mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-04 22:07:27 +00:00
f0fca36d14
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4349 91177308-0d34-0410-b5e6-96231b3b80d8
1072 lines
34 KiB
C++
1072 lines
34 KiB
C++
//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
|
|
//
|
|
// This library converts LLVM code to C code, compilable by GCC.
|
|
//
|
|
//===-----------------------------------------------------------------------==//
|
|
#include "llvm/Assembly/CWriter.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/iOperators.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/SlotCalculator.h"
|
|
#include "llvm/Analysis/FindUsedTypes.h"
|
|
#include "llvm/Analysis/ConstantsScanner.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Support/InstIterator.h"
|
|
#include "Support/StringExtras.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
using std::string;
|
|
using std::map;
|
|
using std::ostream;
|
|
|
|
|
|
namespace {
|
|
class CWriter : public Pass, public InstVisitor<CWriter> {
|
|
ostream &Out;
|
|
SlotCalculator *Table;
|
|
const Module *TheModule;
|
|
map<const Type *, string> TypeNames;
|
|
std::set<const Value*> MangledGlobals;
|
|
bool needsMalloc;
|
|
|
|
map<const ConstantFP *, unsigned> FPConstantMap;
|
|
public:
|
|
CWriter(ostream &o) : Out(o) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<FindUsedTypes>();
|
|
}
|
|
|
|
virtual bool run(Module &M) {
|
|
// Initialize
|
|
Table = new SlotCalculator(&M, false);
|
|
TheModule = &M;
|
|
|
|
// Ensure that all structure types have names...
|
|
bool Changed = nameAllUsedStructureTypes(M);
|
|
|
|
// Run...
|
|
printModule(&M);
|
|
|
|
// Free memory...
|
|
delete Table;
|
|
TypeNames.clear();
|
|
MangledGlobals.clear();
|
|
return false;
|
|
}
|
|
|
|
ostream &printType(const Type *Ty, const string &VariableName = "",
|
|
bool IgnoreName = false, bool namedContext = true);
|
|
|
|
void writeOperand(Value *Operand);
|
|
void writeOperandInternal(Value *Operand);
|
|
|
|
string getValueName(const Value *V);
|
|
|
|
private :
|
|
bool nameAllUsedStructureTypes(Module &M);
|
|
void printModule(Module *M);
|
|
void printSymbolTable(const SymbolTable &ST);
|
|
void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
|
|
void printGlobal(const GlobalVariable *GV);
|
|
void printFunctionSignature(const Function *F, bool Prototype);
|
|
|
|
void printFunction(Function *);
|
|
|
|
void printConstant(Constant *CPV);
|
|
void printConstantArray(ConstantArray *CPA);
|
|
|
|
// isInlinableInst - Attempt to inline instructions into their uses to build
|
|
// trees as much as possible. To do this, we have to consistently decide
|
|
// what is acceptable to inline, so that variable declarations don't get
|
|
// printed and an extra copy of the expr is not emitted.
|
|
//
|
|
static bool isInlinableInst(const Instruction &I) {
|
|
// Must be an expression, must be used exactly once. If it is dead, we
|
|
// emit it inline where it would go.
|
|
if (I.getType() == Type::VoidTy || I.use_size() != 1 ||
|
|
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I))
|
|
return false;
|
|
|
|
// Only inline instruction it it's use is in the same BB as the inst.
|
|
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
|
|
}
|
|
|
|
// Instruction visitation functions
|
|
friend class InstVisitor<CWriter>;
|
|
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitBranchInst(BranchInst &I);
|
|
|
|
void visitPHINode(PHINode &I) {}
|
|
void visitBinaryOperator(Instruction &I);
|
|
|
|
void visitCastInst (CastInst &I);
|
|
void visitCallInst (CallInst &I);
|
|
void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
|
|
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitFreeInst (FreeInst &I);
|
|
void visitLoadInst (LoadInst &I);
|
|
void visitStoreInst (StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "C Writer does not know about " << I;
|
|
abort();
|
|
}
|
|
|
|
void outputLValue(Instruction *I) {
|
|
Out << " " << getValueName(I) << " = ";
|
|
}
|
|
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
|
|
unsigned Indent);
|
|
void printIndexingExpression(Value *Ptr, User::op_iterator I,
|
|
User::op_iterator E);
|
|
};
|
|
}
|
|
|
|
// We dont want identifier names with ., space, - in them.
