mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 23:32:58 +00:00
071d1c063f
(retry now that the windows build is green) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118630 91177308-0d34-0410-b5e6-96231b3b80d8
492 lines
18 KiB
C++
492 lines
18 KiB
C++
//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the RABasic function pass, which provides a minimal
|
|
// implementation of the basic register allocator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "LiveIntervalUnion.h"
|
|
#include "RegAllocBase.h"
|
|
#include "RenderMachineFunction.h"
|
|
#include "Spiller.h"
|
|
#include "VirtRegMap.h"
|
|
#include "VirtRegRewriter.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/PassAnalysisSupport.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/RegisterCoalescer.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#ifndef NDEBUG
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#endif
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <vector>
|
|
#include <queue>
|
|
|
|
using namespace llvm;
|
|
|
|
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
|
|
createBasicRegisterAllocator);
|
|
|
|
// Temporary verification option until we can put verification inside
|
|
// MachineVerifier.
|
|
static cl::opt<bool>
|
|
VerifyRegAlloc("verify-regalloc",
|
|
cl::desc("Verify live intervals before renaming"));
|
|
|
|
class PhysicalRegisterDescription : public AbstractRegisterDescription {
|
|
const TargetRegisterInfo *tri_;
|
|
public:
|
|
PhysicalRegisterDescription(const TargetRegisterInfo *tri): tri_(tri) {}
|
|
virtual const char *getName(unsigned reg) const { return tri_->getName(reg); }
|
|
};
|
|
|
|
namespace {
|
|
|
|
/// RABasic provides a minimal implementation of the basic register allocation
|
|
/// algorithm. It prioritizes live virtual registers by spill weight and spills
|
|
/// whenever a register is unavailable. This is not practical in production but
|
|
/// provides a useful baseline both for measuring other allocators and comparing
|
|
/// the speed of the basic algorithm against other styles of allocators.
|
|
class RABasic : public MachineFunctionPass, public RegAllocBase
|
|
{
|
|
// context
|
|
MachineFunction *mf_;
|
|
const TargetMachine *tm_;
|
|
MachineRegisterInfo *mri_;
|
|
|
|
// analyses
|
|
LiveStacks *ls_;
|
|
RenderMachineFunction *rmf_;
|
|
|
|
// state
|
|
std::auto_ptr<Spiller> spiller_;
|
|
|
|
public:
|
|
RABasic();
|
|
|
|
/// Return the pass name.
|
|
virtual const char* getPassName() const {
|
|
return "Basic Register Allocator";
|
|
}
|
|
|
|
/// RABasic analysis usage.
|
|
virtual void getAnalysisUsage(AnalysisUsage &au) const;
|
|
|
|
virtual void releaseMemory();
|
|
|
|
virtual unsigned selectOrSplit(LiveInterval &lvr,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs);
|
|
|
|
void spillInterferences(unsigned preg,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs);
|
|
|
|
/// Perform register allocation.
|
|
virtual bool runOnMachineFunction(MachineFunction &mf);
|
|
|
|
static char ID;
|
|
};
|
|
|
|
char RABasic::ID = 0;
|
|
|
|
} // end anonymous namespace
|
|
|
|
// We should not need to publish the initializer as long as no other passes
|
|
// require RABasic.
|
|
#if 0 // disable INITIALIZE_PASS
|
|
INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc",
|
|
"Basic Register Allocator", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
|
|
INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
|
|
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
|
|
#ifndef NDEBUG
|
|
INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction)
|
|
#endif
|
|
INITIALIZE_PASS_END(RABasic, "basic-regalloc",
|
|
"Basic Register Allocator", false, false)
|
|
#endif // disable INITIALIZE_PASS
|
|
|
|
RABasic::RABasic(): MachineFunctionPass(ID) {
|
|
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
|
|
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
|
|
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
|
|
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
|
|
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
|
|
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
|
|
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
|
|
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
|
|
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
|
|
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void RABasic::getAnalysisUsage(AnalysisUsage &au) const {
|
|
au.setPreservesCFG();
|
|
au.addRequired<LiveIntervals>();
|
|
au.addPreserved<SlotIndexes>();
|
|
if (StrongPHIElim)
|
|
au.addRequiredID(StrongPHIEliminationID);
|
|
au.addRequiredTransitive<RegisterCoalescer>();
|
|
au.addRequired<CalculateSpillWeights>();
|
|
au.addRequired<LiveStacks>();
|
|
au.addPreserved<LiveStacks>();
|
|
au.addRequiredID(MachineDominatorsID);
|
|
au.addPreservedID(MachineDominatorsID);
|
|
au.addRequired<MachineLoopInfo>();
|
|
au.addPreserved<MachineLoopInfo>();
|
|
au.addRequired<VirtRegMap>();
|
|
au.addPreserved<VirtRegMap>();
|
|
DEBUG(au.addRequired<RenderMachineFunction>());
|
|
MachineFunctionPass::getAnalysisUsage(au);
|
|
}
|
|
|
|
void RABasic::releaseMemory() {
|
|
spiller_.reset(0);
|
|
RegAllocBase::releaseMemory();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify each LiveIntervalUnion.
