mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32698 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			532 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			532 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Evan Cheng and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a top-down list scheduler, using standard algorithms.
 | |
| // The basic approach uses a priority queue of available nodes to schedule.
 | |
| // One at a time, nodes are taken from the priority queue (thus in priority
 | |
| // order), checked for legality to schedule, and emitted if legal.
 | |
| //
 | |
| // Nodes may not be legal to schedule either due to structural hazards (e.g.
 | |
| // pipeline or resource constraints) or because an input to the instruction has
 | |
| // not completed execution.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <climits>
 | |
| #include <queue>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumNoops , "Number of noops inserted");
 | |
| STATISTIC(NumStalls, "Number of pipeline stalls");
 | |
| 
 | |
| static RegisterScheduler
 | |
|   tdListDAGScheduler("list-td", "  Top-down list scheduler",
 | |
|                      createTDListDAGScheduler);
 | |
|    
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGList - The actual list scheduler implementation.  This supports
 | |
| /// top-down scheduling.
 | |
| ///
 | |
| class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG {
 | |
| private:
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   ///
 | |
|   SchedulingPriorityQueue *AvailableQueue;
 | |
|   
 | |
|   /// PendingQueue - This contains all of the instructions whose operands have
 | |
|   /// been issued, but their results are not ready yet (due to the latency of
 | |
|   /// the operation).  Once the operands becomes available, the instruction is
 | |
|   /// added to the AvailableQueue.  This keeps track of each SUnit and the
 | |
|   /// number of cycles left to execute before the operation is available.
 | |
|   std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
 | |
| 
 | |
|   /// HazardRec - The hazard recognizer to use.
 | |
|   HazardRecognizer *HazardRec;
 | |
| 
 | |
| public:
 | |
|   ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
 | |
|                   const TargetMachine &tm,
 | |
|                   SchedulingPriorityQueue *availqueue,
 | |
|                   HazardRecognizer *HR)
 | |
|     : ScheduleDAG(dag, bb, tm),
 | |
|       AvailableQueue(availqueue), HazardRec(HR) {
 | |
|     }
 | |
| 
 | |
|   ~ScheduleDAGList() {
 | |
|     delete HazardRec;
 | |
|     delete AvailableQueue;
 | |
|   }
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
| private:
 | |
|   void ReleaseSucc(SUnit *SuccSU, bool isChain);
 | |
|   void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | |
|   void ListScheduleTopDown();
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| HazardRecognizer::~HazardRecognizer() {}
 | |
| 
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGList::Schedule() {
 | |
|   DOUT << "********** List Scheduling **********\n";
 | |
|   
 | |
|   // Build scheduling units.
 | |
|   BuildSchedUnits();
 | |
| 
 | |
|   AvailableQueue->initNodes(SUnitMap, SUnits);
 | |
|   
 | |
|   ListScheduleTopDown();
 | |
|   
 | |
|   AvailableQueue->releaseState();
 | |
|   
 | |
|   DOUT << "*** Final schedule ***\n";
 | |
|   DEBUG(dumpSchedule());
 | |
|   DOUT << "\n";
 | |
|   
 | |
|   // Emit in scheduled order
 | |
|   EmitSchedule();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the PendingQueue if the count reaches zero.
 | |
| void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
 | |
|   if (!isChain)
 | |
|     SuccSU->NumPredsLeft--;
 | |
|   else
 | |
|     SuccSU->NumChainPredsLeft--;
 | |
|   
 | |
|   assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 &&
 | |
|          "List scheduling internal error");
 | |
|   
 | |
|   if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
 | |
|     // Compute how many cycles it will be before this actually becomes
 | |
|     // available.  This is the max of the start time of all predecessors plus
 | |
|     // their latencies.
 | |
|     unsigned AvailableCycle = 0;
 | |
|     for (SUnit::pred_iterator I = SuccSU->Preds.begin(),
 | |
|          E = SuccSU->Preds.end(); I != E; ++I) {
 | |
|       // If this is a token edge, we don't need to wait for the latency of the
 | |
|       // preceeding instruction (e.g. a long-latency load) unless there is also
 | |
|       // some other data dependence.
 | |
|       SUnit &Pred = *I->first;
 | |
|       unsigned PredDoneCycle = Pred.Cycle;
 | |
|       if (!I->second)
 | |
|         PredDoneCycle += Pred.Latency;
 | |
|       else if (Pred.Latency)
 | |
|         PredDoneCycle += 1;
 | |
| 
 | |
|       AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
 | |
|     }
 | |
|     
 | |
|     PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   
 | |
|   Sequence.push_back(SU);
 | |
|   SU->Cycle = CurCycle;
 | |
|   
 | |
|   // Bottom up: release successors.
