mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	vector_shuffle v1, v2, <2, 6, 3, 7>
I.e.
         vector_shuffle v, undef, <2, 2, 3, 3>
MMX only has a shuffle for v4i16 vectors. It needs to use the unpackh for
this type of operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36403 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			4906 lines
		
	
	
		
			186 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4906 lines
		
	
	
		
			186 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Chris Lattner and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that X86 uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/ADT/VectorExtras.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| X86TargetLowering::X86TargetLowering(TargetMachine &TM)
 | |
|   : TargetLowering(TM) {
 | |
|   Subtarget = &TM.getSubtarget<X86Subtarget>();
 | |
|   X86ScalarSSE = Subtarget->hasSSE2();
 | |
|   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
 | |
| 
 | |
|   // Set up the TargetLowering object.
 | |
| 
 | |
|   // X86 is weird, it always uses i8 for shift amounts and setcc results.
 | |
|   setShiftAmountType(MVT::i8);
 | |
|   setSetCCResultType(MVT::i8);
 | |
|   setSetCCResultContents(ZeroOrOneSetCCResult);
 | |
|   setSchedulingPreference(SchedulingForRegPressure);
 | |
|   setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
 | |
|   setStackPointerRegisterToSaveRestore(X86StackPtr);
 | |
| 
 | |
|   if (Subtarget->isTargetDarwin()) {
 | |
|     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|     setUseUnderscoreSetJmp(false);
 | |
|     setUseUnderscoreLongJmp(false);
 | |
|   } else if (Subtarget->isTargetMingw()) {
 | |
|     // MS runtime is weird: it exports _setjmp, but longjmp!
 | |
|     setUseUnderscoreSetJmp(true);
 | |
|     setUseUnderscoreLongJmp(false);
 | |
|   } else {
 | |
|     setUseUnderscoreSetJmp(true);
 | |
|     setUseUnderscoreLongJmp(true);
 | |
|   }
 | |
|   
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i8, X86::GR8RegisterClass);
 | |
|   addRegisterClass(MVT::i16, X86::GR16RegisterClass);
 | |
|   addRegisterClass(MVT::i32, X86::GR32RegisterClass);
 | |
|   if (Subtarget->is64Bit())
 | |
|     addRegisterClass(MVT::i64, X86::GR64RegisterClass);
 | |
| 
 | |
|   setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
 | |
| 
 | |
|   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
 | |
|   // operation.
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
 | |
|   } else {
 | |
|     if (X86ScalarSSE)
 | |
|       // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
 | |
|       setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
 | |
|     else
 | |
|       setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
 | |
|   }
 | |
| 
 | |
|   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
 | |
|   // this operation.
 | |
|   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
 | |
|   // SSE has no i16 to fp conversion, only i32
 | |
|   if (X86ScalarSSE)
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
 | |
|   else {
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
 | |
|   }
 | |
| 
 | |
|   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
 | |
|   // this operation.
 | |
|   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
 | |
| 
 | |
|   if (X86ScalarSSE) {
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
 | |
|   } else {
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   // Handle FP_TO_UINT by promoting the destination to a larger signed
 | |
|   // conversion.
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
 | |
|   } else {
 | |
|     if (X86ScalarSSE && !Subtarget->hasSSE3())
 | |
|       // Expand FP_TO_UINT into a select.
 | |
|       // FIXME: We would like to use a Custom expander here eventually to do
 | |
|       // the optimal thing for SSE vs. the default expansion in the legalizer.
 | |
|       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
 | |
|     else
 | |
|       // With SSE3 we can use fisttpll to convert to a signed i64.
 | |
|       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
 | |
|   }
 | |
| 
 | |
|   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
 | |
|   if (!X86ScalarSSE) {
 | |
|     setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
 | |
|     setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
 | |
|   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
 | |
|   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
 | |
| 
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
 | |
|   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
 | |
| 
 | |
|   // These should be promoted to a larger select which is supported.
 | |
|   setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
 | |
|   // X86 wants to expand cmov itself.
 | |
|   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
 | |
|   }
 | |
|   // X86 ret instruction may pop stack.
 | |
|   setOperationAction(ISD::RET             , MVT::Other, Custom);
 | |
|   // Darwin ABI issue.
 | |
|   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
 | |
|   }
 | |
|   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
 | |
|   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
 | |
|   // X86 wants to expand memset / memcpy itself.
 | |
|   setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
 | |
| 
 | |
|   // We don't have line number support yet.
 | |
|   setOperationAction(ISD::LOCATION, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
 | |
|   // FIXME - use subtarget debug flags
 | |
|   if (!Subtarget->isTargetDarwin() &&
 | |
|       !Subtarget->isTargetELF() &&
 | |
|       !Subtarget->isTargetCygMing())
 | |
|     setOperationAction(ISD::LABEL, MVT::Other, Expand);
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAARG             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
 | |
|   if (Subtarget->isTargetCygMing())
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
 | |
| 
 | |
|   if (X86ScalarSSE) {
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
 | |
|     addRegisterClass(MVT::f64, X86::FR64RegisterClass);
 | |
| 
 | |
|     // Use ANDPD to simulate FABS.
 | |
|     setOperationAction(ISD::FABS , MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FABS , MVT::f32, Custom);
 | |
| 
 | |
|     // Use XORP to simulate FNEG.
 | |
|     setOperationAction(ISD::FNEG , MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FNEG , MVT::f32, Custom);
 | |
| 
 | |
|     // Use ANDPD and ORPD to simulate FCOPYSIGN.