|
|
// So we replace them with _
|
|
static string makeNameProper(string x) {
|
|
string tmp;
|
|
for (string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
|
|
switch (*sI) {
|
|
case '.': tmp += "d_"; break;
|
|
case ' ': tmp += "s_"; break;
|
|
case '-': tmp += "D_"; break;
|
|
default: tmp += *sI;
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
string CWriter::getValueName(const Value *V) {
|
|
if (V->hasName()) { // Print out the label if it exists...
|
|
if (isa<GlobalValue>(V) && // Do not mangle globals...
|
|
cast<GlobalValue>(V)->hasExternalLinkage() && // Unless it's internal or
|
|
!MangledGlobals.count(V)) // Unless the name would collide if we don't
|
|
return makeNameProper(V->getName());
|
|
|
|
return "l" + utostr(V->getType()->getUniqueID()) + "_" +
|
|
makeNameProper(V->getName());
|
|
}
|
|
|
|
int Slot = Table->getValSlot(V);
|
|
assert(Slot >= 0 && "Invalid value!");
|
|
return "ltmp_" + itostr(Slot) + "_" + utostr(V->getType()->getUniqueID());
|
|
}
|
|
|
|
// A pointer type should not use parens around *'s alone, e.g., (**)
|
|
inline bool ptrTypeNameNeedsParens(const string &NameSoFar) {
|
|
return (NameSoFar.find_last_not_of('*') != std::string::npos);
|
|
}
|
|
|
|
// Pass the Type* and the variable name and this prints out the variable
|
|
// declaration.
|
|
//
|
|
ostream &CWriter::printType(const Type *Ty, const string &NameSoFar,
|
|
bool IgnoreName, bool namedContext) {
|
|
if (Ty->isPrimitiveType())
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::VoidTyID: return Out << "void " << NameSoFar;
|
|
case Type::BoolTyID: return Out << "bool " << NameSoFar;
|
|
case Type::UByteTyID: return Out << "unsigned char " << NameSoFar;
|
|
case Type::SByteTyID: return Out << "signed char " << NameSoFar;
|
|
case Type::UShortTyID: return Out << "unsigned short " << NameSoFar;
|
|
case Type::ShortTyID: return Out << "short " << NameSoFar;
|
|
case Type::UIntTyID: return Out << "unsigned " << NameSoFar;
|
|
case Type::IntTyID: return Out << "int " << NameSoFar;
|
|
case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar;
|
|
case Type::LongTyID: return Out << "signed long long " << NameSoFar;
|
|
case Type::FloatTyID: return Out << "float " << NameSoFar;
|
|
case Type::DoubleTyID: return Out << "double " << NameSoFar;
|
|
default :
|
|
std::cerr << "Unknown primitive type: " << Ty << "\n";
|
|
abort();
|
|
}
|
|
|
|
// Check to see if the type is named.
|
|
if (!IgnoreName || isa<OpaqueType>(Ty)) {
|
|
map<const Type *, string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) {
|
|
return Out << I->second << " " << NameSoFar;
|
|
}
|
|
}
|
|
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *MTy = cast<FunctionType>(Ty);
|
|
printType(MTy->getReturnType(), "");
|
|
Out << " " << NameSoFar << " (";
|
|
|
|
for (FunctionType::ParamTypes::const_iterator
|
|
I = MTy->getParamTypes().begin(),
|
|
E = MTy->getParamTypes().end(); I != E; ++I) {
|
|
if (I != MTy->getParamTypes().begin())
|
|
Out << ", ";
|
|
printType(*I, "");
|
|
}
|
|
if (MTy->isVarArg()) {
|
|
if (!MTy->getParamTypes().empty())
|
|
Out << ", ";
|
|
Out << "...";
|
|
}
|
|
return Out << ")";
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<StructType>(Ty);
|
|
Out << NameSoFar + " {\n";
|
|
unsigned Idx = 0;
|
|
for (StructType::ElementTypes::const_iterator
|
|
I = STy->getElementTypes().begin(),
|
|
E = STy->getElementTypes().end(); I != E; ++I) {
|
|
Out << " ";
|
|
printType(*I, "field" + utostr(Idx++));
|
|
Out << ";\n";
|
|
}
|
|
return Out << "}";
|
|
}
|
|
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy = cast<PointerType>(Ty);
|
|
std::string ptrName = "*" + NameSoFar;
|
|
|
|
// Do not need parens around "* NameSoFar" if NameSoFar consists only
|
|
// of zero or more '*' chars *and* this is not an unnamed pointer type
|
|
// such as the result type in a cast statement. Otherwise, enclose in ( ).