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     ReleaseSucc(I->first, I->second);
 | |
| }
 | |
| 
 | |
| /// ListScheduleTopDown - The main loop of list scheduling for top-down
 | |
| /// schedulers.
 | |
| void ScheduleDAGList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
|   SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
| 
 | |
|   // All leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | |
|       AvailableQueue->push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = SUnits[i].isPending = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Emit the entry node first.
 | |
|   ScheduleNodeTopDown(Entry, CurCycle);
 | |
|   HazardRec->EmitInstruction(Entry->Node);
 | |
|   
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   while (!AvailableQueue->empty() || !PendingQueue.empty()) {
 | |
|     // Check to see if any of the pending instructions are ready to issue.  If
 | |
|     // so, add them to the available queue.
 | |
|     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | |
|       if (PendingQueue[i].first == CurCycle) {
 | |
|         AvailableQueue->push(PendingQueue[i].second);
 | |
|         PendingQueue[i].second->isAvailable = true;
 | |
|         PendingQueue[i] = PendingQueue.back();
 | |
|         PendingQueue.pop_back();
 | |
|         --i; --e;
 | |
|       } else {
 | |
|         assert(PendingQueue[i].first > CurCycle && "Negative latency?");
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If there are no instructions available, don't try to issue anything, and
 | |
|     // don't advance the hazard recognizer.
 | |
|     if (AvailableQueue->empty()) {
 | |
|       ++CurCycle;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SUnit *FoundSUnit = 0;
 | |
|     SDNode *FoundNode = 0;
 | |
|     
 | |
|     bool HasNoopHazards = false;
 | |
|     while (!AvailableQueue->empty()) {
 | |
|       SUnit *CurSUnit = AvailableQueue->pop();
 | |
|       
 | |
|       // Get the node represented by this SUnit.
 | |
|       FoundNode = CurSUnit->Node;
 | |
|       
 | |
|       // If this is a pseudo op, like copyfromreg, look to see if there is a
 | |
|       // real target node flagged to it.  If so, use the target node.
 | |
|       for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); 
 | |
|            FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
 | |
|         FoundNode = CurSUnit->FlaggedNodes[i];
 | |
|       
 | |
|       HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
 | |
|       if (HT == HazardRecognizer::NoHazard) {
 | |
|         FoundSUnit = CurSUnit;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       // Remember if this is a noop hazard.
 | |
|       HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
 | |
|       
 | |
|       NotReady.push_back(CurSUnit);
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     if (!NotReady.empty()) {
 | |
|       AvailableQueue->push_all(NotReady);
 | |
|       NotReady.clear();
 | |
|     }
 | |
| 
 | |
|     // If we found a node to schedule, do it now.
 | |
|     if (FoundSUnit) {
 | |
|       ScheduleNodeTopDown(FoundSUnit, CurCycle);
 | |
|       HazardRec->EmitInstruction(FoundNode);
 | |
|       FoundSUnit->isScheduled = true;
 | |
|       AvailableQueue->ScheduledNode(FoundSUnit);
 | |
| 
 | |
|       // If this is a pseudo-op node, we don't want to increment the current
 | |
|       // cycle.
 | |
|       if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
 | |
|         ++CurCycle;        
 | |
|     } else if (!HasNoopHazards) {
 | |
|       // Otherwise, we have a pipeline stall, but no other problem, just advance
 | |
|       // the current cycle and try again.
 | |
|       DOUT << "*** Advancing cycle, no work to do\n";
 | |
|       HazardRec->AdvanceCycle();
 | |
|       ++NumStalls;
 | |
|       ++CurCycle;
 | |
|     } else {
 | |
|       // Otherwise, we have no instructions to issue and we have instructions
 | |
|       // that will fault if we don't do this right.  This is the case for
 | |
|       // processors without pipeline interlocks and other cases.
 | |
|       DOUT << "*** Emitting noop\n";
 | |
|       HazardRec->EmitNoop();
 | |
|       Sequence.push_back(0);   // NULL SUnit* -> noop
 | |
|       ++NumNoops;
 | |
|       ++CurCycle;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
 | |
|       if (!AnyNotSched)
 | |
|         cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    LatencyPriorityQueue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using latency information to
 | |
| // reduce the length of the critical path through the basic block.