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
| 
 | |
|     // We don't support sin/cos/fmod
 | |
|     setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FREM , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FREM , MVT::f32, Expand);
 | |
| 
 | |
|     // Expand FP immediates into loads from the stack, except for the special
 | |
|     // cases we handle.
 | |
|     setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
 | |
|     addLegalFPImmediate(+0.0); // xorps / xorpd
 | |
|   } else {
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f64, X86::RFPRegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
| 
 | |
|     if (!UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
 | |
|       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
 | |
|     addLegalFPImmediate(+0.0); // FLD0
 | |
|     addLegalFPImmediate(+1.0); // FLD1
 | |
|     addLegalFPImmediate(-0.0); // FLD0/FCHS
 | |
|     addLegalFPImmediate(-1.0); // FLD1/FCHS
 | |
|   }
 | |
| 
 | |
|   // First set operation action for all vector types to expand. Then we
 | |
|   // will selectively turn on ones that can be effectively codegen'd.
 | |
|   for (unsigned VT = (unsigned)MVT::Vector + 1;
 | |
|        VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
 | |
|     setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasMMX()) {
 | |
|     addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
 | |
|     addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
 | |
|     addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
 | |
|     addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
 | |
| 
 | |
|     // FIXME: add MMX packed arithmetics
 | |
| 
 | |
|     setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
 | |
|     setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::AND,                MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::AND,                MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::AND,                MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE1()) {
 | |
|     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE2()) {
 | |
|     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
 | |
|     // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
 | |
| 
 | |
|     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
 | |
|     for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
 | |
|       setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
 | |
|     }
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
 | |
| 
 | |
|     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
 | |
|     for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
 | |
|       setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
 | |
|       setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
 | |
|       setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
 | |
|       setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
 | |
|       setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
 | |
|     }
 | |
| 
 | |
|     // Custom lower v2i64 and v2f64 selects.
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
 | |
|   }
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | |
|   setTargetDAGCombine(ISD::SELECT);
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // FIXME: These should be based on subtarget info. Plus, the values should
 | |
|   // be smaller when we are in optimizing for size mode.
 | |
|   maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
 | |
|   maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
 | |
|   maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
 | |
|   allowUnalignedMemoryAccesses = true; // x86 supports it!
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Return Value Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86GenCallingConv.inc"
 | |
|     
 | |
| /// LowerRET - Lower an ISD::RET node.
 | |
| SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
 | |
|   
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
 | |
|   CCState CCInfo(CC, getTargetMachine(), RVLocs);
 | |
|   CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
 | |
|   
 | |
|   
 | |
|   // If this is the first return lowered for this function, add the regs to the
 | |
|   // liveout set for the function.
 | |
|   if (DAG.getMachineFunction().liveout_empty()) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|       if (RVLocs[i].isRegLoc())
 | |
|         DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
 | |
|   }
 | |
|   
 | |
|   SDOperand Chain = Op.getOperand(0);
 | |
|   SDOperand Flag;
 | |
|   
 | |
|   // Copy the result values into the output registers.
 | |
|   if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
 | |
|       RVLocs[0].getLocReg() != X86::ST0) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|       CCValAssign &VA = RVLocs[i];
 | |
|       assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|       Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
 | |
|                                Flag);
 | |
|       Flag = Chain.getValue(1);
 | |
|     }
 | |
|   } else {
 | |
|     // We need to handle a destination of ST0 specially, because it isn't really
 | |
|     // a register.
 | |
|     SDOperand Value = Op.getOperand(1);
 | |
|     
 | |
|     // If this is an FP return with ScalarSSE, we need to move the value from
 | |
|     // an XMM register onto the fp-stack.
 | |
|     if (X86ScalarSSE) {
 | |
|       SDOperand MemLoc;
 | |
|       
 | |
|       // If this is a load into a scalarsse value, don't store the loaded value
 | |
|       // back to the stack, only to reload it: just replace the scalar-sse load.
 | |
|       if (ISD::isNON_EXTLoad(Value.Val) &&
 | |
|           (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
 | |
|         Chain  = Value.getOperand(0);
 | |
|         MemLoc = Value.getOperand(1);
 | |
|       } else {
 | |
|         // Spill the value to memory and reload it into top of stack.
 | |
|         unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
 | |
|         MachineFunction &MF = DAG.getMachineFunction();
 | |
|         int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
 | |
|         MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|         Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
 | |
|       }
 | |
|       SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
 | |
|       SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
 | |
|       Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
 | |
|       Chain = Value.getValue(1);
 | |
|     }
 | |
|     
 | |
|     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     SDOperand Ops[] = { Chain, Value };
 | |
|     Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
|   
 | |
|   SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
 | |
|   if (Flag.Val)
 | |
|     return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
 | |
|   else
 | |
|     return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the
 | |
| /// appropriate copies out of appropriate physical registers.  This assumes that
 | |
| /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
 | |
| /// being lowered.  The returns a SDNode with the same number of values as the
 | |
| /// ISD::CALL.
 | |
| SDNode *X86TargetLowering::
 | |
| LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, 
 | |
|                 unsigned CallingConv, SelectionDAG &DAG) {
 | |
|   
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallingConv, getTargetMachine(), RVLocs);
 | |
|   CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
 | |
| 
 | |
|   
 | |
|   SmallVector<SDOperand, 8> ResultVals;
 | |
|   
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|       Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
 | |
|                                  RVLocs[i].getValVT(), InFlag).getValue(1);
 | |
|       InFlag = Chain.getValue(2);
 | |
|       ResultVals.push_back(Chain.getValue(0));
 | |
|     }
 | |
|   } else {
 | |
|     // Copies from the FP stack are special, as ST0 isn't a valid register
 | |
|     // before the fp stackifier runs.
 | |
|     
 | |
|     // Copy ST0 into an RFP register with FP_GET_RESULT.
 | |
|     SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
 | |
|     SDOperand GROps[] = { Chain, InFlag };
 | |
|     SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
 | |
|     Chain  = RetVal.getValue(1);
 | |
|     InFlag = RetVal.getValue(2);
 | |
|     
 | |
|     // If we are using ScalarSSE, store ST(0) to the stack and reload it into
 | |
|     // an XMM register.
