mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Probably the best way to know that all getOperand() calls have been handled is to replace that API instead of updating. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101579 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			759 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			759 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the default implementation of the Alias Analysis interface
 | 
						|
// that simply implements a few identities (two different globals cannot alias,
 | 
						|
// etc), but otherwise does no analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Useful predicates
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isKnownNonNull - Return true if we know that the specified value is never
 | 
						|
/// null.
 | 
						|
static bool isKnownNonNull(const Value *V) {
 | 
						|
  // Alloca never returns null, malloc might.
 | 
						|
  if (isa<AllocaInst>(V)) return true;
 | 
						|
  
 | 
						|
  // A byval argument is never null.
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    return A->hasByValAttr();
 | 
						|
 | 
						|
  // Global values are not null unless extern weak.
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | 
						|
    return !GV->hasExternalWeakLinkage();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
 | 
						|
/// object that never escapes from the function.
 | 
						|
static bool isNonEscapingLocalObject(const Value *V) {
 | 
						|
  // If this is a local allocation, check to see if it escapes.
 | 
						|
  if (isa<AllocaInst>(V) || isNoAliasCall(V))
 | 
						|
    // Set StoreCaptures to True so that we can assume in our callers that the
 | 
						|
    // pointer is not the result of a load instruction. Currently
 | 
						|
    // PointerMayBeCaptured doesn't have any special analysis for the
 | 
						|
    // StoreCaptures=false case; if it did, our callers could be refined to be
 | 
						|
    // more precise.
 | 
						|
    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
 | 
						|
  // If this is an argument that corresponds to a byval or noalias argument,
 | 
						|
  // then it has not escaped before entering the function.  Check if it escapes
 | 
						|
  // inside the function.
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
 | 
						|
      // Don't bother analyzing arguments already known not to escape.
 | 
						|
      if (A->hasNoCaptureAttr())
 | 
						|
        return true;
 | 
						|
      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isObjectSmallerThan - Return true if we can prove that the object specified
 | 
						|
/// by V is smaller than Size.
 | 
						|
static bool isObjectSmallerThan(const Value *V, unsigned Size,
 | 
						|
                                const TargetData &TD) {
 | 
						|
  const Type *AccessTy;
 | 
						|
  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | 
						|
    AccessTy = GV->getType()->getElementType();
 | 
						|
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    if (!AI->isArrayAllocation())
 | 
						|
      AccessTy = AI->getType()->getElementType();
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else if (const CallInst* CI = extractMallocCall(V)) {
 | 
						|
    if (!isArrayMalloc(V, &TD))
 | 
						|
      // The size is the argument to the malloc call.
 | 
						|
      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
 | 
						|
        return (C->getZExtValue() < Size);
 | 
						|
    return false;
 | 
						|
  } else if (const Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
    if (A->hasByValAttr())
 | 
						|
      AccessTy = cast<PointerType>(A->getType())->getElementType();
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (AccessTy->isSized())
 | 
						|
    return TD.getTypeAllocSize(AccessTy) < Size;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// NoAA Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// NoAA - This class implements the -no-aa pass, which always returns "I
 | 
						|
  /// don't know" for alias queries.  NoAA is unlike other alias analysis
 | 
						|
  /// implementations, in that it does not chain to a previous analysis.  As
 | 
						|
  /// such it doesn't follow many of the rules that other alias analyses must.
 | 
						|
  ///
 | 
						|
  struct NoAA : public ImmutablePass, public AliasAnalysis {
 | 
						|
    static char ID; // Class identification, replacement for typeinfo
 | 
						|
    NoAA() : ImmutablePass(&ID) {}
 | 
						|
    explicit NoAA(void *PID) : ImmutablePass(PID) { }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void initializePass() {
 | 
						|
      TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual AliasResult alias(const Value *V1, unsigned V1Size,
 | 
						|
                              const Value *V2, unsigned V2Size) {
 | 
						|
      return MayAlias;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getArgumentAccesses(Function *F, CallSite CS,
 | 
						|
                                     std::vector<PointerAccessInfo> &Info) {
 | 
						|
      llvm_unreachable("This method may not be called on this function!");
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool pointsToConstantMemory(const Value *P) { return false; }
 | 
						|
    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | 
						|
      return ModRef;
 | 
						|
    }
 | 
						|
    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
 | 
						|
      return ModRef;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void deleteValue(Value *V) {}
 | 
						|
    virtual void copyValue(Value *From, Value *To) {}
 | 
						|
    