 | |
| // 
 | |
| namespace {
 | |
|   class LatencyPriorityQueue;
 | |
|   
 | |
|   /// Sorting functions for the Available queue.
 | |
|   struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     LatencyPriorityQueue *PQ;
 | |
|     latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
 | |
|     latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| namespace {
 | |
|   class LatencyPriorityQueue : public SchedulingPriorityQueue {
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // Latencies - The latency (max of latency from this node to the bb exit)
 | |
|     // for each node.
 | |
|     std::vector<int> Latencies;
 | |
| 
 | |
|     /// NumNodesSolelyBlocking - This vector contains, for every node in the
 | |
|     /// Queue, the number of nodes that the node is the sole unscheduled
 | |
|     /// predecessor for.  This is used as a tie-breaker heuristic for better
 | |
|     /// mobility.
 | |
|     std::vector<unsigned> NumNodesSolelyBlocking;
 | |
| 
 | |
|     std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
 | |
| public:
 | |
|     LatencyPriorityQueue() : Queue(latency_sort(this)) {
 | |
|     }
 | |
|     
 | |
|     void initNodes(std::map<SDNode*, SUnit*> &sumap,
 | |
|                    std::vector<SUnit> &sunits) {
 | |
|       SUnits = &sunits;
 | |
|       // Calculate node priorities.
 | |
|       CalculatePriorities();
 | |
|     }
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       Latencies.clear();
 | |
|     }
 | |
|     
 | |
|     unsigned getLatency(unsigned NodeNum) const {
 | |
|       assert(NodeNum < Latencies.size());
 | |
|       return Latencies[NodeNum];
 | |
|     }
 | |
|     
 | |
|     unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
 | |
|       assert(NodeNum < NumNodesSolelyBlocking.size());
 | |
|       return NumNodesSolelyBlocking[NodeNum];
 | |
|     }
 | |
|     
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     virtual void push(SUnit *U) {
 | |
|       push_impl(U);
 | |
|     }
 | |
|     void push_impl(SUnit *U);
 | |
|     
 | |
|     void push_all(const std::vector<SUnit *> &Nodes) {
 | |
|       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|         push_impl(Nodes[i]);
 | |
|     }
 | |
|     
 | |
|     SUnit *pop() {
 | |
|       if (empty()) return NULL;
 | |
|       SUnit *V = Queue.top();
 | |
|       Queue.pop();
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     // ScheduledNode - As nodes are scheduled, we look to see if there are any
 | |
|     // successor nodes that have a single unscheduled predecessor.  If so, that
 | |
|     // single predecessor has a higher priority, since scheduling it will make
 | |
|     // the node available.
 | |
|     void ScheduledNode(SUnit *Node);
 | |
| 
 | |
| private:
 | |
|     void CalculatePriorities();
 | |
|     int CalcLatency(const SUnit &SU);
 | |
|     void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
 | |
|     SUnit *getSingleUnscheduledPred(SUnit *SU);
 | |
| 
 | |
|     /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
 | |
|     /// node from a priority queue.  We should roll our own heap to make this
 | |
|     /// better or something.
 | |
|     void RemoveFromPriorityQueue(SUnit *SU) {
 | |
|       std::vector<SUnit*> Temp;
 | |
|       
 | |
|       assert(!Queue.empty() && "Not in queue!");
 | |
|       while (Queue.top() != SU) {
 | |
|         Temp.push_back(Queue.top());
 | |
|         Queue.pop();
 | |
|         assert(!Queue.empty() && "Not in queue!");
 | |
|       }
 | |
| 
 | |
|       // Remove the node from the PQ.
 | |
|       Queue.pop();
 | |
|       
 | |
|       // Add all the other nodes back.
 | |
|       for (unsigned i = 0, e = Temp.size(); i != e; ++i)
 | |
|         Queue.push(Temp[i]);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
 | |
|   unsigned LHSNum = LHS->NodeNum;
 | |
|   unsigned RHSNum = RHS->NodeNum;
 | |
| 
 | |
|   // The most important heuristic is scheduling the critical path.
