mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	target for tabs checking. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36146 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			821 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			821 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the pass that transforms the X86 machine instructions into
 | |
| // relocatable machine code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-emitter"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "X86Relocations.h"
 | |
| #include "X86.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumEmitted, "Number of machine instructions emitted");
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
 | |
|     const X86InstrInfo  *II;
 | |
|     const TargetData    *TD;
 | |
|     TargetMachine       &TM;
 | |
|     MachineCodeEmitter  &MCE;
 | |
|     bool Is64BitMode;
 | |
|   public:
 | |
|     explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
 | |
|       : II(0), TD(0), TM(tm), MCE(mce), Is64BitMode(false) {}
 | |
|     Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
 | |
|             const X86InstrInfo &ii, const TargetData &td, bool is64)
 | |
|       : II(&ii), TD(&td), TM(tm), MCE(mce), Is64BitMode(is64) {}
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 Machine Code Emitter";
 | |
|     }
 | |
| 
 | |
|     void emitInstruction(const MachineInstr &MI);
 | |
| 
 | |
|   private:
 | |
|     void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
 | |
|     void emitPCRelativeValue(intptr_t Address);
 | |
|     void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
 | |
|     void emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
 | |
|                                  int Disp = 0, unsigned PCAdj = 0);
 | |
|     void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
 | |
|     void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0,
 | |
|                               unsigned PCAdj = 0);
 | |
|     void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0);
 | |
| 
 | |
|     void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
 | |
|                                unsigned PCAdj = 0);
 | |
| 
 | |
|     void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
 | |
|     void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
 | |
|     void emitConstant(uint64_t Val, unsigned Size);
 | |
| 
 | |
|     void emitMemModRMByte(const MachineInstr &MI,
 | |
|                           unsigned Op, unsigned RegOpcodeField,
 | |
|                           unsigned PCAdj = 0);
 | |
| 
 | |
|     unsigned getX86RegNum(unsigned RegNo);
 | |
|     bool isX86_64ExtendedReg(const MachineOperand &MO);
 | |
|     unsigned determineREX(const MachineInstr &MI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
 | |
| /// to the specified MCE object.
 | |
| FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
 | |
|                                              MachineCodeEmitter &MCE) {
 | |
|   return new Emitter(TM, MCE);
 | |
| }
 | |
| 
 | |
| bool Emitter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
 | |
|           MF.getTarget().getRelocationModel() != Reloc::Static) &&
 | |
|          "JIT relocation model must be set to static or default!");
 | |
|   II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo();
 | |
|   TD = ((X86TargetMachine&)MF.getTarget()).getTargetData();
 | |
|   Is64BitMode =
 | |
|     ((X86TargetMachine&)MF.getTarget()).getSubtarget<X86Subtarget>().is64Bit();
 | |
| 
 | |
|   do {
 | |
|     MCE.startFunction(MF);
 | |
|     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
 | |
|          MBB != E; ++MBB) {
 | |
|       MCE.StartMachineBasicBlock(MBB);
 | |
|       for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | |
|            I != E; ++I)
 | |
|         emitInstruction(*I);
 | |
|     }
 | |
|   } while (MCE.finishFunction(MF));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// emitPCRelativeValue - Emit a PC relative address.
 | |
| ///
 | |
| void Emitter::emitPCRelativeValue(intptr_t Address) {
 | |
|   MCE.emitWordLE(Address-MCE.getCurrentPCValue()-4);
 | |
| }
 | |
| 
 | |
| /// emitPCRelativeBlockAddress - This method keeps track of the information
 | |
| /// necessary to resolve the address of this block later and emits a dummy
 | |
| /// value.
 | |
| ///
 | |
| void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
 | |
|   // Remember where this reference was and where it is to so we can
 | |
|   // deal with it later.
 | |
|   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | |
|                                              X86::reloc_pcrel_word, MBB));
 | |
|   MCE.emitWordLE(0);
 | |
| }
 | |
| 
 | |
| /// emitGlobalAddressForCall - Emit the specified address to the code stream
 | |
| /// assuming this is part of a function call, which is PC relative.