|
|
void RegAllocBase::verify() {
|
|
LvrBitSet visitedVRegs;
|
|
OwningArrayPtr<LvrBitSet> unionVRegs(new LvrBitSet[physReg2liu_.numRegs()]);
|
|
// Verify disjoint unions.
|
|
for (unsigned preg = 0; preg < physReg2liu_.numRegs(); ++preg) {
|
|
DEBUG(PhysicalRegisterDescription prd(tri_); physReg2liu_[preg].dump(&prd));
|
|
LvrBitSet &vregs = unionVRegs[preg];
|
|
physReg2liu_[preg].verify(vregs);
|
|
// Union + intersection test could be done efficiently in one pass, but
|
|
// don't add a method to SparseBitVector unless we really need it.
|
|
assert(!visitedVRegs.intersects(vregs) && "vreg in multiple unions");
|
|
visitedVRegs |= vregs;
|
|
}
|
|
// Verify vreg coverage.
|
|
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
|
|
liItr != liEnd; ++liItr) {
|
|
unsigned reg = liItr->first;
|
|
LiveInterval &li = *liItr->second;
|
|
if (li.empty() ) continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
|
|
if (!vrm_->hasPhys(reg)) continue; // spilled?
|
|
unsigned preg = vrm_->getPhys(reg);
|
|
if (!unionVRegs[preg].test(reg)) {
|
|
dbgs() << "LiveVirtReg " << reg << " not in union " <<
|
|
tri_->getName(preg) << "\n";
|
|
llvm_unreachable("unallocated live vreg");
|
|
}
|
|
}
|
|
// FIXME: I'm not sure how to verify spilled intervals.
|
|
}
|
|
#endif //!NDEBUG
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegAllocBase Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Instantiate a LiveIntervalUnion for each physical register.
|
|
void RegAllocBase::LIUArray::init(unsigned nRegs) {
|
|
array_.reset(new LiveIntervalUnion[nRegs]);
|
|
nRegs_ = nRegs;
|
|
for (unsigned pr = 0; pr < nRegs; ++pr) {
|
|
array_[pr].init(pr);
|
|
}
|
|
}
|
|
|
|
void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
|
|
LiveIntervals &lis) {
|
|
tri_ = &tri;
|
|
vrm_ = &vrm;
|
|
lis_ = &lis;
|
|
physReg2liu_.init(tri_->getNumRegs());
|
|
// Cache an interferece query for each physical reg
|
|
queries_.reset(new LiveIntervalUnion::Query[physReg2liu_.numRegs()]);
|
|
}
|
|
|
|
void RegAllocBase::LIUArray::clear() {
|
|
nRegs_ = 0;
|
|
array_.reset(0);
|
|
}
|
|
|
|
void RegAllocBase::releaseMemory() {
|
|
physReg2liu_.clear();
|
|
}
|
|
|
|
namespace llvm {
|
|
/// This class defines a queue of live virtual registers prioritized by spill
|
|
/// weight. The heaviest vreg is popped first.
|
|
///
|
|
/// Currently, this is trivial wrapper that gives us an opaque type in the
|
|
/// header, but we may later give it a virtual interface for register allocators
|
|
/// to override the priority queue comparator.
|
|
class LiveVirtRegQueue {
|
|
typedef std::priority_queue
|
|
<LiveInterval*, std::vector<LiveInterval*>, LessSpillWeightPriority> PQ;
|
|
PQ pq_;
|
|
|
|
public:
|
|
// Is the queue empty?
|
|
bool empty() { return pq_.empty(); }
|
|
|
|
// Get the highest priority lvr (top + pop)
|
|
LiveInterval *get() {
|
|
LiveInterval *lvr = pq_.top();
|
|
pq_.pop();
|
|
return lvr;
|
|
}
|
|
// Add this lvr to the queue
|
|
void push(LiveInterval *lvr) {
|
|
pq_.push(lvr);
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
// Visit all the live virtual registers. If they are already assigned to a
|
|
// physical register, unify them with the corresponding LiveIntervalUnion,
|
|
// otherwise push them on the priority queue for later assignment.
