");
 | 
						|
 | 
						|
  std::vector<Value*> ArgsV;
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
    ArgsV.push_back(Args[i]->Codegen());
 | 
						|
    if (ArgsV.back() == 0) return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | 
						|
}
 | 
						|
 | 
						|
Function *PrototypeAST::Codegen() {
 | 
						|
  // Make the function type:  double(double,double) etc.
 | 
						|
  std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
 | 
						|
  FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
 | 
						|
  
 | 
						|
  Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule);
 | 
						|
  
 | 
						|
  // If F conflicted, there was already something named 'Name'.  If it has a
 | 
						|
  // body, don't allow redefinition or reextern.
 | 
						|
  if (F->getName() != Name) {
 | 
						|
    // Delete the one we just made and get the existing one.
 | 
						|
    F->eraseFromParent();
 | 
						|
    F = TheModule->getFunction(Name);
 | 
						|
    
 | 
						|
    // If F already has a body, reject this.
 | 
						|
    if (!F->empty()) {
 | 
						|
      ErrorF("redefinition of function");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If F took a different number of args, reject.
 | 
						|
    if (F->arg_size() != Args.size()) {
 | 
						|
      ErrorF("redefinition of function with different # args");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Set names for all arguments.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | 
						|
       ++AI, ++Idx) {
 | 
						|
    AI->setName(Args[Idx]);
 | 
						|
    
 | 
						|
    // Add arguments to variable symbol table.
 | 
						|
    NamedValues[Args[Idx]] = AI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return F;
 | 
						|
}
 | 
						|
 | 
						|
Function *FunctionAST::Codegen() {
 | 
						|
  NamedValues.clear();
 | 
						|
  
 | 
						|
  Function *TheFunction = Proto->Codegen();
 | 
						|
  if (TheFunction == 0)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Create a new basic block to start insertion into.
 | 
						|
  BasicBlock *BB = new BasicBlock("entry", TheFunction);
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  
 | 
						|
  if (Value *RetVal = Body->Codegen()) {
 | 
						|
    // Finish off the function.
 | 
						|
    Builder.CreateRet(RetVal);
 | 
						|
    
 | 
						|
    // Validate the generated code, checking for consistency.
 | 
						|
    verifyFunction(*TheFunction);
 | 
						|
    return TheFunction;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Error reading body, remove function.
 | 
						|
  TheFunction->eraseFromParent();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Top-Level parsing and JIT Driver
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static void HandleDefinition() {
 | 
						|
  if (FunctionAST *F = ParseDefinition()) {
 | 
						|
    if (Function *LF = F->Codegen()) {
 | 
						|
      fprintf(stderr, "Read function definition:");
 | 
						|
      LF->dump();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void HandleExtern() {
 | 
						|
  if (PrototypeAST *P = ParseExtern()) {
 | 
						|
    if (Function *F = P->Codegen()) {
 | 
						|
      fprintf(stderr, "Read extern: ");
 | 
						|
      F->dump();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void HandleTopLevelExpression() {
 | 
						|
  // Evaluate a top level expression into an anonymous function.
 | 
						|
  if (FunctionAST *F = ParseTopLevelExpr()) {
 | 
						|
    if (Function *LF = F->Codegen()) {
 | 
						|
      fprintf(stderr, "Read top-level expression:");
 | 
						|
      LF->dump();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// top ::= definition | external | expression | ';'
 | 
						|
static void MainLoop() {
 | 
						|
  while (1) {
 | 
						|
    fprintf(stderr, "ready> ");
 | 
						|
    switch (CurTok) {
 | 
						|
    case tok_eof:    return;
 | 
						|
    case ';':        getNextToken(); break;  // ignore top level semicolons.
 | 
						|
    case tok_def:    HandleDefinition(); break;
 | 
						|
    case tok_extern: HandleExtern(); break;
 | 
						|
    default:         HandleTopLevelExpression(); break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// "Library" functions that can be "extern'd" from user code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// putchard - putchar that takes a double and returns 0.
 | 
						|
extern "C" 
 | 
						|
double putchard(double X) {
 | 
						|
  putchar((char)X);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Main driver code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
int main() {
 | 
						|
  TheModule = new Module("my cool jit");
 | 
						|
 | 
						|
  // Install standard binary operators.
 | 
						|
  // 1 is lowest precedence.
 | 
						|
  BinopPrecedence['<'] = 10;
 | 
						|
  BinopPrecedence['+'] = 20;
 | 
						|
  BinopPrecedence['-'] = 20;
 | 
						|
  BinopPrecedence['*'] = 40;  // highest.
 | 
						|
 | 
						|
  // Prime the first token.
 | 
						|
  fprintf(stderr, "ready> ");
 | 
						|
  getNextToken();
 | 
						|
 | 
						|
  MainLoop();
 | 
						|
  TheModule->dump();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<hr>
 | 
						|
<address>
 | 
						|
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | 
						|
  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | 
						|
  <a href="http://validator.w3.org/check/referer"><img
 | 
						|
  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | 
						|
 | 
						|
  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | 
						|
  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | 
						|
  Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | 
						|
</address>
 | 
						|
</body>
 | 
						|
</html>
 |