|
|
if (ptrTypeNameNeedsParens(NameSoFar) || !namedContext ||
|
|
PTy->getElementType()->getPrimitiveID() == Type::ArrayTyID)
|
|
ptrName = "(" + ptrName + ")"; //
|
|
|
|
return printType(PTy->getElementType(), ptrName);
|
|
}
|
|
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<ArrayType>(Ty);
|
|
unsigned NumElements = ATy->getNumElements();
|
|
return printType(ATy->getElementType(),
|
|
NameSoFar + "[" + utostr(NumElements) + "]");
|
|
}
|
|
|
|
case Type::OpaqueTyID: {
|
|
static int Count = 0;
|
|
string TyName = "struct opaque_" + itostr(Count++);
|
|
assert(TypeNames.find(Ty) == TypeNames.end());
|
|
TypeNames[Ty] = TyName;
|
|
return Out << TyName << " " << NameSoFar;
|
|
}
|
|
default:
|
|
assert(0 && "Unhandled case in getTypeProps!");
|
|
abort();
|
|
}
|
|
|
|
return Out;
|
|
}
|
|
|
|
void CWriter::printConstantArray(ConstantArray *CPA) {
|
|
|
|
// As a special case, print the array as a string if it is an array of
|
|
// ubytes or an array of sbytes with positive values.
|
|
//
|
|
const Type *ETy = CPA->getType()->getElementType();
|
|
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
|
|
|
|
// Make sure the last character is a null char, as automatically added by C
|
|
if (CPA->getNumOperands() == 0 ||
|
|
!cast<Constant>(*(CPA->op_end()-1))->isNullValue())
|
|
isString = false;
|
|
|
|
if (isString) {
|
|
Out << "\"";
|
|
// Do not include the last character, which we know is null
|
|
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
|
|
unsigned char C = (ETy == Type::SByteTy) ?
|
|
(unsigned char)cast<ConstantSInt>(CPA->getOperand(i))->getValue() :
|
|
(unsigned char)cast<ConstantUInt>(CPA->getOperand(i))->getValue();
|
|
|
|
if (isprint(C)) {
|
|
if (C == '"')
|
|
Out << "\\\"";
|
|
else
|
|
Out << C;
|
|
} else {
|
|
switch (C) {
|
|
case '\n': Out << "\\n"; break;
|
|
case '\t': Out << "\\t"; break;
|
|
case '\r': Out << "\\r"; break;
|
|
case '\v': Out << "\\v"; break;
|
|
case '\a': Out << "\\a"; break;
|
|
case '\"': Out << "\\\""; break;
|
|
case '\'': Out << "\\\'"; break;
|
|
default:
|
|
Out << "\\x";
|
|
Out << ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A');
|
|
Out << ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A');
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Out << "\"";
|
|
} else {
|
|
Out << "{";
|
|
if (CPA->getNumOperands()) {
|
|
Out << " ";
|
|
printConstant(cast<Constant>(CPA->getOperand(0)));
|
|
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(cast<Constant>(CPA->getOperand(i)));
|
|
}
|
|
}
|
|
Out << " }";
|
|
}
|
|
}
|
|
|
|
|
|
// printConstant - The LLVM Constant to C Constant converter.
|
|
void CWriter::printConstant(Constant *CPV) {
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::Cast:
|
|
Out << "((";
|
|
printType(CPV->getType());
|
|
Out << ")";
|
|
printConstant(cast<Constant>(CPV->getOperand(0)));
|
|
Out << ")";
|
|
return;
|
|
|
|
case Instruction::GetElementPtr:
|
|
Out << "(&(";
|
|
printIndexingExpression(CPV->getOperand(0),
|
|
CPV->op_begin()+1, CPV->op_end());
|
|
Out << "))";
|
|
return;
|
|
case Instruction::Add:
|
|
Out << "(";
|
|
printConstant(cast<Constant>(CPV->getOperand(0)));
|
|
Out << " + ";
|
|
printConstant(cast<Constant>(CPV->getOperand(1)));
|
|
Out << ")";
|
|
return;
|
|
case Instruction::Sub:
|
|
Out << "(";
|
|
printConstant(cast<Constant>(CPV->getOperand(0)));
|
|
Out << " - ";
|
|
printConstant(cast<Constant>(CPV->getOperand(1)));
|
|
Out << ")";
|
|
return;
|
|
|
|
default:
|
|
std::cerr << "CWriter Error: Unhandled constant expression: "
|
|
<< CE << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
switch (CPV->getType()->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
Out << (CPV == ConstantBool::False ? "0" : "1"); break;
|
|
case Type::SByteTyID:
|
|
case Type::ShortTyID:
|
|
case Type::IntTyID:
|
|
Out << cast<ConstantSInt>(CPV)->getValue(); break;
|
|
case Type::LongTyID:
|
|
Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break;
|
|
|
|
case Type::UByteTyID:
|
|
case Type::UShortTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue(); break;
|
|
case Type::UIntTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break;
|
|
case Type::ULongTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break;
|
|
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: {
|
|
ConstantFP *FPC = cast<ConstantFP>(CPV);
|
|
map<const ConstantFP *, unsigned>::iterator I = FPConstantMap.find(FPC);
|
|
if (I != FPConstantMap.end()) {
|
|
// Because of FP precision problems we must load from a stack allocated
|
|
// value that holds the value in hex.