 | |
|     if (X86ScalarSSE) {
 | |
|       // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
 | |
|       // shouldn't be necessary except that RFP cannot be live across
 | |
|       // multiple blocks. When stackifier is fixed, they can be uncoupled.
 | |
|       MachineFunction &MF = DAG.getMachineFunction();
 | |
|       int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
 | |
|       SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|       SDOperand Ops[] = {
 | |
|         Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
 | |
|       };
 | |
|       Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
 | |
|       RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
 | |
|       Chain = RetVal.getValue(1);
 | |
|     }
 | |
|     
 | |
|     if (RVLocs[0].getValVT() == MVT::f32 && !X86ScalarSSE)
 | |
|       // FIXME: we would really like to remember that this FP_ROUND
 | |
|       // operation is okay to eliminate if we allow excess FP precision.
 | |
|       RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
 | |
|     ResultVals.push_back(RetVal);
 | |
|   }
 | |
|   
 | |
|   // Merge everything together with a MERGE_VALUES node.
 | |
|   ResultVals.push_back(Chain);
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
 | |
|                      &ResultVals[0], ResultVals.size()).Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                C & StdCall Calling Convention implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  StdCall calling convention seems to be standard for many Windows' API
 | |
| //  routines and around. It differs from C calling convention just a little:
 | |
| //  callee should clean up the stack, not caller. Symbols should be also
 | |
| //  decorated in some fancy way :) It doesn't support any vector arguments.
 | |
| 
 | |
| /// AddLiveIn - This helper function adds the specified physical register to the
 | |
| /// MachineFunction as a live in value.  It also creates a corresponding virtual
 | |
| /// register for it.
 | |
| static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
 | |
|                           const TargetRegisterClass *RC) {
 | |
|   assert(RC->contains(PReg) && "Not the correct regclass!");
 | |
|   unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
 | |
|   MF.addLiveIn(PReg, VReg);
 | |
|   return VReg;
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
 | |
|                                                bool isStdCall) {
 | |
|   unsigned NumArgs = Op.Val->getNumValues() - 1;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   SDOperand Root = Op.getOperand(0);
 | |
|   bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
 | |
|                  ArgLocs);
 | |
|   CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
 | |
|    
 | |
|   SmallVector<SDOperand, 8> ArgValues;
 | |
|   unsigned LastVal = ~0U;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
 | |
|     // places.
 | |
|     assert(VA.getValNo() != LastVal &&
 | |
|            "Don't support value assigned to multiple locs yet");
 | |
|     LastVal = VA.getValNo();
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       MVT::ValueType RegVT = VA.getLocVT();
 | |
|       TargetRegisterClass *RC;
 | |
|       if (RegVT == MVT::i32)
 | |
|         RC = X86::GR32RegisterClass;
 | |
|       else {
 | |
|         assert(MVT::isVector(RegVT));
 | |
|         RC = X86::VR128RegisterClass;
 | |
|       }
 | |
|       
 | |
|       unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
 | |
|       SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
 | |
|       
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted to 32
 | |
|       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
 | |
|       // right size.
 | |
|       if (VA.getLocInfo() == CCValAssign::SExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       else if (VA.getLocInfo() == CCValAssign::ZExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       
 | |
|       if (VA.getLocInfo() != CCValAssign::Full)
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
 | |
|       
 | |
|       ArgValues.push_back(ArgValue);
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       
 | |
|       // Create the nodes corresponding to a load from this parameter slot.
 | |
|       int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
 | |
|                                       VA.getLocMemOffset());
 | |
|       SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|       ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   unsigned StackSize = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   ArgValues.push_back(Root);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg)
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
 | |
| 
 | |
|   if (isStdCall && !isVarArg) {
 | |
|     BytesToPopOnReturn  = StackSize;    // Callee pops everything..
 | |
|     BytesCallerReserves = 0;
 | |
|   } else {
 | |
|     BytesToPopOnReturn  = 0; // Callee pops nothing.
 | |
|     
 | |
|     // If this is an sret function, the return should pop the hidden pointer.
 | |
|     if (NumArgs &&
 | |
|         (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
 | |
|          ISD::ParamFlags::StructReturn))
 | |
|       BytesToPopOnReturn = 4;  
 | |
|     
 | |
|     BytesCallerReserves = StackSize;
 | |
|   }
 | |
|   
 | |
|   RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
 | |
|   ReturnAddrIndex = 0;            // No return address slot generated yet.
 | |
| 
 | |
|   MF.getInfo<X86MachineFunctionInfo>()
 | |
|     ->setBytesToPopOnReturn(BytesToPopOnReturn);
 | |
| 
 | |
|   // Return the new list of results.
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
 | |
|                      &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
 | |
|                                             unsigned CC) {
 | |
|   SDOperand Chain     = Op.getOperand(0);
 | |
|   bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
 | |
|   bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
 | |
|   SDOperand Callee    = Op.getOperand(4);
 | |
|   unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, getTargetMachine(), ArgLocs);
 | |
|   CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
 | |
|   
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
 | |
|   SmallVector<SDOperand, 8> MemOpChains;
 | |
| 
 | |
|   SDOperand StackPtr;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
 | |
|     
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: assert(0 && "Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       if (StackPtr.Val == 0)
 | |
|         StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
 | |
|       SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
 | |
|       PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
 | |
|       MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the first argument is an sret pointer, remember it.
 | |
|   bool isSRet = NumOps &&
 | |
|     (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
 | |
|      ISD::ParamFlags::StructReturn);
 | |
|   
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into registers.
 | |
|   SDOperand InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
 | |
|                              InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | |
|   // GOT pointer.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       Subtarget->isPICStyleGOT()) {
 | |
|     Chain = DAG.getCopyToReg(Chain, X86::EBX,
 | |
|                              DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
 | |
|                              InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
|   
 | |
|   // If the callee is a GlobalAddress node (quite common, every direct call is)
 | |
|   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     // We should use extra load for direct calls to dllimported functions in
 | |
|     // non-JIT mode.