 | |
| ///
 | |
| void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) {
 | |
|   MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
 | |
|                                       X86::reloc_pcrel_word, GV, 0,
 | |
|                                       DoesntNeedStub));
 | |
|   MCE.emitWordLE(0);
 | |
| }
 | |
| 
 | |
| /// emitGlobalAddress - Emit the specified address to the code stream assuming
 | |
| /// this is part of a "take the address of a global" instruction.
 | |
| ///
 | |
| void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
 | |
|                                       int Disp /* = 0 */,
 | |
|                                       unsigned PCAdj /* = 0 */) {
 | |
|   MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
 | |
|                                              GV, PCAdj));
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitWordLE(0);
 | |
|   MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
 | |
| }
 | |
| 
 | |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
 | |
|   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | |
|                                                  Reloc, ES));
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitWordLE(0);
 | |
|   MCE.emitWordLE(0);
 | |
| }
 | |
| 
 | |
| /// emitConstPoolAddress - Arrange for the address of an constant pool
 | |
| /// to be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
 | |
|                                    int Disp /* = 0 */,
 | |
|                                    unsigned PCAdj /* = 0 */) {
 | |
|   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, CPI, PCAdj));
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitWordLE(0);
 | |
|   MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
 | |
| }
 | |
| 
 | |
| /// emitJumpTableAddress - Arrange for the address of a jump table to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | |
|                                    unsigned PCAdj /* = 0 */) {
 | |
|   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, JTI, PCAdj));
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitWordLE(0);
 | |
|   MCE.emitWordLE(0); // The relocated value will be added to the displacement
 | |
| }
 | |
| 
 | |
| /// N86 namespace - Native X86 Register numbers... used by X86 backend.
 | |
| ///
 | |
| namespace N86 {
 | |
|   enum {
 | |
|     EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
 | |
|   };
 | |
| }
 | |
| 
 | |
| // getX86RegNum - This function maps LLVM register identifiers to their X86
 | |
| // specific numbering, which is used in various places encoding instructions.
 | |
| //
 | |
| unsigned Emitter::getX86RegNum(unsigned RegNo) {
 | |
|   switch(RegNo) {
 | |
|   case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
 | |
|   case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
 | |
|   case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
 | |
|   case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
 | |
|   case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
 | |
|     return N86::ESP;
 | |
|   case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
 | |
|     return N86::EBP;
 | |
|   case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
 | |
|     return N86::ESI;
 | |
|   case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
 | |
|     return N86::EDI;
 | |
| 
 | |
|   case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
 | |
|     return N86::EAX;
 | |
|   case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
 | |
|     return N86::ECX;
 | |
|   case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
 | |
|     return N86::EDX;
 | |
|   case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
 | |
|     return N86::EBX;
 | |
|   case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
 | |
|     return N86::ESP;
 | |
|   case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
 | |
|     return N86::EBP;
 | |
|   case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
 | |
|     return N86::ESI;
 | |
|   case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
 | |
|     return N86::EDI;
 | |
| 
 | |
|   case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
 | |
|   case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
 | |
|     return RegNo-X86::ST0;
 | |
| 
 | |
|   case X86::XMM0:  case X86::XMM1:  case X86::XMM2:  case X86::XMM3:
 | |
|   case X86::XMM4:  case X86::XMM5:  case X86::XMM6:  case X86::XMM7:
 | |
|     return II->getRegisterInfo().getDwarfRegNum(RegNo) -
 | |
|            II->getRegisterInfo().getDwarfRegNum(X86::XMM0);
 | |
|   case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
 | |
|   case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
 | |
|     return II->getRegisterInfo().getDwarfRegNum(RegNo) -
 | |
|            II->getRegisterInfo().getDwarfRegNum(X86::XMM8);
 | |
| 
 | |
|   default:
 | |
|     assert(MRegisterInfo::isVirtualRegister(RegNo) &&
 | |
|            "Unknown physical register!");
 | |
|     assert(0 && "Register allocator hasn't allocated reg correctly yet!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | |
|                                       unsigned RM) {
 | |
|   assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | |
|   return RM | (RegOpcode << 3) | (Mod << 6);
 | |
| }
 | |
| 
 | |
| void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
 | |
|   MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
 | |
| }
 | |
| 
 | |
| void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
 | |
|   // SIB byte is in the same format as the ModRMByte...