|
|
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
|
|
<< "*)&FloatConstant" << I->second << ")";
|
|
} else {
|
|
Out << FPC->getValue();
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
printConstantArray(cast<ConstantArray>(CPV));
|
|
break;
|
|
|
|
case Type::StructTyID: {
|
|
Out << "{";
|
|
if (CPV->getNumOperands()) {
|
|
Out << " ";
|
|
printConstant(cast<Constant>(CPV->getOperand(0)));
|
|
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(cast<Constant>(CPV->getOperand(i)));
|
|
}
|
|
}
|
|
Out << " }";
|
|
break;
|
|
}
|
|
|
|
case Type::PointerTyID:
|
|
if (isa<ConstantPointerNull>(CPV)) {
|
|
Out << "(NULL)";
|
|
break;
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) {
|
|
writeOperand(CPR->getValue());
|
|
break;
|
|
}
|
|
// FALL THROUGH
|
|
default:
|
|
std::cerr << "Unknown constant type: " << CPV << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void CWriter::writeOperandInternal(Value *Operand) {
|
|
if (Instruction *I = dyn_cast<Instruction>(Operand))
|
|
if (isInlinableInst(*I)) {
|
|
// Should we inline this instruction to build a tree?
|
|
Out << "(";
|
|
visit(*I);
|
|
Out << ")";
|
|
return;
|
|
}
|
|
|
|
if (Operand->hasName()) {
|
|
Out << getValueName(Operand);
|
|
} else if (Constant *CPV = dyn_cast<Constant>(Operand)) {
|
|
printConstant(CPV);
|
|
} else {
|
|
int Slot = Table->getValSlot(Operand);
|
|
assert(Slot >= 0 && "Malformed LLVM!");
|
|
Out << "ltmp_" << Slot << "_" << Operand->getType()->getUniqueID();
|
|
}
|
|
}
|
|
|
|
void CWriter::writeOperand(Value *Operand) {
|
|
if (isa<GlobalVariable>(Operand))
|
|
Out << "(&"; // Global variables are references as their addresses by llvm
|
|
|
|
writeOperandInternal(Operand);
|
|
|
|
if (isa<GlobalVariable>(Operand))
|
|
Out << ")";
|
|
}
|
|
|
|
// nameAllUsedStructureTypes - If there are structure types in the module that
|
|
// are used but do not have names assigned to them in the symbol table yet then
|
|
// we assign them names now.
|
|
//
|
|
bool CWriter::nameAllUsedStructureTypes(Module &M) {
|
|
// Get a set of types that are used by the program...
|
|
std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
|
|
|
|
// Loop over the module symbol table, removing types from UT that are already
|
|
// named.
|
|
//
|
|
SymbolTable *MST = M.getSymbolTableSure();
|
|
if (MST->find(Type::TypeTy) != MST->end())
|
|
for (SymbolTable::type_iterator I = MST->type_begin(Type::TypeTy),
|
|
E = MST->type_end(Type::TypeTy); I != E; ++I)
|
|
UT.erase(cast<Type>(I->second));
|
|
|
|
// UT now contains types that are not named. Loop over it, naming structure
|
|
// types.
|
|
//
|
|
bool Changed = false;
|
|
for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
|
|
I != E; ++I)
|
|
if (const StructType *ST = dyn_cast<StructType>(*I)) {
|
|
((Value*)ST)->setName("unnamed", MST);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
void CWriter::printModule(Module *M) {
|
|
// Calculate which global values have names that will collide when we throw
|
|
// away type information.
|
|
{ // Scope to delete the FoundNames set when we are done with it...
|
|
std::set<string> FoundNames;
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
if (I->hasName()) // If the global has a name...