|
|
void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &lvrQ) {
|
|
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
|
|
liItr != liEnd; ++liItr) {
|
|
unsigned reg = liItr->first;
|
|
LiveInterval &li = *liItr->second;
|
|
if (li.empty()) continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
|
|
physReg2liu_[reg].unify(li);
|
|
}
|
|
else {
|
|
lvrQ.push(&li);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
|
|
// selectOrSplit implementation.
|
|
void RegAllocBase::allocatePhysRegs() {
|
|
LiveVirtRegQueue lvrQ;
|
|
seedLiveVirtRegs(lvrQ);
|
|
while (!lvrQ.empty()) {
|
|
LiveInterval *lvr = lvrQ.get();
|
|
typedef SmallVector<LiveInterval*, 4> LVRVec;
|
|
LVRVec splitLVRs;
|
|
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
|
|
if (availablePhysReg) {
|
|
DEBUG(dbgs() << "allocating: " << tri_->getName(availablePhysReg) <<
|
|
" " << *lvr << '\n');
|
|
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
|
|
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
|
|
physReg2liu_[availablePhysReg].unify(*lvr);
|
|
}
|
|
for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
|
|
lvrI != lvrEnd; ++lvrI) {
|
|
if ((*lvrI)->empty()) continue;
|
|
DEBUG(dbgs() << "queuing new interval: " << **lvrI << "\n");
|
|
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
|
|
"expect split value in virtual register");
|
|
lvrQ.push(*lvrI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if this live virtual reg interferes with a physical register. If not,
|
|
// then check for interference on each register that aliases with the physical
|
|
// register. Return the interfering register.
|
|
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &lvr,
|
|
unsigned preg) {
|
|
queries_[preg].init(&lvr, &physReg2liu_[preg]);
|
|
if (queries_[preg].checkInterference())
|
|
return preg;
|
|
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
|
|
queries_[*asI].init(&lvr, &physReg2liu_[*asI]);
|
|
if (queries_[*asI].checkInterference())
|
|
return *asI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Spill or split all live virtual registers currently unified under preg that
|
|
// interfere with lvr. The newly spilled or split live intervals are returned by
|
|
// appending them to splitLVRs.
|
|
void RABasic::spillInterferences(unsigned preg,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs) {
|
|
SmallPtrSet<LiveInterval*, 8> spilledLVRs;
|
|
LiveIntervalUnion::Query &query = queries_[preg];
|
|
// Record each interference before mutating either the union or live
|
|
// intervals.
|
|
LiveIntervalUnion::InterferenceResult ir = query.firstInterference();
|
|
assert(query.isInterference(ir) && "expect interference");
|
|
do {
|
|
spilledLVRs.insert(ir.liuSegPos()->liveVirtReg);
|
|
} while (query.nextInterference(ir));
|
|
for (SmallPtrSetIterator<LiveInterval*> lvrI = spilledLVRs.begin(),
|
|
lvrEnd = spilledLVRs.end();
|
|
lvrI != lvrEnd; ++lvrI ) {
|
|
LiveInterval& lvr = **lvrI;
|
|
// Spill the previously allocated lvr.
|
|
DEBUG(dbgs() << "extracting from " << preg << " " << lvr << '\n');
|
|
// Deallocate the interfering lvr by removing it from the preg union.
|
|
// Live intervals may not be in a union during modification.
|
|
physReg2liu_[preg].extract(lvr);
|
|
// Spill the extracted interval.
|
|
SmallVector<LiveInterval*, 8> spillIs;
|
|
spiller_->spill(&lvr, splitLVRs, spillIs);
|
|
}
|
|
// After extracting segments, the query's results are invalid.
|
|
query.clear();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RABasic Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Driver for the register assignment and splitting heuristics.
|
|
// Manages iteration over the LiveIntervalUnions.
|
|
//
|
|
// Minimal implementation of register assignment and splitting--spills whenever
|
|
// we run out of registers.
|
|
//
|
|
// selectOrSplit can only be called once per live virtual register. We then do a
|
|
// single interference test for each register the correct class until we find an
|
|
// available register. So, the number of interference tests in the worst case is
|
|
// |vregs| * |machineregs|. And since the number of interference tests is
|
|
// minimal, there is no value in caching them.
|
|
unsigned RABasic::selectOrSplit(LiveInterval &lvr,
|
|
SmallVectorImpl<LiveInterval*> &splitLVRs) {
|
|
// Accumulate the min spill cost among the interferences, in case we spill.
|
|
unsigned minSpillReg = 0;
|
|
unsigned minSpillAlias = 0;
|
|
float minSpillWeight = lvr.weight;
|
|
|
|
// Check for an available reg in this class.