 | |
|   MCE.emitByte(ModRMByte(SS, Index, Base));
 | |
| }
 | |
| 
 | |
| void Emitter::emitConstant(uint64_t Val, unsigned Size) {
 | |
|   // Output the constant in little endian byte order...
 | |
|   for (unsigned i = 0; i != Size; ++i) {
 | |
|     MCE.emitByte(Val & 255);
 | |
|     Val >>= 8;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isDisp8 - Return true if this signed displacement fits in a 8-bit 
 | |
| /// sign-extended field. 
 | |
| static bool isDisp8(int Value) {
 | |
|   return Value == (signed char)Value;
 | |
| }
 | |
| 
 | |
| void Emitter::emitDisplacementField(const MachineOperand *RelocOp,
 | |
|                                     int DispVal, unsigned PCAdj) {
 | |
|   // If this is a simple integer displacement that doesn't require a relocation,
 | |
|   // emit it now.
 | |
|   if (!RelocOp) {
 | |
|     emitConstant(DispVal, 4);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, this is something that requires a relocation.  Emit it as such
 | |
|   // now.
 | |
|   if (RelocOp->isGlobalAddress()) {
 | |
|     // In 64-bit static small code model, we could potentially emit absolute.
 | |
|     // But it's probably not beneficial.
 | |
|     //  89 05 00 00 00 00    	mov    %eax,0(%rip)  # PC-relative
 | |
|     //	89 04 25 00 00 00 00 	mov    %eax,0x0      # Absolute
 | |
|     unsigned rt= Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
 | |
|     emitGlobalAddressForPtr(RelocOp->getGlobal(), rt,
 | |
|                             RelocOp->getOffset(), PCAdj);
 | |
|   } else if (RelocOp->isConstantPoolIndex()) {
 | |
|     // Must be in 64-bit mode.
 | |
|     emitConstPoolAddress(RelocOp->getConstantPoolIndex(), X86::reloc_pcrel_word,
 | |
|                          RelocOp->getOffset(), PCAdj);
 | |
|   } else if (RelocOp->isJumpTableIndex()) {
 | |
|     // Must be in 64-bit mode.
 | |
|     emitJumpTableAddress(RelocOp->getJumpTableIndex(), X86::reloc_pcrel_word,
 | |
|                          PCAdj);
 | |
|   } else {
 | |
|     assert(0 && "Unknown value to relocate!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Emitter::emitMemModRMByte(const MachineInstr &MI,
 | |
|                                unsigned Op, unsigned RegOpcodeField,
 | |
|                                unsigned PCAdj) {
 | |
|   const MachineOperand &Op3 = MI.getOperand(Op+3);
 | |
|   int DispVal = 0;
 | |
|   const MachineOperand *DispForReloc = 0;
 | |
|   
 | |
|   // Figure out what sort of displacement we have to handle here.
 | |
|   if (Op3.isGlobalAddress()) {
 | |
|     DispForReloc = &Op3;
 | |
|   } else if (Op3.isConstantPoolIndex()) {
 | |
|     if (Is64BitMode) {
 | |
|       DispForReloc = &Op3;
 | |
|     } else {
 | |
|       DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex());
 | |
|       DispVal += Op3.getOffset();
 | |
|     }
 | |
|   } else if (Op3.isJumpTableIndex()) {
 | |
|     if (Is64BitMode) {
 | |
|       DispForReloc = &Op3;
 | |
|     } else {
 | |
|       DispVal += MCE.getJumpTableEntryAddress(Op3.getJumpTableIndex());
 | |
|     }
 | |
|   } else {
 | |
|     DispVal = Op3.getImm();
 | |
|   }
 | |
| 
 | |
|   const MachineOperand &Base     = MI.getOperand(Op);
 | |
|   const MachineOperand &Scale    = MI.getOperand(Op+1);
 | |
|   const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | |
| 
 | |
|   unsigned BaseReg = Base.getReg();
 | |
| 
 | |
|   // Is a SIB byte needed?
 | |
|   if (IndexReg.getReg() == 0 &&
 | |
|       (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) {
 | |
|     if (BaseReg == 0) {  // Just a displacement?