|
|
if (FoundNames.count(I->getName())) // And the name is already used
|
|
MangledGlobals.insert(I); // Mangle the name
|
|
else
|
|
FoundNames.insert(I->getName()); // Otherwise, keep track of name
|
|
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
|
if (I->hasName()) // If the global has a name...
|
|
if (FoundNames.count(I->getName())) // And the name is already used
|
|
MangledGlobals.insert(I); // Mangle the name
|
|
else
|
|
FoundNames.insert(I->getName()); // Otherwise, keep track of name
|
|
}
|
|
|
|
// printing stdlib inclusion
|
|
//Out << "#include <stdlib.h>\n";
|
|
|
|
// get declaration for alloca
|
|
Out << "/* Provide Declarations */\n"
|
|
<< "#include <alloca.h>\n\n"
|
|
|
|
// Provide a definition for null if one does not already exist,
|
|
// and for `bool' if not compiling with a C++ compiler.
|
|
<< "#ifndef NULL\n#define NULL 0\n#endif\n\n"
|
|
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
|
|
|
|
<< "\n\n/* Support for floating point constants */\n"
|
|
<< "typedef unsigned long long ConstantDoubleTy;\n"
|
|
|
|
<< "\n\n/* Global Declarations */\n";
|
|
|
|
// First output all the declarations for the program, because C requires
|
|
// Functions & globals to be declared before they are used.
|
|
//
|
|
|
|
// Loop over the symbol table, emitting all named constants...
|
|
if (M->hasSymbolTable())
|
|
printSymbolTable(*M->getSymbolTable());
|
|
|
|
// Global variable declarations...
|
|
if (!M->gempty()) {
|
|
Out << "\n/* External Global Variable Declarations */\n";
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) {
|
|
if (I->hasExternalLinkage()) {
|
|
Out << "extern ";
|
|
printType(I->getType()->getElementType(), getValueName(I));
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Function declarations
|
|
if (!M->empty()) {
|
|
Out << "\n/* Function Declarations */\n";
|
|
needsMalloc = true;
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
|
printFunctionSignature(I, true);
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Print Malloc prototype if needed
|
|
if (needsMalloc){
|
|
Out << "\n/* Malloc to make sun happy */\n";
|
|
Out << "extern void * malloc(size_t);\n\n";
|
|
}
|
|
|
|
// Output the global variable declerations
|
|
if (!M->gempty()) {
|
|
Out << "\n\n/* Global Variable Declerations */\n";
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
|
if (!I->isExternal()) {
|
|
Out << "extern ";
|
|
printType(I->getType()->getElementType(), getValueName(I));
|
|
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
|
|
// Output the global variable definitions and contents...
|
|
if (!M->gempty()) {
|
|
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
|
if (!I->isExternal()) {
|
|
if (I->hasInternalLinkage())
|
|
Out << "static ";
|
|
printType(I->getType()->getElementType(), getValueName(I));
|
|
|
|
Out << " = " ;
|
|
writeOperand(I->getInitializer());
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Output all of the functions...
|
|
if (!M->empty()) {
|
|
Out << "\n\n/* Function Bodies */\n";
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
printFunction(I);
|
|
}
|
|
}
|
|
|
|
|
|
/// printSymbolTable - Run through symbol table looking for type names. If a
|
|
/// type name is found, emit it's declaration...
|
|
///
|
|
void CWriter::printSymbolTable(const SymbolTable &ST) {
|
|
// If there are no type names, exit early.
|
|
if (ST.find(Type::TypeTy) == ST.end())
|
|
return;
|
|
|
|
// We are only interested in the type plane of the symbol table...
|
|
SymbolTable::type_const_iterator I = ST.type_begin(Type::TypeTy);
|
|
SymbolTable::type_const_iterator End = ST.type_end(Type::TypeTy);
|
|
|
|
// Print out forward declarations for structure types before anything else!
|
|
Out << "/* Structure forward decls */\n";
|
|
for (; I != End; ++I)
|
|
if (const Type *STy = dyn_cast<StructType>(I->second)) {
|
|
string Name = "struct l_" + makeNameProper(I->first);
|
|
Out << Name << ";\n";
|
|
TypeNames.insert(std::make_pair(STy, Name));
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Now we can print out typedefs...
|
|
Out << "/* Typedefs */\n";
|
|
for (I = ST.type_begin(Type::TypeTy); I != End; ++I) {
|
|
const Type *Ty = cast<Type>(I->second);
|
|
string Name = "l_" + makeNameProper(I->first);
|
|
Out << "typedef ";
|
|
printType(Ty, Name);
|
|
Out << ";\n";
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Keep track of which structures have been printed so far...