 | 
						|
    /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | 
						|
    /// an analysis interface through multiple inheritance.  If needed, it should
 | 
						|
    /// override this to adjust the this pointer as needed for the specified pass
 | 
						|
    /// info.
 | 
						|
    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
 | 
						|
      if (PI->isPassID(&AliasAnalysis::ID))
 | 
						|
        return (AliasAnalysis*)this;
 | 
						|
      return this;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}  // End of anonymous namespace
 | 
						|
 | 
						|
// Register this pass...
 | 
						|
char NoAA::ID = 0;
 | 
						|
static RegisterPass<NoAA>
 | 
						|
U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
 | 
						|
 | 
						|
// Declare that we implement the AliasAnalysis interface
 | 
						|
static RegisterAnalysisGroup<AliasAnalysis> V(U);
 | 
						|
 | 
						|
ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BasicAA Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// BasicAliasAnalysis - This is the default alias analysis implementation.
 | 
						|
  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
 | 
						|
  /// derives from the NoAA class.
 | 
						|
  struct BasicAliasAnalysis : public NoAA {
 | 
						|
    static char ID; // Class identification, replacement for typeinfo
 | 
						|
    BasicAliasAnalysis() : NoAA(&ID) {}
 | 
						|
    AliasResult alias(const Value *V1, unsigned V1Size,
 | 
						|
                      const Value *V2, unsigned V2Size) {
 | 
						|
      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
 | 
						|
      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
 | 
						|
      VisitedPHIs.clear();
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
 | 
						|
    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
 | 
						|
 | 
						|
    /// pointsToConstantMemory - Chase pointers until we find a (constant
 | 
						|
    /// global) or not.
 | 
						|
    bool pointsToConstantMemory(const Value *P);
 | 
						|
 | 
						|
    /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | 
						|
    /// an analysis interface through multiple inheritance.  If needed, it should
 | 
						|
    /// override this to adjust the this pointer as needed for the specified pass
 | 
						|
    /// info.
 | 
						|
    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
 | 
						|
      if (PI->isPassID(&AliasAnalysis::ID))
 | 
						|
        return (AliasAnalysis*)this;
 | 
						|
      return this;
 | 
						|
    }
 | 
						|
    
 | 
						|
  private:
 | 
						|
    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
 | 
						|
    SmallPtrSet<const Value*, 16> VisitedPHIs;
 | 
						|
 | 
						|
    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
 | 
						|
    // instruction against another.
 | 
						|
    AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
 | 
						|
                         const Value *V2, unsigned V2Size,
 | 
						|
                         const Value *UnderlyingV1, const Value *UnderlyingV2);
 | 
						|
 | 
						|
    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
 | 
						|
    // instruction against another.
 | 
						|
    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
 | 
						|
                         const Value *V2, unsigned V2Size);
 | 
						|
 | 
						|
    /// aliasSelect - Disambiguate a Select instruction against another value.
 | 
						|
    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
 | 
						|
                            const Value *V2, unsigned V2Size);
 | 
						|
 | 
						|
    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
 | 
						|
                           const Value *V2, unsigned V2Size);
 | 
						|
  };
 | 
						|
}  // End of anonymous namespace
 | 
						|
 | 
						|
// Register this pass...
 | 
						|
char BasicAliasAnalysis::ID = 0;
 | 
						|
static RegisterPass<BasicAliasAnalysis>
 | 
						|
X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
 | 
						|
 | 
						|
// Declare that we implement the AliasAnalysis interface
 | 
						|
static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
 | 
						|
 | 
						|
ImmutablePass *llvm::createBasicAliasAnalysisPass() {
 | 
						|
  return new BasicAliasAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// pointsToConstantMemory - Chase pointers until we find a (constant
 | 
						|
/// global) or not.
 | 
						|
bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
 | 
						|
  if (const GlobalVariable *GV = 
 | 
						|
        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
 | 
						|
    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
 | 
						|
    // global to be marked constant in some modules and non-constant in others.
 | 
						|
    // GV may even be a declaration, not a definition.
 | 
						|
    return GV->isConstant();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getModRefInfo - Check to see if the specified callsite can clobber the
 | 
						|
/// specified memory object.  Since we only look at local properties of this
 | 
						|
/// function, we really can't say much about this query.  We do, however, use
 | 
						|
/// simple "address taken" analysis on local objects.
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | 
						|
  const Value *Object = P->getUnderlyingObject();
 | 
						|
  