 | |
|       // Emit special case [disp32] encoding
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
 | |
|       
 | |
|       emitDisplacementField(DispForReloc, DispVal, PCAdj);
 | |
|     } else {
 | |
|       unsigned BaseRegNo = getX86RegNum(BaseReg);
 | |
|       if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
 | |
|         // Emit simple indirect register encoding... [EAX] f.e.
 | |
|         MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
 | |
|       } else if (!DispForReloc && isDisp8(DispVal)) {
 | |
|         // Emit the disp8 encoding... [REG+disp8]
 | |
|         MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
 | |
|         emitConstant(DispVal, 1);
 | |
|       } else {
 | |
|         // Emit the most general non-SIB encoding: [REG+disp32]
 | |
|         MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
 | |
|         emitDisplacementField(DispForReloc, DispVal, PCAdj);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
 | |
|     assert(IndexReg.getReg() != X86::ESP &&
 | |
|            IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | |
| 
 | |
|     bool ForceDisp32 = false;
 | |
|     bool ForceDisp8  = false;
 | |
|     if (BaseReg == 0) {
 | |
|       // If there is no base register, we emit the special case SIB byte with
 | |
|       // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | |
|       ForceDisp32 = true;
 | |
|     } else if (DispForReloc) {
 | |
|       // Emit the normal disp32 encoding.
 | |
|       MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | |
|       ForceDisp32 = true;
 | |
|     } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
 | |
|       // Emit no displacement ModR/M byte
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | |
|     } else if (isDisp8(DispVal)) {
 | |
|       // Emit the disp8 encoding...
 | |
|       MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
 | |
|       ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | |
|     } else {
 | |
|       // Emit the normal disp32 encoding...
 | |
|       MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | |
|     }
 | |
| 
 | |
|     // Calculate what the SS field value should be...
 | |
|     static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | |
|     unsigned SS = SSTable[Scale.getImm()];
 | |
| 
 | |
|     if (BaseReg == 0) {
 | |
|       // Handle the SIB byte for the case where there is no base.  The
 | |
|       // displacement has already been output.
 | |
|       assert(IndexReg.getReg() && "Index register must be specified!");
 | |
|       emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
 | |
|     } else {
 | |
|       unsigned BaseRegNo = getX86RegNum(BaseReg);
 | |
|       unsigned IndexRegNo;
 | |
|       if (IndexReg.getReg())
 | |
|         IndexRegNo = getX86RegNum(IndexReg.getReg());
 | |
|       else
 | |
|         IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | |
|       emitSIBByte(SS, IndexRegNo, BaseRegNo);
 | |
|     }
 | |
| 
 | |
|     // Do we need to output a displacement?
 | |
|     if (ForceDisp8) {
 | |
|       emitConstant(DispVal, 1);
 | |
|     } else if (DispVal != 0 || ForceDisp32) {
 | |
|       emitDisplacementField(DispForReloc, DispVal, PCAdj);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned sizeOfImm(const TargetInstrDescriptor *Desc) {
 | |
|   switch (Desc->TSFlags & X86II::ImmMask) {
 | |
|   case X86II::Imm8:   return 1;
 | |
|   case X86II::Imm16:  return 2;
 | |
|   case X86II::Imm32:  return 4;
 | |
|   case X86II::Imm64:  return 8;
 | |
|   default: assert(0 && "Immediate size not set!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
 | |
| /// e.g. r8, xmm8, etc.
 | |
| bool Emitter::isX86_64ExtendedReg(const MachineOperand &MO) {
 | |
|   if (!MO.isRegister()) return false;
 | |
|   unsigned RegNo = MO.getReg();
 | |
|   int DWNum = II->getRegisterInfo().getDwarfRegNum(RegNo);
 | |
|   if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::R8) &&
 | |
|       DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::R15))
 | |
|     return true;
 | |
|   if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::XMM8) &&
 | |
|       DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::XMM15))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| inline static bool isX86_64TruncToByte(unsigned oc) {
 | |
|   return (oc == X86::TRUNC_64to8 || oc == X86::TRUNC_32to8 ||
 | |
|           oc == X86::TRUNC_16to8);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline static bool isX86_64NonExtLowByteReg(unsigned reg) {
 | |
|   return (reg == X86::SPL || reg == X86::BPL ||
 | |
|           reg == X86::SIL || reg == X86::DIL);
 | |
| }
 | |
| 
 | |
| /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
 | |
| /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | |
| /// size, and 3) use of X86-64 extended registers.