|
|
std::set<const StructType *> StructPrinted;
|
|
|
|
// Loop over all structures then push them into the stack so they are
|
|
// printed in the correct order.
|
|
//
|
|
Out << "/* Structure contents */\n";
|
|
for (I = ST.type_begin(Type::TypeTy); I != End; ++I)
|
|
if (const StructType *STy = dyn_cast<StructType>(I->second))
|
|
printContainedStructs(STy, StructPrinted);
|
|
}
|
|
|
|
// Push the struct onto the stack and recursively push all structs
|
|
// this one depends on.
|
|
void CWriter::printContainedStructs(const Type *Ty,
|
|
std::set<const StructType*> &StructPrinted){
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)){
|
|
//Check to see if we have already printed this struct
|
|
if (StructPrinted.count(STy) == 0) {
|
|
// Print all contained types first...
|
|
for (StructType::ElementTypes::const_iterator
|
|
I = STy->getElementTypes().begin(),
|
|
E = STy->getElementTypes().end(); I != E; ++I) {
|
|
const Type *Ty1 = I->get();
|
|
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
|
|
printContainedStructs(Ty1, StructPrinted);
|
|
}
|
|
|
|
//Print structure type out..
|
|
StructPrinted.insert(STy);
|
|
string Name = TypeNames[STy];
|
|
printType(STy, Name, true);
|
|
Out << ";\n\n";
|
|
}
|
|
|
|
// If it is an array, check contained types and continue
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){
|
|
const Type *Ty1 = ATy->getElementType();
|
|
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
|
|
printContainedStructs(Ty1, StructPrinted);
|
|
}
|
|
}
|
|
|
|
|
|
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
|
|
// If the program provides it's own malloc prototype we don't need
|
|
// to include the general one.
|
|
if (getValueName(F) == "malloc")
|
|
needsMalloc = false;
|
|
if (F->hasInternalLinkage()) Out << "static ";
|
|
|
|
// Loop over the arguments, printing them...
|
|
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
|
|
|
|
// Print out the return type and name...
|
|
printType(F->getReturnType());
|
|
Out << getValueName(F) << "(";
|
|
|
|
if (!F->isExternal()) {
|
|
if (!F->aempty()) {
|
|
string ArgName;
|
|
if (F->abegin()->hasName() || !Prototype)
|
|
ArgName = getValueName(F->abegin());
|
|
|
|
printType(F->afront().getType(), ArgName);
|
|
|
|
for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
|
|
I != E; ++I) {
|
|
Out << ", ";
|
|
if (I->hasName() || !Prototype)
|
|
ArgName = getValueName(I);
|
|
else
|
|
ArgName = "";
|
|
printType(I->getType(), ArgName);
|
|
}
|
|
}
|
|
} else {
|
|
// Loop over the arguments, printing them...
|
|
for (FunctionType::ParamTypes::const_iterator I =
|
|
FT->getParamTypes().begin(),
|
|
E = FT->getParamTypes().end(); I != E; ++I) {
|
|
if (I != FT->getParamTypes().begin()) Out << ", ";
|
|
printType(*I);
|
|
}
|
|
}
|
|
|
|
// Finish printing arguments... if this is a vararg function, print the ...,
|
|
// unless there are no known types, in which case, we just emit ().
|
|
//
|
|
if (FT->isVarArg() && !FT->getParamTypes().empty()) {
|
|
if (FT->getParamTypes().size()) Out << ", ";
|
|
Out << "..."; // Output varargs portion of signature!
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
|
|
void CWriter::printFunction(Function *F) {
|
|
if (F->isExternal()) return;
|
|
|
|
Table->incorporateFunction(F);
|
|
|
|
printFunctionSignature(F, false);
|
|
Out << " {\n";
|
|
|
|
// print local variable information for the function
|
|
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
|
|
if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) {
|
|
Out << " ";
|
|
printType((*I)->getType(), getValueName(*I));
|
|
Out << ";\n";
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Scan the function for floating point constants. If any FP constant is used
|
|
// in the function, we want to redirect it here so that we do not depend on
|
|
// the precision of the printed form.
|
|
//
|
|
unsigned FPCounter = 0;
|
|
for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E;++I)
|
|
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
|
|
if (FPConstantMap.find(FPC) == FPConstantMap.end()) {
|
|
double Val = FPC->getValue();
|
|
|
|
FPConstantMap[FPC] = FPCounter; // Number the FP constants
|
|
Out << " const ConstantDoubleTy FloatConstant" << FPCounter++
|
|
<< " = 0x" << std::hex << *(unsigned long long*)&Val << std::dec
|
|
<< "; /* " << Val << " */\n";
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// print the basic blocks
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
BasicBlock *Prev = BB->getPrev();
|
|
|
|
// Don't print the label for the basic block if there are no uses, or if the
|
|
// only terminator use is the precessor basic block's terminator. We have
|
|
// to scan the use list because PHI nodes use basic blocks too but do not
|
|
// require a label to be generated.