 | 
						|
  // If this is a tail call and P points to a stack location, we know that
 | 
						|
  // the tail call cannot access or modify the local stack.
 | 
						|
  // We cannot exclude byval arguments here; these belong to the caller of
 | 
						|
  // the current function not to the current function, and a tail callee
 | 
						|
  // may reference them.
 | 
						|
  if (isa<AllocaInst>(Object))
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
 | 
						|
      if (CI->isTailCall())
 | 
						|
        return NoModRef;
 | 
						|
  
 | 
						|
  // If the pointer is to a locally allocated object that does not escape,
 | 
						|
  // then the call can not mod/ref the pointer unless the call takes the pointer
 | 
						|
  // as an argument, and itself doesn't capture it.
 | 
						|
  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
 | 
						|
      isNonEscapingLocalObject(Object)) {
 | 
						|
    bool PassedAsArg = false;
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | 
						|
         CI != CE; ++CI, ++ArgNo) {
 | 
						|
      // Only look at the no-capture pointer arguments.
 | 
						|
      if (!(*CI)->getType()->isPointerTy() ||
 | 
						|
          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // If  this is a no-capture pointer argument, see if we can tell that it
 | 
						|
      // is impossible to alias the pointer we're checking.  If not, we have to
 | 
						|
      // assume that the call could touch the pointer, even though it doesn't
 | 
						|
      // escape.
 | 
						|
      if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
 | 
						|
        PassedAsArg = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!PassedAsArg)
 | 
						|
      return NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, handle specific knowledge of intrinsics.
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
 | 
						|
  if (II == 0)
 | 
						|
    return AliasAnalysis::getModRefInfo(CS, P, Size);
 | 
						|
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  default: break;
 | 
						|
  case Intrinsic::memcpy:
 | 
						|
  case Intrinsic::memmove: {
 | 
						|
    unsigned Len = ~0U;
 | 
						|
    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
 | 
						|
      Len = LenCI->getZExtValue();
 | 
						|
    Value *Dest = II->getOperand(1);
 | 
						|
    Value *Src = II->getOperand(2);
 | 
						|
    if (isNoAlias(Dest, Len, P, Size)) {
 | 
						|
      if (isNoAlias(Src, Len, P, Size))
 | 
						|
        return NoModRef;
 | 
						|
      return Ref;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::memset:
 | 
						|
    // Since memset is 'accesses arguments' only, the AliasAnalysis base class
 | 
						|
    // will handle it for the variable length case.
 | 
						|
    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
 | 
						|
      unsigned Len = LenCI->getZExtValue();
 | 
						|
      Value *Dest = II->getOperand(1);
 | 
						|
      if (isNoAlias(Dest, Len, P, Size))
 | 
						|
        return NoModRef;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::atomic_cmp_swap:
 | 
						|
  case Intrinsic::atomic_swap:
 | 
						|
  case Intrinsic::atomic_load_add:
 | 
						|
  case Intrinsic::atomic_load_sub:
 | 
						|
  case Intrinsic::atomic_load_and:
 | 
						|
  case Intrinsic::atomic_load_nand:
 | 
						|
  case Intrinsic::atomic_load_or:
 | 
						|
  case Intrinsic::atomic_load_xor:
 | 
						|
  case Intrinsic::atomic_load_max:
 | 
						|
  case Intrinsic::atomic_load_min:
 | 
						|
  case Intrinsic::atomic_load_umax:
 | 
						|
  case Intrinsic::atomic_load_umin:
 | 
						|
    if (TD) {
 | 
						|
      Value *Op1 = II->getOperand(1);
 | 
						|
      unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
 | 
						|
      if (isNoAlias(Op1, Op1Size, P, Size))
 | 
						|
        return NoModRef;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::lifetime_start:
 | 
						|
  case Intrinsic::lifetime_end:
 | 
						|
  case Intrinsic::invariant_start: {
 | 
						|
    unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
 | 
						|
    if (isNoAlias(II->getOperand(2), PtrSize, P, Size))
 | 
						|
      return NoModRef;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::invariant_end: {
 | 
						|
    unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
 | 
						|
    if (isNoAlias(II->getOperand(3), PtrSize, P, Size))
 | 
						|
      return NoModRef;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // The AliasAnalysis base class has some smarts, lets use them.
 | 
						|
  return AliasAnalysis::getModRefInfo(CS, P, Size);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult 
 | 
						|
BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
 | 
						|
  // If CS1 or CS2 are readnone, they don't interact.
 | 
						|
  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
 | 
						|
  if (CS1B == DoesNotAccessMemory) return NoModRef;
 | 
						|
  