 | |
| unsigned Emitter::determineREX(const MachineInstr &MI) {
 | |
|   unsigned REX = 0;
 | |
|   const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
 | |
|   unsigned Opcode = Desc->Opcode;
 | |
| 
 | |
|   // Pseudo instructions do not need REX prefix byte.
 | |
|   if ((Desc->TSFlags & X86II::FormMask) == X86II::Pseudo)
 | |
|     return 0;
 | |
|   if (Desc->TSFlags & X86II::REX_W)
 | |
|     REX |= 1 << 3;
 | |
| 
 | |
|   unsigned NumOps = Desc->numOperands;
 | |
|   if (NumOps) {
 | |
|     bool isTwoAddr = NumOps > 1 &&
 | |
|       Desc->getOperandConstraint(1, TOI::TIED_TO) != -1;
 | |
| 
 | |
|     // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | |
|     bool isTrunc8 = isX86_64TruncToByte(Opcode);
 | |
|     unsigned i = isTwoAddr ? 1 : 0;
 | |
|     for (unsigned e = NumOps; i != e; ++i) {
 | |
|       const MachineOperand& MO = MI.getOperand(i);
 | |
|       if (MO.isRegister()) {
 | |
|         unsigned Reg = MO.getReg();
 | |
|         // Trunc to byte are actually movb. The real source operand is the low
 | |
|         // byte of the register.
 | |
|         if (isTrunc8 && i == 1)
 | |
|           Reg = getX86SubSuperRegister(Reg, MVT::i8);
 | |
|         if (isX86_64NonExtLowByteReg(Reg))
 | |
|           REX |= 0x40;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (Desc->TSFlags & X86II::FormMask) {
 | |
|     case X86II::MRMInitReg:
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= (1 << 0) | (1 << 2);
 | |
|       break;
 | |
|     case X86II::MRMSrcReg: {
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= 1 << 2;
 | |
|       i = isTwoAddr ? 2 : 1;
 | |
|       for (unsigned e = NumOps; i != e; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (isX86_64ExtendedReg(MO))
 | |
|           REX |= 1 << 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case X86II::MRMSrcMem: {
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= 1 << 2;
 | |
|       unsigned Bit = 0;
 | |
|       i = isTwoAddr ? 2 : 1;
 | |
|       for (; i != NumOps; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (MO.isRegister()) {
 | |
|           if (isX86_64ExtendedReg(MO))
 | |
|             REX |= 1 << Bit;
 | |
|           Bit++;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case X86II::MRM0m: case X86II::MRM1m:
 | |
|     case X86II::MRM2m: case X86II::MRM3m:
 | |
|     case X86II::MRM4m: case X86II::MRM5m:
 | |
|     case X86II::MRM6m: case X86II::MRM7m:
 | |
|     case X86II::MRMDestMem: {
 | |
|       unsigned e = isTwoAddr ? 5 : 4;
 | |
|       i = isTwoAddr ? 1 : 0;
 | |
|       if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
 | |
|         REX |= 1 << 2;
 | |
|       unsigned Bit = 0;
 | |
|       for (; i != e; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (MO.isRegister()) {
 | |
|           if (isX86_64ExtendedReg(MO))
 | |
|             REX |= 1 << Bit;
 | |
|           Bit++;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       if (isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|         REX |= 1 << 0;
 | |
|       i = isTwoAddr ? 2 : 1;
 | |
|       for (unsigned e = NumOps; i != e; ++i) {
 | |
|         const MachineOperand& MO = MI.getOperand(i);
 | |
|         if (isX86_64ExtendedReg(MO))
 | |
|           REX |= 1 << 2;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   return REX;
 | |
| }
 | |
| 
 | |
| void Emitter::emitInstruction(const MachineInstr &MI) {
 | |
|   NumEmitted++;  // Keep track of the # of mi's emitted
 | |
| 
 | |
|   const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
 | |
|   unsigned Opcode = Desc->Opcode;
 | |
| 
 | |
|   // Emit the repeat opcode prefix as needed.
