mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture, by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce the cost of overflow check, memory boundary check and extra prologue/epilogue code when regular unroller will unroll the loop another time. Disable it when VF==1 remove the unnecessary cost on x86. The same can be done for other platforms after verifying interleaving/memory bound checking to be not perf critical on those platforms. Differential Revision: http://reviews.llvm.org/D9515 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236613 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCTargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/CodeGen/BasicTTIImpl.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/CostTable.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppctti"
 | 
						|
 | 
						|
static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
 | 
						|
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// PPC cost model.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
TargetTransformInfo::PopcntSupportKind
 | 
						|
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
 | 
						|
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | 
						|
  if (ST->hasPOPCNTD() && TyWidth <= 64)
 | 
						|
    return TTI::PSK_FastHardware;
 | 
						|
  return TTI::PSK_Software;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
 | 
						|
  if (DisablePPCConstHoist)
 | 
						|
    return BaseT::getIntImmCost(Imm, Ty);
 | 
						|
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  if (Imm == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  if (Imm.getBitWidth() <= 64) {
 | 
						|
    if (isInt<16>(Imm.getSExtValue()))
 | 
						|
      return TTI::TCC_Basic;
 | 
						|
 | 
						|
    if (isInt<32>(Imm.getSExtValue())) {
 | 
						|
      // A constant that can be materialized using lis.
 | 
						|
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
 | 
						|
        return TTI::TCC_Basic;
 | 
						|
 | 
						|
      return 2 * TTI::TCC_Basic;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 4 * TTI::TCC_Basic;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
 | 
						|
                                   const APInt &Imm, Type *Ty) {
 | 
						|
  if (DisablePPCConstHoist)
 | 
						|
    return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
 | 
						|
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  switch (IID) {
 | 
						|
  default:
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_stackmap:
 | 
						|
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_patchpoint_void:
 | 
						|
  case Intrinsic::experimental_patchpoint_i64:
 | 
						|
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return PPCTTIImpl::getIntImmCost(Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
 | 
						|
                                   const APInt &Imm, Type *Ty) {
 | 
						|
  if (DisablePPCConstHoist)
 | 
						|
    return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
 | 
						|
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  unsigned ImmIdx = ~0U;
 | 
						|
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
 | 
						|
       ZeroFree = false;
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    // Always hoist the base address of a GetElementPtr. This prevents the
 | 
						|
    // creation of new constants for every base constant that gets constant
 | 
						|
    // folded with the offset.
 | 
						|
    if (Idx == 0)
 | 
						|
      return 2 * TTI::TCC_Basic;
 | 
						|
    return TTI::TCC_Free;
 | 
						|
  case Instruction::And:
 | 
						|
    RunFree = true; // (for the rotate-and-mask instructions)
 | 
						|
    // Fallthrough...
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    ShiftedFree = true;
 | 
						|
    // Fallthrough...
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    ImmIdx = 1;
 | 
						|
    break;
 | 
						|
  case Instruction::ICmp:
 | 
						|
    UnsignedFree = true;
 | 
						|
    ImmIdx = 1;
 | 
						|
    // Fallthrough... (zero comparisons can use record-form instructions)
 | 
						|
  case Instruction::Select:
 | 
						|
    ZeroFree = true;
 | 
						|
    break;
 | 
						|
  case Instruction::PHI:
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Ret:
 | 
						|
  case Instruction::Load:
 | 
						|
  case Instruction::Store:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ZeroFree && Imm == 0)
 | 
						|
    return TTI::TCC_Free;
 | 
						|
 | 
						|
  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
 | 
						|
    if (isInt<16>(Imm.getSExtValue()))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
 | 
						|
    if (RunFree) {
 | 
						|
      if (Imm.getBitWidth() <= 32 &&
 | 
						|
          (isShiftedMask_32(Imm.getZExtValue()) ||
 | 
						|
           isShiftedMask_32(~Imm.getZExtValue())))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
 | 
						|
      if (ST->isPPC64() &&
 | 
						|
          (isShiftedMask_64(Imm.getZExtValue()) ||
 | 
						|
           isShiftedMask_64(~Imm.getZExtValue())))
 | 
						|
        return TTI::TCC_Free;
 | 
						|
    }
 | 
						|
 | 
						|
    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
 | 
						|
      return TTI::TCC_Free;
 | 
						|
 | 
						|
    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
 | 
						|
      return TTI::TCC_Free;
 | 
						|
  }
 | 
						|
 | 
						|
  return PPCTTIImpl::getIntImmCost(Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
void PPCTTIImpl::getUnrollingPreferences(Loop *L,
 | 
						|
                                         TTI::UnrollingPreferences &UP) {
 | 
						|
  if (ST->getDarwinDirective() == PPC::DIR_A2) {
 | 
						|
    // The A2 is in-order with a deep pipeline, and concatenation unrolling
 | 
						|
    // helps expose latency-hiding opportunities to the instruction scheduler.