 | 
						|
  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
 | 
						|
  if (CS2B == DoesNotAccessMemory) return NoModRef;
 | 
						|
  
 | 
						|
  // If they both only read from memory, just return ref.
 | 
						|
  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
 | 
						|
    return Ref;
 | 
						|
  
 | 
						|
  // Otherwise, fall back to NoAA (mod+ref).
 | 
						|
  return NoAA::getModRefInfo(CS1, CS2);
 | 
						|
}
 | 
						|
 | 
						|
/// GetIndiceDifference - Dest and Src are the variable indices from two
 | 
						|
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
 | 
						|
/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
 | 
						|
/// difference between the two pointers. 
 | 
						|
static void GetIndiceDifference(
 | 
						|
                      SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
 | 
						|
                const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
 | 
						|
  if (Src.empty()) return;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
 | 
						|
    const Value *V = Src[i].first;
 | 
						|
    int64_t Scale = Src[i].second;
 | 
						|
    
 | 
						|
    // Find V in Dest.  This is N^2, but pointer indices almost never have more
 | 
						|
    // than a few variable indexes.
 | 
						|
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
 | 
						|
      if (Dest[j].first != V) continue;
 | 
						|
      
 | 
						|
      // If we found it, subtract off Scale V's from the entry in Dest.  If it
 | 
						|
      // goes to zero, remove the entry.
 | 
						|
      if (Dest[j].second != Scale)
 | 
						|
        Dest[j].second -= Scale;
 | 
						|
      else
 | 
						|
        Dest.erase(Dest.begin()+j);
 | 
						|
      Scale = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we didn't consume this entry, add it to the end of the Dest list.
 | 
						|
    if (Scale)
 | 
						|
      Dest.push_back(std::make_pair(V, -Scale));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
 | 
						|
/// against another pointer.  We know that V1 is a GEP, but we don't know
 | 
						|
/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
 | 
						|
/// UnderlyingV2 is the same for V2.
 | 
						|
///
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
 | 
						|
                             const Value *V2, unsigned V2Size,
 | 
						|
                             const Value *UnderlyingV1,
 | 
						|
                             const Value *UnderlyingV2) {
 | 
						|
  int64_t GEP1BaseOffset;
 | 
						|
  SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
 | 
						|
 | 
						|
  // If we have two gep instructions with must-alias'ing base pointers, figure
 | 
						|
  // out if the indexes to the GEP tell us anything about the derived pointer.
 | 
						|
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
 | 
						|
    // Do the base pointers alias?
 | 
						|
    AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U);
 | 
						|
    