 | |
|   if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
 | |
| 
 | |
|   // Emit the operand size opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
 | |
| 
 | |
|   // Emit the address size opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
 | |
| 
 | |
|   bool Need0FPrefix = false;
 | |
|   switch (Desc->TSFlags & X86II::Op0Mask) {
 | |
|   case X86II::TB:
 | |
|     Need0FPrefix = true;   // Two-byte opcode prefix
 | |
|     break;
 | |
|   case X86II::T8:
 | |
|     MCE.emitByte(0x0F);
 | |
|     MCE.emitByte(0x38);
 | |
|     break;
 | |
|   case X86II::TA:
 | |
|     MCE.emitByte(0x0F);
 | |
|     MCE.emitByte(0x3A);
 | |
|     break;
 | |
|   case X86II::REP: break; // already handled.
 | |
|   case X86II::XS:   // F3 0F
 | |
|     MCE.emitByte(0xF3);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::XD:   // F2 0F
 | |
|     MCE.emitByte(0xF2);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | |
|   case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | |
|     MCE.emitByte(0xD8+
 | |
|                  (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
 | |
|                                    >> X86II::Op0Shift));
 | |
|     break; // Two-byte opcode prefix
 | |
|   default: assert(0 && "Invalid prefix!");
 | |
|   case 0: break;  // No prefix!
 | |
|   }
 | |
| 
 | |
|   if (Is64BitMode) {
 | |
|     // REX prefix
 | |
|     unsigned REX = determineREX(MI);
 | |
|     if (REX)
 | |
|       MCE.emitByte(0x40 | REX);
 | |
|   }
 | |
| 
 | |
|   // 0x0F escape code must be emitted just before the opcode.
 | |
|   if (Need0FPrefix)
 | |
|     MCE.emitByte(0x0F);
 | |
| 
 | |
|   // If this is a two-address instruction, skip one of the register operands.
 | |
|   unsigned NumOps = Desc->numOperands;
 | |
|   unsigned CurOp = 0;
 | |
|   if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
 | |
|     CurOp++;
 | |
| 
 | |
|   unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
 | |
|   switch (Desc->TSFlags & X86II::FormMask) {
 | |
|   default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
 | |
|   case X86II::Pseudo:
 | |
| #ifndef NDEBUG
 | |
|     switch (Opcode) {
 | |
|     default: 
 | |
|       assert(0 && "psuedo instructions should be removed before code emission");
 | |
|     case TargetInstrInfo::INLINEASM:
 | |
|       assert(0 && "JIT does not support inline asm!\n");
 | |
|     case TargetInstrInfo::LABEL:
 | |
|       assert(0 && "JIT does not support meta labels!\n");
 | |
|     case X86::IMPLICIT_USE:
 | |
|     case X86::IMPLICIT_DEF:
 | |
|     case X86::IMPLICIT_DEF_GR8:
 | |
|     case X86::IMPLICIT_DEF_GR16:
 | |
|     case X86::IMPLICIT_DEF_GR32:
 | |
|     case X86::IMPLICIT_DEF_GR64:
 | |
|     case X86::IMPLICIT_DEF_FR32:
 | |
|     case X86::IMPLICIT_DEF_FR64:
 | |
|     case X86::IMPLICIT_DEF_VR64:
 | |
|     case X86::IMPLICIT_DEF_VR128:
 | |
|     case X86::FP_REG_KILL:
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     CurOp = NumOps;
 | |
|     break;
 | |
| 
 | |
|   case X86II::RawFrm:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO = MI.getOperand(CurOp++);
 | |
|       if (MO.isMachineBasicBlock()) {
 | |
|         emitPCRelativeBlockAddress(MO.getMachineBasicBlock());
 | |
|       } else if (MO.isGlobalAddress()) {
 | |
|         bool NeedStub = Is64BitMode ||
 | |
|                         Opcode == X86::TAILJMPd ||
 | |
|                         Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm;
 | |
|         emitGlobalAddressForCall(MO.getGlobal(), !NeedStub);
 | |
|       } else if (MO.isExternalSymbol()) {
 | |
|         emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
 | |
|       } else if (MO.isImmediate()) {
 | |
|         emitConstant(MO.getImm(), sizeOfImm(Desc));
 | |
|       } else {
 | |
|         assert(0 && "Unknown RawFrm operand!");
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::AddRegFrm:
 | |
|     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
 | |
|     
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|       unsigned Size = sizeOfImm(Desc);
 | |
|       if (MO1.isImmediate())
 | |
|         emitConstant(MO1.getImm(), Size);
 | |
|       else {
 | |
|         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
 | |
|         if (Opcode == X86::MOV64ri)
 | |