|
|
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
|
|
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
|
|
trcEnd = trc->allocation_order_end(*mf_);
|
|
trcI != trcEnd; ++trcI) {
|
|
unsigned preg = *trcI;
|
|
unsigned interfReg = checkPhysRegInterference(lvr, preg);
|
|
if (interfReg == 0) {
|
|
return preg;
|
|
}
|
|
LiveIntervalUnion::InterferenceResult interf =
|
|
queries_[interfReg].firstInterference();
|
|
float interfWeight = interf.liuSegPos()->liveVirtReg->weight;
|
|
if (interfWeight < minSpillWeight ) {
|
|
minSpillReg = interfReg;
|
|
minSpillAlias = preg;
|
|
minSpillWeight = interfWeight;
|
|
}
|
|
}
|
|
if (minSpillReg == 0) {
|
|
DEBUG(dbgs() << "spilling: " << lvr << '\n');
|
|
SmallVector<LiveInterval*, 1> spillIs; // ignored
|
|
spiller_->spill(&lvr, splitLVRs, spillIs);
|
|
// The live virtual register requesting to be allocated was spilled. So tell
|
|
// the caller not to allocate anything for this round.
|
|
return 0;
|
|
}
|
|
// Free the cheapest physical register.
|
|
spillInterferences(minSpillReg, splitLVRs);
|
|
// Tell the caller to allocate to this newly freed physical register.
|
|
assert(minSpillAlias != 0 && "need a free register after spilling");
|
|
// We just spilled the first register that interferes with minSpillAlias. We
|
|
// now assume minSpillAlias is free because only one register alias may
|
|
// interfere at a time. e.g. we ignore predication.
|
|
unsigned interfReg = checkPhysRegInterference(lvr, minSpillAlias);
|
|
if (interfReg != 0) {
|
|
dbgs() << "spilling cannot free " << tri_->getName(minSpillAlias) <<
|
|
" for " << lvr.reg << " with interference " <<
|
|
*queries_[interfReg].firstInterference().liuSegPos()->liveVirtReg << "\n";
|
|
llvm_unreachable("Interference after spill.");
|
|
}
|
|
return minSpillAlias;
|
|
}
|
|
|
|
namespace llvm {
|
|
Spiller *createInlineSpiller(MachineFunctionPass &pass,
|
|
MachineFunction &mf,
|
|
VirtRegMap &vrm);
|
|
}
|
|
|
|
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
|
|
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
|
|
<< "********** Function: "
|
|
<< ((Value*)mf.getFunction())->getName() << '\n');
|
|
|
|
mf_ = &mf;
|
|
tm_ = &mf.getTarget();
|
|
mri_ = &mf.getRegInfo();
|
|
|
|
DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>());
|
|
|
|
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
|
|
getAnalysis<LiveIntervals>());
|
|
|
|
// We may want to force InlineSpiller for this register allocator. For
|
|
// now we're also experimenting with the standard spiller.
|
|
//
|
|
//spiller_.reset(createInlineSpiller(*this, *mf_, *vrm_));
|
|
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
|
|
|
|
allocatePhysRegs();
|
|
|
|
// Diagnostic output before rewriting
|
|
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n");
|
|
|
|
// optional HTML output
|
|
DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_));
|
|
|
|
// FIXME: Verification currently must run before VirtRegRewriter. We should
|
|
// make the rewriter a separate pass and override verifyAnalysis instead. When
|
|
// that happens, verification naturally falls under VerifyMachineCode.
|
|
#ifndef NDEBUG
|
|
if (VerifyRegAlloc) {
|
|
// Verify accuracy of LiveIntervals. The standard machine code verifier
|
|
// ensures that each LiveIntervals covers all uses of the virtual reg.
|
|
|
|
// FIXME: MachineVerifier is currently broken when using the standard
|
|
// spiller. Enable it for InlineSpiller only.
|
|
// mf_->verify(this);
|
|
|
|
// Verify that LiveIntervals are partitioned into unions and disjoint within
|
|
// the unions.
|
|
verify();
|
|
}
|
|
#endif // !NDEBUG
|
|
|
|
// Run rewriter
|
|
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
|
|
rewriter->runOnMachineFunction(*mf_, *vrm_, lis_);
|
|
|
|
// The pass output is in VirtRegMap. Release all the transient data.
|
|
releaseMemory();
|
|
|
|
return true;
|
|
}
|
|
|
|
FunctionPass* llvm::createBasicRegisterAllocator()
|
|
{
|
|
return new RABasic();
|
|
}
|