 | |
|     if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
 | |
|                                         getTargetMachine(), true))
 | |
|       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // Add an implicit use GOT pointer in EBX.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       Subtarget->isPICStyleGOT())
 | |
|     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
 | |
|   
 | |
|   if (InFlag.Val)
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
 | |
|                       NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Create the CALLSEQ_END node.
 | |
|   unsigned NumBytesForCalleeToPush = 0;
 | |
| 
 | |
|   if (CC == CallingConv::X86_StdCall) {
 | |
|     if (isVarArg)
 | |
|       NumBytesForCalleeToPush = isSRet ? 4 : 0;
 | |
|     else
 | |
|       NumBytesForCalleeToPush = NumBytes;
 | |
|   } else {
 | |
|     // If this is is a call to a struct-return function, the callee
 | |
|     // pops the hidden struct pointer, so we have to push it back.
 | |
|     // This is common for Darwin/X86, Linux & Mingw32 targets.
 | |
|     NumBytesForCalleeToPush = isSRet ? 4 : 0;
 | |
|   }
 | |
|   
 | |
|   NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   Ops.clear();
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
 | |
|   Ops.push_back(InFlag);
 | |
|   Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   FastCall Calling Convention implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The X86 'fastcall' calling convention passes up to two integer arguments in
 | |
| // registers (an appropriate portion of ECX/EDX), passes arguments in C order,
 | |
| // and requires that the callee pop its arguments off the stack (allowing proper
 | |
| // tail calls), and has the same return value conventions as C calling convs.
 | |
| //
 | |
| // This calling convention always arranges for the callee pop value to be 8n+4
 | |
| // bytes, which is needed for tail recursion elimination and stack alignment
 | |
| // reasons.
 | |
| SDOperand
 | |
| X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   SDOperand Root = Op.getOperand(0);
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
 | |
|                  ArgLocs);
 | |
|   CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
 | |
|   
 | |
|   SmallVector<SDOperand, 8> ArgValues;
 | |
|   unsigned LastVal = ~0U;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
 | |
|     // places.
 | |
|     assert(VA.getValNo() != LastVal &&
 | |
|            "Don't support value assigned to multiple locs yet");
 | |
|     LastVal = VA.getValNo();
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       MVT::ValueType RegVT = VA.getLocVT();
 | |
|       TargetRegisterClass *RC;
 | |
|       if (RegVT == MVT::i32)
 | |
|         RC = X86::GR32RegisterClass;
 | |
|       else {
 | |
|         assert(MVT::isVector(RegVT));
 | |
|         RC = X86::VR128RegisterClass;
 | |
|       }
 | |
|       
 | |
|       unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
 | |
|       SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
 | |
|       
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted to 32
 | |
|       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
 | |
|       // right size.
 | |
|       if (VA.getLocInfo() == CCValAssign::SExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       else if (VA.getLocInfo() == CCValAssign::ZExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       
 | |
|       if (VA.getLocInfo() != CCValAssign::Full)
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
 | |
|       
 | |
|       ArgValues.push_back(ArgValue);
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       
 | |
|       // Create the nodes corresponding to a load from this parameter slot.
 | |
|       int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
 | |
|                                       VA.getLocMemOffset());
 | |
|       SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|       ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   ArgValues.push_back(Root);
 | |
| 
 | |
|   unsigned StackSize = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
 | |
|     // Make sure the instruction takes 8n+4 bytes to make sure the start of the
 | |
|     // arguments and the arguments after the retaddr has been pushed are aligned.
 | |
|     if ((StackSize & 7) == 0)
 | |
|       StackSize += 4;
 | |
|   }
 | |
| 
 | |
|   VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
 | |
|   RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
 | |
|   ReturnAddrIndex = 0;             // No return address slot generated yet.
 | |
|   BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
 | |
|   BytesCallerReserves = 0;
 | |
| 
 | |
|   MF.getInfo<X86MachineFunctionInfo>()
 | |
|     ->setBytesToPopOnReturn(BytesToPopOnReturn);
 | |
| 
 | |
|   // Return the new list of results.
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
 | |
|                      &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
 | |
|                                                unsigned CC) {
 | |
|   SDOperand Chain     = Op.getOperand(0);
 | |
|   bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
 | |
|   SDOperand Callee    = Op.getOperand(4);
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, getTargetMachine(), ArgLocs);
 | |
|   CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
 | |
|   
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
 | |
|     // Make sure the instruction takes 8n+4 bytes to make sure the start of the
 | |
|     // arguments and the arguments after the retaddr has been pushed are aligned.
 | |
|     if ((NumBytes & 7) == 0)
 | |
|       NumBytes += 4;
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   
 | |
|   SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
 | |
|   SmallVector<SDOperand, 8> MemOpChains;
 | |
|   
 | |
|   SDOperand StackPtr;
 | |
|   
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
 | |
|     
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|       default: assert(0 && "Unknown loc info!");
 | |
|       case CCValAssign::Full: break;
 | |
|       case CCValAssign::SExt:
 | |
|         Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|       case CCValAssign::AExt:
 | |
|         Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|     }
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       if (StackPtr.Val == 0)
 | |
|         StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
 | |
|       SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
 | |
|       PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
 | |
|       MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into registers.
 | |
|   SDOperand InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
 | |
|                              InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress node (quite common, every direct call is)
 | |
|   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     // We should use extra load for direct calls to dllimported functions in
 | |
|     // non-JIT mode.
 | |
|     if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
 | |
|                                         getTargetMachine(), true))
 | |
|       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
 | |
| 
 | |
|   // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | |
|   // GOT pointer.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       Subtarget->isPICStyleGOT()) {
 | |
|     Chain = DAG.getCopyToReg(Chain, X86::EBX,
 | |
|                              DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
 | |
|                              InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // Add an implicit use GOT pointer in EBX.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       Subtarget->isPICStyleGOT())
 | |
|     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
 | |
| 
 | |
|   if (InFlag.Val)
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   // FIXME: Do not generate X86ISD::TAILCALL for now.