 | 
						|
    // If we get a No or May, then return it immediately, no amount of analysis
 | 
						|
    // will improve this situation.
 | 
						|
    if (BaseAlias != MustAlias) return BaseAlias;
 | 
						|
    
 | 
						|
    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
 | 
						|
    // exactly, see if the computed offset from the common pointer tells us
 | 
						|
    // about the relation of the resulting pointer.
 | 
						|
    const Value *GEP1BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
 | 
						|
    
 | 
						|
    int64_t GEP2BaseOffset;
 | 
						|
    SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
 | 
						|
    const Value *GEP2BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
 | 
						|
    
 | 
						|
    // If DecomposeGEPExpression isn't able to look all the way through the
 | 
						|
    // addressing operation, we must not have TD and this is too complex for us
 | 
						|
    // to handle without it.
 | 
						|
    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
 | 
						|
      assert(TD == 0 &&
 | 
						|
             "DecomposeGEPExpression and getUnderlyingObject disagree!");
 | 
						|
      return MayAlias;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
 | 
						|
    // symbolic difference.
 | 
						|
    GEP1BaseOffset -= GEP2BaseOffset;
 | 
						|
    GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // Check to see if these two pointers are related by the getelementptr
 | 
						|
    // instruction.  If one pointer is a GEP with a non-zero index of the other
 | 
						|
    // pointer, we know they cannot alias.
 | 
						|
 | 
						|
    // If both accesses are unknown size, we can't do anything useful here.
 | 
						|
    if (V1Size == ~0U && V2Size == ~0U)
 | 
						|
      return MayAlias;
 | 
						|
 | 
						|
    AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size);
 | 
						|
    if (R != MustAlias)
 | 
						|
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
 | 
						|
      // If V2 is known not to alias GEP base pointer, then the two values
 | 
						|
      // cannot alias per GEP semantics: "A pointer value formed from a
 | 
						|
      // getelementptr instruction is associated with the addresses associated
 | 
						|
      // with the first operand of the getelementptr".
 | 
						|
      return R;
 | 
						|
 | 
						|
    const Value *GEP1BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
 | 
						|
    
 | 
						|
    // If DecomposeGEPExpression isn't able to look all the way through the
 | 
						|
    // addressing operation, we must not have TD and this is too complex for us
 | 
						|
    // to handle without it.
 | 
						|
    if (GEP1BasePtr != UnderlyingV1) {
 | 
						|
      assert(TD == 0 &&
 | 
						|
             "DecomposeGEPExpression and getUnderlyingObject disagree!");
 | 
						|
      return MayAlias;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // In the two GEP Case, if there is no difference in the offsets of the
 | 
						|
  // computed pointers, the resultant pointers are a must alias.  This
 | 
						|
  // hapens when we have two lexically identical GEP's (for example).
 | 
						|
  //
 | 
						|
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
 | 
						|
  // must aliases the GEP, the end result is a must alias also.
 | 
						|
  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
 | 
						|
    return MustAlias;
 | 
						|
 | 
						|
  // If we have a known constant offset, see if this offset is larger than the
 | 
						|
  // access size being queried.  If so, and if no variable indices can remove
 | 
						|
  // pieces of this constant, then we know we have a no-alias.  For example,
 | 
						|
  //   &A[100] != &A.
 | 
						|
  
 | 
						|
  // In order to handle cases like &A[100][i] where i is an out of range
 | 
						|
  // subscript, we have to ignore all constant offset pieces that are a multiple
 | 
						|
  // of a scaled index.  Do this by removing constant offsets that are a
 | 
						|
  // multiple of any of our variable indices.  This allows us to transform
 | 
						|
  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
 | 
						|
  // provides an offset of 4 bytes (assuming a <= 4 byte access).
 | 
						|
  for (unsigned i = 0, e = GEP1VariableIndices.size();
 | 
						|
       i != e && GEP1BaseOffset;++i)
 | 
						|
    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
 | 
						|
      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
 | 
						|
  