 | |
|   unsigned LHSLatency = PQ->getLatency(LHSNum);
 | |
|   unsigned RHSLatency = PQ->getLatency(RHSNum);
 | |
|   if (LHSLatency < RHSLatency) return true;
 | |
|   if (LHSLatency > RHSLatency) return false;
 | |
|   
 | |
|   // After that, if two nodes have identical latencies, look to see if one will
 | |
|   // unblock more other nodes than the other.
 | |
|   unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
 | |
|   unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
 | |
|   if (LHSBlocked < RHSBlocked) return true;
 | |
|   if (LHSBlocked > RHSBlocked) return false;
 | |
|   
 | |
|   // Finally, just to provide a stable ordering, use the node number as a
 | |
|   // deciding factor.
 | |
|   return LHSNum < RHSNum;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CalcNodePriority - Calculate the maximal path from the node to the exit.
 | |
| ///
 | |
| int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
 | |
|   int &Latency = Latencies[SU.NodeNum];
 | |
|   if (Latency != -1)
 | |
|     return Latency;
 | |
|   
 | |
|   int MaxSuccLatency = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU.Succs.begin(), E = SU.Succs.end();
 | |
|        I != E; ++I)
 | |
|     MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first));
 | |
| 
 | |
|   return Latency = MaxSuccLatency + SU.Latency;
 | |
| }
 | |
| 
 | |
| /// CalculatePriorities - Calculate priorities of all scheduling units.
 | |
| void LatencyPriorityQueue::CalculatePriorities() {
 | |
|   Latencies.assign(SUnits->size(), -1);
 | |
|   NumNodesSolelyBlocking.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcLatency((*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | |
| /// of SU, return it, otherwise return null.
 | |
| SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
 | |
|   SUnit *OnlyAvailablePred = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     SUnit &Pred = *I->first;
 | |
|     if (!Pred.isScheduled) {
 | |
|       // We found an available, but not scheduled, predecessor.  If it's the
 | |
|       // only one we have found, keep track of it... otherwise give up.
 | |
|       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
 | |
|         return 0;
 | |
|       OnlyAvailablePred = &Pred;
 | |
|     }
 | |
|   }
 | |
|       
 | |
|   return OnlyAvailablePred;
 | |
| }
 | |
| 
 | |
| void LatencyPriorityQueue::push_impl(SUnit *SU) {
 | |
|   // Look at all of the successors of this node.  Count the number of nodes that
 | |
|   // this node is the sole unscheduled node for.
 | |
|   unsigned NumNodesBlocking = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     if (getSingleUnscheduledPred(I->first) == SU)
 | |
|       ++NumNodesBlocking;
 | |
|   NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
 | |
|   
 | |
|   Queue.push(SU);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ScheduledNode - As nodes are scheduled, we look to see if there are any
 | |
| // successor nodes that have a single unscheduled predecessor.  If so, that
 | |
| // single predecessor has a higher priority, since scheduling it will make
 | |
| // the node available.
 | |
| void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     AdjustPriorityOfUnscheduledPreds(I->first);
 | |
| }
 | |
| 
 | |
| /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
 | |
| /// scheduled.  If SU is not itself available, then there is at least one
 | |
| /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
 | |
| /// unscheduled predecessor, we want to increase its priority: it getting
 | |
| /// scheduled will make this node available, so it is better than some other
 | |
| /// node of the same priority that will not make a node available.
 | |
| void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
 | |
|   if (SU->isPending) return;  // All preds scheduled.
 | |
|   
 | |
|   SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
 | |
|   if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
 | |
|   
 | |
|   // Okay, we found a single predecessor that is available, but not scheduled.
 | |
|   // Since it is available, it must be in the priority queue.  First remove it.
 | |
|   RemoveFromPriorityQueue(OnlyAvailablePred);
 | |
| 
 | |
|   // Reinsert the node into the priority queue, which recomputes its
 | |
|   // NumNodesSolelyBlocking value.
 | |
|   push(OnlyAvailablePred);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// createTDListDAGScheduler - This creates a top-down list scheduler with a
 | |
| /// new hazard recognizer. This scheduler takes ownership of the hazard
 | |
| /// recognizer and deletes it when done.
 | |
| ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                             SelectionDAG *DAG,
 | |
|                                             MachineBasicBlock *BB) {
 | |
|   return new ScheduleDAGList(*DAG, BB, DAG->getTarget(),
 | |
|                              new LatencyPriorityQueue(),
 | |
|                              IS->CreateTargetHazardRecognizer());
 | |
| }
 |