 | |
|   Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
 | |
|                       NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Returns a flag for retval copy to use.
 | |
|   NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   Ops.clear();
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   Ops.push_back(InFlag);
 | |
|   Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                 X86-64 C Calling Convention implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   SDOperand Root = Op.getOperand(0);
 | |
|   bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
 | |
| 
 | |
|   static const unsigned GPR64ArgRegs[] = {
 | |
|     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
 | |
|   };
 | |
|   static const unsigned XMMArgRegs[] = {
 | |
|     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|   };
 | |
| 
 | |
|   
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
 | |
|                  ArgLocs);
 | |
|   CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
 | |
|   
 | |
|   SmallVector<SDOperand, 8> ArgValues;
 | |
|   unsigned LastVal = ~0U;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
 | |
|     // places.
 | |
|     assert(VA.getValNo() != LastVal &&
 | |
|            "Don't support value assigned to multiple locs yet");
 | |
|     LastVal = VA.getValNo();
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       MVT::ValueType RegVT = VA.getLocVT();
 | |
|       TargetRegisterClass *RC;
 | |
|       if (RegVT == MVT::i32)
 | |
|         RC = X86::GR32RegisterClass;
 | |
|       else if (RegVT == MVT::i64)
 | |
|         RC = X86::GR64RegisterClass;
 | |
|       else if (RegVT == MVT::f32)
 | |
|         RC = X86::FR32RegisterClass;
 | |
|       else if (RegVT == MVT::f64)
 | |
|         RC = X86::FR64RegisterClass;
 | |
|       else {
 | |
|         assert(MVT::isVector(RegVT));
 | |
|         RC = X86::VR128RegisterClass;
 | |
|       }
 | |
| 
 | |
|       unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
 | |
|       SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
 | |
|       
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted to 32
 | |
|       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
 | |
|       // right size.
 | |
|       if (VA.getLocInfo() == CCValAssign::SExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       else if (VA.getLocInfo() == CCValAssign::ZExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       
 | |
|       if (VA.getLocInfo() != CCValAssign::Full)
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
 | |
|       
 | |
|       ArgValues.push_back(ArgValue);
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|     
 | |
|       // Create the nodes corresponding to a load from this parameter slot.
 | |
|       int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
 | |
|                                       VA.getLocMemOffset());
 | |
|       SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|       ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   unsigned StackSize = CCInfo.getNextStackOffset();
 | |
|   
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
 | |
|     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
 | |
|     
 | |
|     // For X86-64, if there are vararg parameters that are passed via
 | |
|     // registers, then we must store them to their spots on the stack so they
 | |
|     // may be loaded by deferencing the result of va_next.
 | |
|     VarArgsGPOffset = NumIntRegs * 8;
 | |
|     VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
 | |
|     RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
 | |
| 
 | |
|     // Store the integer parameter registers.
 | |
|     SmallVector<SDOperand, 8> MemOps;
 | |
|     SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
 | |
|     SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
 | |
|                               DAG.getConstant(VarArgsGPOffset, getPointerTy()));
 | |
|     for (; NumIntRegs != 6; ++NumIntRegs) {
 | |
|       unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
 | |
|                                 X86::GR64RegisterClass);
 | |
|       SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
 | |
|       SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
 | |
|                         DAG.getConstant(8, getPointerTy()));
 | |
|     }
 | |
| 
 | |
|     // Now store the XMM (fp + vector) parameter registers.
 | |
|     FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
 | |
|                       DAG.getConstant(VarArgsFPOffset, getPointerTy()));
 | |
|     for (; NumXMMRegs != 8; ++NumXMMRegs) {
 | |
|       unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
 | |
|                                 X86::VR128RegisterClass);
 | |
|       SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
 | |
|       SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
 | |
|                         DAG.getConstant(16, getPointerTy()));
 | |
|     }
 | |
|     if (!MemOps.empty())
 | |
|         Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                            &MemOps[0], MemOps.size());
 | |
|   }
 | |
| 
 | |
|   ArgValues.push_back(Root);
 | |
| 
 | |
|   ReturnAddrIndex = 0;     // No return address slot generated yet.
 | |
|   BytesToPopOnReturn = 0;  // Callee pops nothing.
 | |
|   BytesCallerReserves = StackSize;
 | |
| 
 | |
|   // Return the new list of results.
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
 | |
|                      &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
 | |
|                                         unsigned CC) {
 | |
|   SDOperand Chain     = Op.getOperand(0);
 | |
|   bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
 | |
|   bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
 | |
|   SDOperand Callee    = Op.getOperand(4);
 | |
|   
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, getTargetMachine(), ArgLocs);
 | |
|   CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
 | |
|     
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
|   Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
 | |
|   SmallVector<SDOperand, 8> MemOpChains;
 | |
| 
 | |
|   SDOperand StackPtr;
 | |
|   
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
 | |
|     
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: assert(0 && "Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       if (StackPtr.Val == 0)
 | |
|         StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
 | |
|       SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
 | |
|       PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
 | |
|       MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into registers.
 | |
|   SDOperand InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
 | |
|                              InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isVarArg) {
 | |
|     // From AMD64 ABI document:
 | |
|     // For calls that may call functions that use varargs or stdargs
 | |
|     // (prototype-less calls or calls to functions containing ellipsis (...) in
 | |
|     // the declaration) %al is used as hidden argument to specify the number
 | |
|     // of SSE registers used. The contents of %al do not need to match exactly
 | |
|     // the number of registers, but must be an ubound on the number of SSE
 | |
|     // registers used and is in the range 0 - 8 inclusive.
 | |
|     
 | |
|     // Count the number of XMM registers allocated.