 | 
						|
  // If our known offset is bigger than the access size, we know we don't have
 | 
						|
  // an alias.
 | 
						|
  if (GEP1BaseOffset) {
 | 
						|
    if (GEP1BaseOffset >= (int64_t)V2Size ||
 | 
						|
        GEP1BaseOffset <= -(int64_t)V1Size)
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
 | 
						|
/// instruction against another.
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
 | 
						|
                                const Value *V2, unsigned V2Size) {
 | 
						|
  // If the values are Selects with the same condition, we can do a more precise
 | 
						|
  // check: just check for aliases between the values on corresponding arms.
 | 
						|
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
 | 
						|
    if (SI->getCondition() == SI2->getCondition()) {
 | 
						|
      AliasResult Alias =
 | 
						|
        aliasCheck(SI->getTrueValue(), SISize,
 | 
						|
                   SI2->getTrueValue(), V2Size);
 | 
						|
      if (Alias == MayAlias)
 | 
						|
        return MayAlias;
 | 
						|
      AliasResult ThisAlias =
 | 
						|
        aliasCheck(SI->getFalseValue(), SISize,
 | 
						|
                   SI2->getFalseValue(), V2Size);
 | 
						|
      if (ThisAlias != Alias)
 | 
						|
        return MayAlias;
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
  // If both arms of the Select node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  AliasResult Alias =
 | 
						|
    aliasCheck(SI->getTrueValue(), SISize, V2, V2Size);
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
  AliasResult ThisAlias =
 | 
						|
    aliasCheck(SI->getFalseValue(), SISize, V2, V2Size);
 | 
						|
  if (ThisAlias != Alias)
 | 
						|
    return MayAlias;
 | 
						|
  return Alias;
 | 
						|
}
 | 
						|
 | 
						|
// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
 | 
						|
// against another.
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
 | 
						|
                             const Value *V2, unsigned V2Size) {
 | 
						|
  // The PHI node has already been visited, avoid recursion any further.
 | 
						|
  if (!VisitedPHIs.insert(PN))
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If the values are PHIs in the same block, we can do a more precise
 | 
						|
  // as well as efficient check: just check for aliases between the values
 | 
						|
  // on corresponding edges.
 | 
						|
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
 | 
						|
    if (PN2->getParent() == PN->getParent()) {
 | 
						|
      AliasResult Alias =
 | 
						|
        aliasCheck(PN->getIncomingValue(0), PNSize,
 | 
						|
                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
 | 
						|
                   V2Size);
 | 
						|
      if (Alias == MayAlias)
 | 
						|
        return MayAlias;
 | 
						|
      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        AliasResult ThisAlias =
 | 
						|
          aliasCheck(PN->getIncomingValue(i), PNSize,
 | 
						|
                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
 | 
						|
                     V2Size);
 | 
						|
        if (ThisAlias != Alias)
 | 
						|
          return MayAlias;
 | 
						|
      }
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
  SmallPtrSet<Value*, 4> UniqueSrc;
 | 
						|
  SmallVector<Value*, 4> V1Srcs;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *PV1 = PN->getIncomingValue(i);
 | 
						|
    if (isa<PHINode>(PV1))
 | 
						|
      // If any of the source itself is a PHI, return MayAlias conservatively
 | 
						|
      // to avoid compile time explosion. The worst possible case is if both
 | 
						|
      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
 | 
						|
      // and 'n' are the number of PHI sources.
 | 
						|
      return MayAlias;
 | 
						|
    if (UniqueSrc.insert(PV1))
 | 
						|
      V1Srcs.push_back(PV1);
 | 
						|
  }
 | 
						|
 | 
						|
  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
 | 
						|
  // Early exit if the check of the first PHI source against V2 is MayAlias.
 | 
						|
  // Other results are not possible.
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
 | 
						|
    Value *V = V1Srcs[i];
 | 
						|
 | 
						|
    // If V2 is a PHI, the recursive case will have been caught in the
 | 
						|
    // above aliasCheck call, so these subsequent calls to aliasCheck
 | 
						|
    // don't need to assume that V2 is being visited recursively.
 | 
						|
    VisitedPHIs.erase(V2);
 | 
						|
 | 
						|
    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
 | 
						|
    if (ThisAlias != Alias || ThisAlias == MayAlias)
 | 
						|
      return MayAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  return Alias;
 | 
						|
}
 | 
						|
 | 
						|
// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
 | 
						|
// such as array references.
 | 
						|
//
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
 | 
						|
                               const Value *V2, unsigned V2Size) {
 | 
						|
  // If either of the memory references is empty, it doesn't matter what the
 | 
						|
  // pointer values are.
 | 
						|
  if (V1Size == 0 || V2Size == 0)
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  // Strip off any casts if they exist.
 | 
						|
  V1 = V1->stripPointerCasts();
 | 
						|
  V2 = V2->stripPointerCasts();
 | 
						|
 | 
						|
  // Are we checking for alias of the same value?
 | 
						|
  if (V1 == V2) return MustAlias;
 | 
						|
 | 
						|
  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
 | 
						|
    return NoAlias;  // Scalars cannot alias each other
 | 
						|
 | 
						|
  // Figure out what objects these things are pointing to if we can.
 | 
						|
  const Value *O1 = V1->getUnderlyingObject();
 | 
						|
  const Value *O2 = V2->getUnderlyingObject();
 | 
						|
 | 
						|
  // Null values in the default address space don't point to any object, so they
 | 
						|
  // don't alias any other pointer.
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
 | 
						|
    if (CPN->getType()->getAddressSpace() == 0)
 | 
						|
      return NoAlias;
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
 | 
						|
    if (CPN->getType()->getAddressSpace() == 0)
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
  if (O1 != O2) {
 | 
						|
    // If V1/V2 point to two different objects we know that we have no alias.
 | 
						|
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Constant pointers can't alias with non-const isIdentifiedObject objects.
 | 
						|
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
 | 
						|
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Arguments can't alias with local allocations or noalias calls.
 | 
						|
    if ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
 | 
						|
        (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Most objects can't alias null.
 | 
						|
    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
 | 
						|
        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the size of one access is larger than the entire object on the other
 | 
						|
  // side, then we know such behavior is undefined and can assume no alias.
 | 
						|
  if (TD)
 | 
						|
    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
 | 
						|
        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
 | 
						|
      return NoAlias;
 | 
						|
  