 | 
						|
    UP.Partial = UP.Runtime = true;
 | 
						|
  }
 | 
						|
 | 
						|
  BaseT::getUnrollingPreferences(L, UP);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
 | 
						|
  return LoopHasReductions;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
 | 
						|
  if (Vector && !ST->hasAltivec() && !ST->hasQPX())
 | 
						|
    return 0;
 | 
						|
  return ST->hasVSX() ? 64 : 32;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) {
 | 
						|
  if (Vector) {
 | 
						|
    if (ST->hasQPX()) return 256;
 | 
						|
    if (ST->hasAltivec()) return 128;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->isPPC64())
 | 
						|
    return 64;
 | 
						|
  return 32;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
 | 
						|
  unsigned Directive = ST->getDarwinDirective();
 | 
						|
  // The 440 has no SIMD support, but floating-point instructions
 | 
						|
  // have a 5-cycle latency, so unroll by 5x for latency hiding.
 | 
						|
  if (Directive == PPC::DIR_440)
 | 
						|
    return 5;
 | 
						|
 | 
						|
  // The A2 has no SIMD support, but floating-point instructions
 | 
						|
  // have a 6-cycle latency, so unroll by 6x for latency hiding.
 | 
						|
  if (Directive == PPC::DIR_A2)
 | 
						|
    return 6;
 | 
						|
 | 
						|
  // FIXME: For lack of any better information, do no harm...
 | 
						|
  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // For P7 and P8, floating-point instructions have a 6-cycle latency and
 | 
						|
  // there are two execution units, so unroll by 12x for latency hiding.
 | 
						|
  if (Directive == PPC::DIR_PWR7 ||
 | 
						|
      Directive == PPC::DIR_PWR8)
 | 
						|
    return 12;
 | 
						|
 | 
						|
  // For most things, modern systems have two execution units (and
 | 
						|
  // out-of-order execution).
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getArithmeticInstrCost(
 | 
						|
    unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
 | 
						|
    TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
 | 
						|
    TTI::OperandValueProperties Opd2PropInfo) {
 | 
						|
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
 | 
						|
 | 
						|
  // Fallback to the default implementation.
 | 
						|
  return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
 | 
						|
                                       Opd1PropInfo, Opd2PropInfo);
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
 | 
						|
                                    Type *SubTp) {
 | 
						|
  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
 | 
						|
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
 | 
						|
 | 
						|
  return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                        Type *CondTy) {
 | 
						|
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
                                        unsigned Index) {
 | 
						|
  assert(Val->isVectorTy() && "This must be a vector type");
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
 | 
						|
    // Double-precision scalars are already located in index #0.
 | 
						|
    if (Index == 0)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    return BaseT::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
  } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
 | 
						|
    // Floating point scalars are already located in index #0.
 | 
						|
    if (Index == 0)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    return BaseT::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
  }
 | 
						|
 | 
						|
  // Estimated cost of a load-hit-store delay.  This was obtained
 | 
						|
  // experimentally as a minimum needed to prevent unprofitable
 | 
						|
  // vectorization for the paq8p benchmark.  It may need to be
 | 
						|
  // raised further if other unprofitable cases remain.
 | 
						|
  unsigned LHSPenalty = 2;
 | 
						|
  if (ISD == ISD::INSERT_VECTOR_ELT)
 | 
						|
    LHSPenalty += 7;
 | 
						|
 | 
						|
  // Vector element insert/extract with Altivec is very expensive,
 | 
						|
  // because they require store and reload with the attendant
 | 
						|
  // processor stall for load-hit-store.  Until VSX is available,
 | 
						|
  // these need to be estimated as very costly.
 | 
						|
  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
      ISD == ISD::INSERT_VECTOR_ELT)
 | 
						|
    return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
 | 
						|
  return BaseT::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                     unsigned Alignment,
 | 
						|
                                     unsigned AddressSpace) {
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | 
						|
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | 
						|
         "Invalid Opcode");
 | 
						|
 | 
						|
  unsigned Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
 | 
						|
 | 
						|
  // VSX loads/stores support unaligned access.
 | 
						|
  if (ST->hasVSX()) {
 | 
						|
    if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64)
 | 
						|
      return Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  bool UnalignedAltivec =
 | 
						|
    Src->isVectorTy() &&
 | 
						|
    Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() &&
 | 
						|
    LT.second.getSizeInBits() == 128 &&
 | 
						|
    Opcode == Instruction::Load;
 | 
						|
 | 
						|
  // PPC in general does not support unaligned loads and stores. They'll need
 | 
						|
  // to be decomposed based on the alignment factor.
 | 
						|
  unsigned SrcBytes = LT.second.getStoreSize();
 | 
						|
  if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) {
 | 
						|
    Cost += LT.first*(SrcBytes/Alignment-1);
 | 
						|
 | 
						|
    // For a vector type, there is also scalarization overhead (only for
 | 
						|
    // stores, loads are expanded using the vector-load + permutation sequence,
 | 
						|
    // which is much less expensive).
 | 
						|
    if (Src->isVectorTy() && Opcode == Instruction::Store)
 | 
						|
      for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
 | 
						|
        Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
 | 
						|
  }
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 |