 | |
|     static const unsigned XMMArgRegs[] = {
 | |
|       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|     };
 | |
|     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
 | |
|     
 | |
|     Chain = DAG.getCopyToReg(Chain, X86::AL,
 | |
|                              DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress node (quite common, every direct call is)
 | |
|   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     // We should use extra load for direct calls to dllimported functions in
 | |
|     // non-JIT mode.
 | |
|     if (getTargetMachine().getCodeModel() != CodeModel::Large
 | |
|         && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
 | |
|                                            getTargetMachine(), true))
 | |
|       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
 | |
|     if (getTargetMachine().getCodeModel() != CodeModel::Large)
 | |
|       Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   if (InFlag.Val)
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   // FIXME: Do not generate X86ISD::TAILCALL for now.
 | |
|   Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
 | |
|                       NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Returns a flag for retval copy to use.
 | |
|   NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   Ops.clear();
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   Ops.push_back(DAG.getConstant(0, getPointerTy()));
 | |
|   Ops.push_back(InFlag);
 | |
|   Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
|   
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Other Lowering Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
 | |
|   if (ReturnAddrIndex == 0) {
 | |
|     // Set up a frame object for the return address.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     if (Subtarget->is64Bit())
 | |
|       ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
 | |
|     else
 | |
|       ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
 | |
|   }
 | |
| 
 | |
|   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
 | |
| /// specific condition code. It returns a false if it cannot do a direct
 | |
| /// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
 | |
| /// needed.
 | |
| static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
 | |
|                            unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
 | |
|                            SelectionDAG &DAG) {
 | |
|   X86CC = X86::COND_INVALID;
 | |
|   if (!isFP) {
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
 | |
|         // X > -1   -> X == 0, jump !sign.
 | |
|         RHS = DAG.getConstant(0, RHS.getValueType());
 | |
|         X86CC = X86::COND_NS;
 | |
|         return true;
 | |
|       } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
 | |
|         // X < 0   -> X == 0, jump on sign.
 | |
|         X86CC = X86::COND_S;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (SetCCOpcode) {
 | |
|     default: break;
 | |
|     case ISD::SETEQ:  X86CC = X86::COND_E;  break;
 | |
|     case ISD::SETGT:  X86CC = X86::COND_G;  break;
 | |
|     case ISD::SETGE:  X86CC = X86::COND_GE; break;
 | |
|     case ISD::SETLT:  X86CC = X86::COND_L;  break;
 | |
|     case ISD::SETLE:  X86CC = X86::COND_LE; break;
 | |
|     case ISD::SETNE:  X86CC = X86::COND_NE; break;
 | |
|     case ISD::SETULT: X86CC = X86::COND_B;  break;
 | |
|     case ISD::SETUGT: X86CC = X86::COND_A;  break;
 | |
|     case ISD::SETULE: X86CC = X86::COND_BE; break;
 | |
|     case ISD::SETUGE: X86CC = X86::COND_AE; break;
 | |
|     }
 | |
|   } else {
 | |
|     // On a floating point condition, the flags are set as follows:
 | |
|     // ZF  PF  CF   op
 | |
|     //  0 | 0 | 0 | X > Y
 | |
|     //  0 | 0 | 1 | X < Y
 | |
|     //  1 | 0 | 0 | X == Y
 | |
|     //  1 | 1 | 1 | unordered
 | |
|     bool Flip = false;
 | |
|     switch (SetCCOpcode) {
 | |
|     default: break;
 | |
|     case ISD::SETUEQ:
 | |
|     case ISD::SETEQ: X86CC = X86::COND_E;  break;
 | |
|     case ISD::SETOLT: Flip = true; // Fallthrough
 | |
|     case ISD::SETOGT:
 | |
|     case ISD::SETGT: X86CC = X86::COND_A;  break;
 | |
|     case ISD::SETOLE: Flip = true; // Fallthrough
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE: X86CC = X86::COND_AE; break;
 | |
|     case ISD::SETUGT: Flip = true; // Fallthrough
 | |
|     case ISD::SETULT:
 | |
|     case ISD::SETLT: X86CC = X86::COND_B;  break;
 | |
|     case ISD::SETUGE: Flip = true; // Fallthrough
 | |
|     case ISD::SETULE:
 | |
|     case ISD::SETLE: X86CC = X86::COND_BE; break;
 | |
|     case ISD::SETONE:
 | |
|     case ISD::SETNE: X86CC = X86::COND_NE; break;
 | |
|     case ISD::SETUO: X86CC = X86::COND_P;  break;
 | |
|     case ISD::SETO:  X86CC = X86::COND_NP; break;
 | |
|     }
 | |
|     if (Flip)
 | |
|       std::swap(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   return X86CC != X86::COND_INVALID;
 | |
| }
 | |
| 
 | |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition
 | |
| /// code. Current x86 isa includes the following FP cmov instructions:
 | |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
 | |
| static bool hasFPCMov(unsigned X86CC) {
 | |
|   switch (X86CC) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::COND_B:
 | |
|   case X86::COND_BE:
 | |
|   case X86::COND_E:
 | |
|   case X86::COND_P:
 | |
|   case X86::COND_A:
 | |
|   case X86::COND_AE:
 | |
|   case X86::COND_NE:
 | |
|   case X86::COND_NP:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
 | |
| /// true if Op is undef or if its value falls within the specified range (L, H].
 | |
| static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
 | |
|   if (Op.getOpcode() == ISD::UNDEF)
 | |
|     return true;
 | |
| 
 | |
|   unsigned Val = cast<ConstantSDNode>(Op)->getValue();
 | |
|   return (Val >= Low && Val < Hi);
 | |
| }
 | |
| 
 | |
| /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
 | |
| /// true if Op is undef or if its value equal to the specified value.
 | |
| static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
 | |
|   if (Op.getOpcode() == ISD::UNDEF)
 | |
|     return true;
 | |
|   return cast<ConstantSDNode>(Op)->getValue() == Val;
 | |
| }
 | |
| 
 | |
| /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD.
 | |
| bool X86::isPSHUFDMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Check if the value doesn't reference the second vector.