|
|
//
|
|
bool NeedsLabel = false;
|
|
for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end();
|
|
UI != UE; ++UI)
|
|
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI))
|
|
if (TI != Prev->getTerminator()) {
|
|
NeedsLabel = true;
|
|
break;
|
|
}
|
|
|
|
if (NeedsLabel) Out << getValueName(BB) << ":\n";
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){
|
|
if (!isInlinableInst(*II) && !isa<PHINode>(*II)) {
|
|
if (II->getType() != Type::VoidTy)
|
|
outputLValue(II);
|
|
else
|
|
Out << " ";
|
|
visit(*II);
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Don't emit prefix or suffix for the terminator...
|
|
visit(*BB->getTerminator());
|
|
}
|
|
|
|
Out << "}\n\n";
|
|
Table->purgeFunction();
|
|
FPConstantMap.clear();
|
|
}
|
|
|
|
// Specific Instruction type classes... note that all of the casts are
|
|
// neccesary because we use the instruction classes as opaque types...
|
|
//
|
|
void CWriter::visitReturnInst(ReturnInst &I) {
|
|
// Don't output a void return if this is the last basic block in the function
|
|
if (I.getNumOperands() == 0 &&
|
|
&*--I.getParent()->getParent()->end() == I.getParent() &&
|
|
!I.getParent()->size() == 1) {
|
|
return;
|
|
}
|
|
|
|
Out << " return";
|
|
if (I.getNumOperands()) {
|
|
Out << " ";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ";\n";
|
|
}
|
|
|
|
static bool isGotoCodeNeccessary(BasicBlock *From, BasicBlock *To) {
|
|
// If PHI nodes need copies, we need the copy code...
|
|
if (isa<PHINode>(To->front()) ||
|
|
From->getNext() != To) // Not directly successor, need goto
|
|
return true;
|
|
|
|
// Otherwise we don't need the code.
|
|
return false;
|
|
}
|
|
|
|
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
|
|
unsigned Indent) {
|
|
for (BasicBlock::iterator I = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
|
|
// now we have to do the printing
|
|
Out << string(Indent, ' ');
|
|
outputLValue(PN);
|
|
writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB)));
|
|
Out << "; /* for PHI node */\n";
|
|
}
|
|
|
|
if (CurBB->getNext() != Succ) {
|
|
Out << string(Indent, ' ') << " goto ";
|
|
writeOperand(Succ);
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Brach instruction printing - Avoid printing out a brach to a basic block that
|
|
// immediately succeeds the current one.
|
|
//
|
|
void CWriter::visitBranchInst(BranchInst &I) {
|
|
if (I.isConditional()) {
|
|
if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(0))) {
|
|
Out << " if (";
|
|
writeOperand(I.getCondition());
|
|
Out << ") {\n";
|
|
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
|
|
|
|
if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(1))) {
|
|
Out << " } else {\n";
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
|
|
}
|
|
} else {
|
|
// First goto not neccesary, assume second one is...
|
|
Out << " if (!";
|
|
writeOperand(I.getCondition());
|
|
Out << ") {\n";
|
|
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
|
|
}
|
|
|
|
Out << " }\n";
|
|
} else {
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
|
|
}
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
void CWriter::visitBinaryOperator(Instruction &I) {
|
|
// binary instructions, shift instructions, setCond instructions.
