llvm-6502/include/llvm/Function.h
2001-09-28 22:56:31 +00:00

232 lines
8.6 KiB
C++

//===-- llvm/Method.h - Class to represent a single VM method ----*- C++ -*--=//
//
// This file contains the declaration of the Method class, which represents a
// single Method/function/procedure in the VM.
//
// Note that basic blocks themselves are Def's, because they are referenced
// by instructions like calls and can go in virtual function tables and stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_METHOD_H
#define LLVM_METHOD_H
#include "llvm/SymTabValue.h"
#include "llvm/BasicBlock.h"
class Instruction;
class BasicBlock;
class MethodArgument;
class MethodType;
class Module;
class Method : public Value, public SymTabValue {
public:
typedef ValueHolder<MethodArgument, Method, Method> ArgumentListType;
typedef ValueHolder<BasicBlock , Method, Method> BasicBlocksType;
// BasicBlock iterators...
typedef BasicBlocksType::iterator iterator;
typedef BasicBlocksType::const_iterator const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
private:
// Important things that make up a method!
BasicBlocksType BasicBlocks; // The basic blocks
ArgumentListType ArgumentList; // The formal arguments
Module *Parent; // The module that contains this method
friend class ValueHolder<Method, Module, Module>;
void setParent(Module *parent);
public:
Method(const MethodType *Ty, const string &Name = "");
~Method();
// Specialize setName to handle symbol table majik...
virtual void setName(const string &name, SymbolTable *ST = 0);
const Type *getReturnType() const;
const MethodType *getType() const {
return (const MethodType*)Value::getType();
}
// Is the body of this method unknown? (the basic block list is empty if so)
// this is true for external methods, defined as forward "declare"ations
bool isExternal() const { return BasicBlocks.empty(); }
// Get the class structure that this method is contained inside of...
inline Module *getParent() { return Parent; }
inline const Module *getParent() const { return Parent; }
// Get the underlying elements of the Method...
inline const ArgumentListType &getArgumentList() const{ return ArgumentList; }
inline ArgumentListType &getArgumentList() { return ArgumentList; }
inline const BasicBlocksType &getBasicBlocks() const { return BasicBlocks; }
inline BasicBlocksType &getBasicBlocks() { return BasicBlocks; }
//===--------------------------------------------------------------------===//
// BasicBlock iterator forwarding functions
//
inline iterator begin() { return BasicBlocks.begin(); }
inline const_iterator begin() const { return BasicBlocks.begin(); }
inline iterator end () { return BasicBlocks.end(); }
inline const_iterator end () const { return BasicBlocks.end(); }
inline reverse_iterator rbegin() { return BasicBlocks.rbegin(); }
inline const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); }
inline reverse_iterator rend () { return BasicBlocks.rend(); }
inline const_reverse_iterator rend () const { return BasicBlocks.rend(); }
inline unsigned size() const { return BasicBlocks.size(); }
inline bool empty() const { return BasicBlocks.empty(); }
inline const BasicBlock *front() const { return BasicBlocks.front(); }
inline BasicBlock *front() { return BasicBlocks.front(); }
inline const BasicBlock *back() const { return BasicBlocks.back(); }
inline BasicBlock *back() { return BasicBlocks.back(); }
// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining. This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
// zero. Then everything is delete'd for real. Note that no operations are
// valid on an object that has "dropped all references", except operator
// delete.
//
void dropAllReferences();
//===--------------------------------------------------------------------===//
// Method Instruction iterator code
//===--------------------------------------------------------------------===//
//
template <class _BB_t, class _BB_i_t, class _BI_t, class _II_t>
class InstIterator;
typedef InstIterator<BasicBlocksType, iterator,
BasicBlock::iterator, Instruction*> inst_iterator;
typedef InstIterator<const BasicBlocksType, const_iterator,
BasicBlock::const_iterator,
const Instruction*> inst_const_iterator;
// This inner class is used to implement inst_begin() & inst_end() for
// inst_iterator and inst_const_iterator's.
//
template <class _BB_t, class _BB_i_t, class _BI_t, class _II_t>
class InstIterator {
typedef _BB_t BBty;
typedef _BB_i_t BBIty;
typedef _BI_t BIty;
typedef _II_t IIty;
_BB_t &BBs; // BasicBlocksType
_BB_i_t BB; // BasicBlocksType::iterator
_BI_t BI; // BasicBlock::iterator
public:
typedef bidirectional_iterator_tag iterator_category;
template<class M> InstIterator(M &m)
: BBs(m.getBasicBlocks()), BB(BBs.begin()) { // begin ctor
if (BB != BBs.end()) {
BI = (*BB)->begin();
resyncInstructionIterator();
}
}
template<class M> InstIterator(M &m, bool)
: BBs(m.getBasicBlocks()), BB(BBs.end()) { // end ctor
}
// Accessors to get at the underlying iterators...
inline BBIty &getBasicBlockIterator() { return BB; }
inline BIty &getInstructionIterator() { return BI; }
inline IIty operator*() const { return *BI; }
inline IIty operator->() const { return operator*(); }
inline bool operator==(const InstIterator &y) const {
return BB == y.BB && (BI == y.BI || BB == BBs.end());
}
inline bool operator!=(const InstIterator& y) const {
return !operator==(y);
}
// resyncInstructionIterator - This should be called if the
// InstructionIterator is modified outside of our control. This resynchs
// the internals of the InstIterator to a consistent state.
//
inline void resyncInstructionIterator() {
// The only way that the II could be broken is if it is now pointing to
// the end() of the current BasicBlock and there are successor BBs.
while (BI == (*BB)->end()) {
++BB;
if (BB == BBs.end()) break;
BI = (*BB)->begin();
}
}
InstIterator& operator++() {
++BI;
resyncInstructionIterator(); // Make sure it is still valid.
return *this;
}
inline InstIterator operator++(int) {
InstIterator tmp = *this; ++*this; return tmp;
}
InstIterator& operator--() {
while (BB == BBs.end() || BI == (*BB)->begin()) {
--BB;
BI = (*BB)->end();
}
--BI;
return *this;
}
inline InstIterator operator--(int) {
InstIterator tmp = *this; --*this; return tmp;
}
inline bool atEnd() const { return BB == BBs.end(); }
};
inline inst_iterator inst_begin() { return inst_iterator(*this); }
inline inst_iterator inst_end() { return inst_iterator(*this, true); }
inline inst_const_iterator inst_begin() const { return inst_const_iterator(*this); }
inline inst_const_iterator inst_end() const { return inst_const_iterator(*this, true); }
};
// Provide specializations of GraphTraits to be able to treat a method as a
// graph of basic blocks... these are the same as the basic block iterators,
// except that the root node is implicitly the first node of the method.
//
template <> struct GraphTraits<Method*> : public GraphTraits<BasicBlock*> {
static NodeType *getEntryNode(Method *M) { return M->front(); }
};
template <> struct GraphTraits<const Method*> :
public GraphTraits<const BasicBlock*> {
static NodeType *getEntryNode(const Method *M) { return M->front(); }
};
// Provide specializations of GraphTraits to be able to treat a method as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a method is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<Method*> > :
public GraphTraits<Inverse<BasicBlock*> > {
static NodeType *getEntryNode(Inverse<Method *> G) { return G.Graph->front();}
};
template <> struct GraphTraits<Inverse<const Method*> > :
public GraphTraits<Inverse<const BasicBlock*> > {
static NodeType *getEntryNode(Inverse<const Method *> G) {
return G.Graph->front();
}
};
#endif