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to PSHUFHW.
 | |
| bool X86::isPSHUFHWMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 8)
 | |
|     return false;
 | |
| 
 | |
|   // Lower quadword copied in order.
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     if (cast<ConstantSDNode>(Arg)->getValue() != i)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Upper quadword shuffled.
 | |
|   for (unsigned i = 4; i != 8; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val < 4 || Val > 7)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to PSHUFLW.
 | |
| bool X86::isPSHUFLWMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 8)
 | |
|     return false;
 | |
| 
 | |
|   // Upper quadword copied in order.
 | |
|   for (unsigned i = 4; i != 8; ++i)
 | |
|     if (!isUndefOrEqual(N->getOperand(i), i))
 | |
|       return false;
 | |
| 
 | |
|   // Lower quadword shuffled.
 | |
|   for (unsigned i = 0; i != 4; ++i)
 | |
|     if (!isUndefOrInRange(N->getOperand(i), 0, 4))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*.
 | |
| static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
 | |
|   if (NumElems != 2 && NumElems != 4) return false;
 | |
| 
 | |
|   unsigned Half = NumElems / 2;
 | |
|   for (unsigned i = 0; i < Half; ++i)
 | |
|     if (!isUndefOrInRange(Elems[i], 0, NumElems))
 | |
|       return false;
 | |
|   for (unsigned i = Half; i < NumElems; ++i)
 | |
|     if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isSHUFPMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
|   return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
 | |
| }
 | |
| 
 | |
| /// isCommutedSHUFP - Returns true if the shuffle mask is except
 | |
| /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
 | |
| /// half elements to come from vector 1 (which would equal the dest.) and
 | |
| /// the upper half to come from vector 2.
 | |
| static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
 | |
|   if (NumOps != 2 && NumOps != 4) return false;
 | |
| 
 | |
|   unsigned Half = NumOps / 2;
 | |
|   for (unsigned i = 0; i < Half; ++i)
 | |
|     if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
 | |
|       return false;
 | |
|   for (unsigned i = Half; i < NumOps; ++i)
 | |
|     if (!isUndefOrInRange(Ops[i], 0, NumOps))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isCommutedSHUFP(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
|   return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
 | |
| }
 | |
| 
 | |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
 | |
| bool X86::isMOVHLPSMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
 | |
|   return isUndefOrEqual(N->getOperand(0), 6) &&
 | |
|          isUndefOrEqual(N->getOperand(1), 7) &&
 | |
|          isUndefOrEqual(N->getOperand(2), 2) &&
 | |
|          isUndefOrEqual(N->getOperand(3), 3);
 | |
| }
 | |
| 
 | |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
 | |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
 | |
| /// <2, 3, 2, 3>
 | |
| bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
 | |
|   return isUndefOrEqual(N->getOperand(0), 2) &&
 | |
|          isUndefOrEqual(N->getOperand(1), 3) &&
 | |
|          isUndefOrEqual(N->getOperand(2), 2) &&
 | |
|          isUndefOrEqual(N->getOperand(3), 3);
 | |
| }
 | |
| 
 | |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
 | |
| bool X86::isMOVLPMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = NumElems/2; i < NumElems; ++i)
 | |
|     if (!isUndefOrEqual(N->getOperand(i), i))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
 | |
| /// and MOVLHPS.
 | |
| bool X86::isMOVHPMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getOperand(i), i))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i + NumElems/2);
 | |
|     if (!isUndefOrEqual(Arg, i + NumElems))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL.
 | |
| bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
 | |
|                          bool V2IsSplat = false) {
 | |
|   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
 | |
|     SDOperand BitI  = Elts[i];
 | |
|     SDOperand BitI1 = Elts[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (V2IsSplat) {
 | |
|       if (isUndefOrEqual(BitI1, NumElts))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isUndefOrEqual(BitI1, j + NumElts))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
|   return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
 | |
| }
 | |
| 
 | |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH.
 | |
| bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
 | |
|                          bool V2IsSplat = false) {
 | |
|   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
 | |
|     SDOperand BitI  = Elts[i];
 | |
|     SDOperand BitI1 = Elts[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j + NumElts/2))
 | |
|       return false;
 | |
|     if (V2IsSplat) {
 | |
|       if (isUndefOrEqual(BitI1, NumElts))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
|   return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
 | |
| }
 | |
| 
 | |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
 | |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
 | |
| /// <0, 0, 1, 1>
 | |
| bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
 | |
|     SDOperand BitI  = N->getOperand(i);
 | |
|     SDOperand BitI1 = N->getOperand(i+1);
 | |
| 
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (!isUndefOrEqual(BitI1, j))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
 | |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
 | |
| /// <2, 2, 3, 3>
 | |
| bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
 | |
|     SDOperand BitI  = N->getOperand(i);
 | |
|     SDOperand BitI1 = N->getOperand(i + 1);
 | |
| 
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (!isUndefOrEqual(BitI1, j))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSS,
 | |
| /// MOVSD, and MOVD, i.e. setting the lowest element.
 | |
| static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
 | |
|   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
 | |
|     return false;
 | |
| 
 | |
|   if (!isUndefOrEqual(Elts[0], NumElts))
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 1; i < NumElts; ++i) {
 | |
|     if (!isUndefOrEqual(Elts[i], i))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isMOVLMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
|   return ::isMOVLMask(N->op_begin(), N->getNumOperands());
 | |
| }
 | |
| 
 | |
| /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
 | |
| /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
 | |
| /// element of vector 2 and the other elements to come from vector 1 in order.