|           rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
 | |
|         if (MO1.isGlobalAddress())
 | |
|           emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
 | |
|         else if (MO1.isExternalSymbol())
 | |
|           emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | |
|         else if (MO1.isConstantPoolIndex())
 | |
|           emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
 | |
|         else if (MO1.isJumpTableIndex())
 | |
|           emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMDestReg: {
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(CurOp+1).getReg()));
 | |
|     CurOp += 2;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | |
|     break;
 | |
|   }
 | |
|   case X86II::MRMDestMem: {
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(CurOp+4).getReg()));
 | |
|     CurOp += 5;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMSrcReg:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(CurOp).getReg()));
 | |
|     CurOp += 2;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMSrcMem: {
 | |
|     unsigned PCAdj = (CurOp+5 != NumOps) ? sizeOfImm(Desc) : 0;
 | |
| 
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
 | |
|                      PCAdj);
 | |
|     CurOp += 5;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRM0r: case X86II::MRM1r:
 | |
|   case X86II::MRM2r: case X86II::MRM3r:
 | |
|   case X86II::MRM4r: case X86II::MRM5r:
 | |
|   case X86II::MRM6r: case X86II::MRM7r:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
 | |
|                      (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
 | |
| 
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|       unsigned Size = sizeOfImm(Desc);
 | |
|       if (MO1.isImmediate())
 | |
|         emitConstant(MO1.getImm(), Size);
 | |
|       else {
 | |
|         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | |
|           : X86::reloc_absolute_word;
 | |
|         if (Opcode == X86::MOV64ri32)
 | |
|           rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
 | |
|         if (MO1.isGlobalAddress())
 | |
|           emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
 | |
|         else if (MO1.isExternalSymbol())
 | |
|           emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | |
|         else if (MO1.isConstantPoolIndex())
 | |
|           emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
 | |
|         else if (MO1.isJumpTableIndex())
 | |
|           emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRM0m: case X86II::MRM1m:
 | |
|   case X86II::MRM2m: case X86II::MRM3m:
 | |
|   case X86II::MRM4m: case X86II::MRM5m:
 | |
|   case X86II::MRM6m: case X86II::MRM7m: {
 | |
|     unsigned PCAdj = (CurOp+4 != NumOps) ?
 | |
|       (MI.getOperand(CurOp+4).isImmediate() ? sizeOfImm(Desc) : 4) : 0;
 | |
| 
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
 | |
|                      PCAdj);
 | |
|     CurOp += 4;
 | |
| 
 | |
|     if (CurOp != NumOps) {
 | |
|       const MachineOperand &MO = MI.getOperand(CurOp++);
 | |
|       unsigned Size = sizeOfImm(Desc);
 | |
|       if (MO.isImmediate())
 | |
|         emitConstant(MO.getImm(), Size);
 | |
|       else {
 | |
|         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | |
|           : X86::reloc_absolute_word;
 | |
|         if (Opcode == X86::MOV64mi32)
 | |
|           rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
 | |
|         if (MO.isGlobalAddress())
 | |
|           emitGlobalAddressForPtr(MO.getGlobal(), rt, MO.getOffset());
 | |
|         else if (MO.isExternalSymbol())
 | |
|           emitExternalSymbolAddress(MO.getSymbolName(), rt);
 | |
|         else if (MO.isConstantPoolIndex())
 | |
|           emitConstPoolAddress(MO.getConstantPoolIndex(), rt);
 | |
|         else if (MO.isJumpTableIndex())
 | |
|           emitJumpTableAddress(MO.getJumpTableIndex(), rt);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMInitReg:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
 | |
|     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(CurOp).getReg()));
 | |
|     ++CurOp;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert((Desc->Flags & M_VARIABLE_OPS) != 0 ||
 | |
|          CurOp == NumOps && "Unknown encoding!");
 | |
| }
 |