 | 
						|
  // If one pointer is the result of a call/invoke or load and the other is a
 | 
						|
  // non-escaping local object, then we know the object couldn't escape to a
 | 
						|
  // point where the call could return it. The load case works because
 | 
						|
  // isNonEscapingLocalObject considers all stores to be escapes (it
 | 
						|
  // passes true for the StoreCaptures argument to PointerMayBeCaptured).
 | 
						|
  if (O1 != O2) {
 | 
						|
    if ((isa<CallInst>(O1) || isa<InvokeInst>(O1) || isa<LoadInst>(O1) ||
 | 
						|
         isa<Argument>(O1)) &&
 | 
						|
        isNonEscapingLocalObject(O2))
 | 
						|
      return NoAlias;
 | 
						|
    if ((isa<CallInst>(O2) || isa<InvokeInst>(O2) || isa<LoadInst>(O2) ||
 | 
						|
         isa<Argument>(O2)) &&
 | 
						|
        isNonEscapingLocalObject(O1))
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
 | 
						|
  // GEP can't simplify, we don't even look at the PHI cases.
 | 
						|
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(O1, O2);
 | 
						|
  }
 | 
						|
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
 | 
						|
    return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
 | 
						|
 | 
						|
  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
  }
 | 
						|
  if (const PHINode *PN = dyn_cast<PHINode>(V1))
 | 
						|
    return aliasPHI(PN, V1Size, V2, V2Size);
 | 
						|
 | 
						|
  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
  }
 | 
						|
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
 | 
						|
    return aliasSelect(S1, V1Size, V2, V2Size);
 | 
						|
 | 
						|
  return MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
// Make sure that anything that uses AliasAnalysis pulls in this file.
 | 
						|
DEFINING_FILE_FOR(BasicAliasAnalysis)
 |