|
|
if (isa<PointerType>(I.getType())) {
|
|
Out << "(";
|
|
printType(I.getType());
|
|
Out << ")";
|
|
}
|
|
|
|
if (isa<PointerType>(I.getType())) Out << "(long long)";
|
|
writeOperand(I.getOperand(0));
|
|
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Add: Out << " + "; break;
|
|
case Instruction::Sub: Out << " - "; break;
|
|
case Instruction::Mul: Out << "*"; break;
|
|
case Instruction::Div: Out << "/"; break;
|
|
case Instruction::Rem: Out << "%"; break;
|
|
case Instruction::And: Out << " & "; break;
|
|
case Instruction::Or: Out << " | "; break;
|
|
case Instruction::Xor: Out << " ^ "; break;
|
|
case Instruction::SetEQ: Out << " == "; break;
|
|
case Instruction::SetNE: Out << " != "; break;
|
|
case Instruction::SetLE: Out << " <= "; break;
|
|
case Instruction::SetGE: Out << " >= "; break;
|
|
case Instruction::SetLT: Out << " < "; break;
|
|
case Instruction::SetGT: Out << " > "; break;
|
|
case Instruction::Shl : Out << " << "; break;
|
|
case Instruction::Shr : Out << " >> "; break;
|
|
default: std::cerr << "Invalid operator type!" << I; abort();
|
|
}
|
|
|
|
if (isa<PointerType>(I.getType())) Out << "(long long)";
|
|
writeOperand(I.getOperand(1));
|
|
}
|
|
|
|
void CWriter::visitCastInst(CastInst &I) {
|
|
Out << "(";
|
|
printType(I.getType(), string(""),/*ignoreName*/false, /*namedContext*/false);
|
|
Out << ")";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitCallInst(CallInst &I) {
|
|
const PointerType *PTy = cast<PointerType>(I.getCalledValue()->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
const Type *RetTy = FTy->getReturnType();
|
|
|
|
writeOperand(I.getOperand(0));
|
|
Out << "(";
|
|
|
|
if (I.getNumOperands() > 1) {
|
|
writeOperand(I.getOperand(1));
|
|
|
|
for (unsigned op = 2, Eop = I.getNumOperands(); op != Eop; ++op) {
|
|
Out << ", ";
|
|
writeOperand(I.getOperand(op));
|
|
}
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitMallocInst(MallocInst &I) {
|
|
Out << "(";
|
|
printType(I.getType());
|
|
Out << ")malloc(sizeof(";
|
|
printType(I.getType()->getElementType());
|
|
Out << ")";
|
|
|
|
if (I.isArrayAllocation()) {
|
|
Out << " * " ;
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitAllocaInst(AllocaInst &I) {
|
|
Out << "(";
|
|
printType(I.getType());
|
|
Out << ") alloca(sizeof(";
|
|
printType(I.getType()->getElementType());
|
|
Out << ")";
|
|
if (I.isArrayAllocation()) {
|
|
Out << " * " ;
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitFreeInst(FreeInst &I) {
|
|
Out << "free(";
|
|
writeOperand(I.getOperand(0));
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::printIndexingExpression(Value *Ptr, User::op_iterator I,
|
|
User::op_iterator E) {
|
|
bool HasImplicitAddress = false;
|
|
// If accessing a global value with no indexing, avoid *(&GV) syndrome
|
|
if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
Ptr = CPR->getValue(); // Get to the global...
|
|
}
|
|
|
|
if (I == E) {
|
|
if (!HasImplicitAddress)
|
|
Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
|
|
|
|
writeOperandInternal(Ptr);
|
|
return;
|
|
}
|
|
|
|
const Constant *CI = dyn_cast<Constant>(I->get());
|
|
if (HasImplicitAddress && (!CI || !CI->isNullValue()))
|
|
Out << "(&";
|
|
|
|
writeOperandInternal(Ptr);
|
|
|
|
if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
|
|
Out << ")";
|
|
HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
|
|
}
|
|
|
|
assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
|
|
"Can only have implicit address with direct accessing");
|
|
|
|
if (HasImplicitAddress) {
|
|
++I;
|
|
} else if (CI && CI->isNullValue() && I+1 != E) {
|
|
// Print out the -> operator if possible...
|
|
if ((*(I+1))->getType() == Type::UByteTy) {
|
|
Out << (HasImplicitAddress ? "." : "->");
|
|
Out << "field" << cast<ConstantUInt>(*(I+1))->getValue();
|
|
I += 2;
|
|
}
|
|
}
|
|
|
|
for (; I != E; ++I)
|
|
if ((*I)->getType() == Type::LongTy) {
|
|
Out << "[";
|
|
writeOperand(*I);
|
|
Out << "]";
|
|
} else {
|
|
Out << ".field" << cast<ConstantUInt>(*I)->getValue();
|
|
}
|
|
}
|
|
|
|
void CWriter::visitLoadInst(LoadInst &I) {
|
|
Out << "*";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitStoreInst(StoreInst &I) {
|
|
Out << "*";
|
|
writeOperand(I.getPointerOperand());
|
|
Out << " = ";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
Out << "&";
|
|
printIndexingExpression(I.getPointerOperand(), I.idx_begin(), I.idx_end());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declaration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Pass *createWriteToCPass(std::ostream &o) { return new CWriter(o); }
|