 | |
| static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
 | |
|                            bool V2IsSplat = false,
 | |
|                            bool V2IsUndef = false) {
 | |
|   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
 | |
|     return false;
 | |
| 
 | |
|   if (!isUndefOrEqual(Ops[0], 0))
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 1; i < NumOps; ++i) {
 | |
|     SDOperand Arg = Ops[i];
 | |
|     if (!(isUndefOrEqual(Arg, i+NumOps) ||
 | |
|           (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
 | |
|           (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
 | |
|                            bool V2IsUndef = false) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
|   return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
 | |
|                         V2IsSplat, V2IsUndef);
 | |
| }
 | |
| 
 | |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
 | |
| bool X86::isMOVSHDUPMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect 1, 1, 3, 3
 | |
|   for (unsigned i = 0; i < 2; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val != 1) return false;
 | |
|   }
 | |
| 
 | |
|   bool HasHi = false;
 | |
|   for (unsigned i = 2; i < 4; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val != 3) return false;
 | |
|     HasHi = true;
 | |
|   }
 | |
| 
 | |
|   // Don't use movshdup if it can be done with a shufps.
 | |
|   return HasHi;
 | |
| }
 | |
| 
 | |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
 | |
| bool X86::isMOVSLDUPMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect 0, 0, 2, 2
 | |
|   for (unsigned i = 0; i < 2; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val != 0) return false;
 | |
|   }
 | |
| 
 | |
|   bool HasHi = false;
 | |
|   for (unsigned i = 2; i < 4; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val != 2) return false;
 | |
|     HasHi = true;
 | |
|   }
 | |
| 
 | |
|   // Don't use movshdup if it can be done with a shufps.
 | |
|   return HasHi;
 | |
| }
 | |
| 
 | |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
 | |
| /// a splat of a single element.
 | |
| static bool isSplatMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   // This is a splat operation if each element of the permute is the same, and
 | |
|   // if the value doesn't reference the second vector.
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   SDOperand ElementBase;
 | |
|   unsigned i = 0;
 | |
|   for (; i != NumElems; ++i) {
 | |
|     SDOperand Elt = N->getOperand(i);
 | |
|     if (isa<ConstantSDNode>(Elt)) {
 | |
|       ElementBase = Elt;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ElementBase.Val)
 | |
|     return false;
 | |
| 
 | |
|   for (; i != NumElems; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     if (Arg != ElementBase) return false;
 | |
|   }
 | |
| 
 | |
|   // Make sure it is a splat of the first vector operand.
 | |
|   return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
 | |
| }
 | |
| 
 | |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
 | |
| /// a splat of a single element and it's a 2 or 4 element mask.
 | |
| bool X86::isSplatMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   // We can only splat 64-bit, and 32-bit quantities with a single instruction.
 | |
|   if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
 | |
|     return false;
 | |
|   return ::isSplatMask(N);
 | |
| }
 | |
| 
 | |
| /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a splat of zero element.
 | |
| bool X86::isSplatLoMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
 | |
|     if (!isUndefOrEqual(N->getOperand(i), 0))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
 | |
| /// instructions.
 | |
| unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
 | |
|   unsigned NumOperands = N->getNumOperands();
 | |
|   unsigned Shift = (NumOperands == 4) ? 2 : 1;
 | |
|   unsigned Mask = 0;
 | |
|   for (unsigned i = 0; i < NumOperands; ++i) {
 | |
|     unsigned Val = 0;
 | |
|     SDOperand Arg = N->getOperand(NumOperands-i-1);
 | |
|     if (Arg.getOpcode() != ISD::UNDEF)
 | |
|       Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val >= NumOperands) Val -= NumOperands;
 | |
|     Mask |= Val;
 | |
|     if (i != NumOperands - 1)
 | |
|       Mask <<= Shift;
 | |
|   }
 | |
| 
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
 | |
| /// instructions.
 | |
| unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
 | |
|   unsigned Mask = 0;
 | |
|   // 8 nodes, but we only care about the last 4.
 | |
|   for (unsigned i = 7; i >= 4; --i) {
 | |
|     unsigned Val = 0;
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() != ISD::UNDEF)
 | |
|       Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     Mask |= (Val - 4);
 | |
|     if (i != 4)
 | |
|       Mask <<= 2;
 | |
|   }
 | |
| 
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
 | |
| /// instructions.
 | |
| unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
 | |
|   unsigned Mask = 0;
 | |
|   // 8 nodes, but we only care about the first 4.
 | |
|   for (int i = 3; i >= 0; --i) {
 | |
|     unsigned Val = 0;
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() != ISD::UNDEF)
 | |
|       Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     Mask |= Val;
 | |
|     if (i != 0)
 | |
|       Mask <<= 2;
 | |
|   }
 | |
| 
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a 8 element shuffle that can be broken into a pair of
 | |
| /// PSHUFHW and PSHUFLW.
 | |
| static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   if (N->getNumOperands() != 8)
 | |
|     return false;
 | |
| 
 | |
|   // Lower quadword shuffled.
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val > 4)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Upper quadword shuffled.
 | |
|   for (unsigned i = 4; i != 8; ++i) {
 | |
|     SDOperand Arg = N->getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val < 4 || Val > 7)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
 | |
| /// values in ther permute mask.
 | |
| static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
 | |
|                                       SDOperand &V2, SDOperand &Mask,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   MVT::ValueType MaskVT = Mask.getValueType();
 | |
|   MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
 | |
|   unsigned NumElems = Mask.getNumOperands();
 | |
|   SmallVector<SDOperand, 8> MaskVec;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     SDOperand Arg = Mask.getOperand(i);
 | |
|     if (Arg.getOpcode() == ISD::UNDEF) {
 | |
|       MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
 | |
|       continue;
 | |
|     }
 | |
|     assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|     unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|     if (Val < NumElems)
 | |
|       MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
 | |
|     else
 | |
|       MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
 | |
|   }
 | |
| 
 | |
|   std::swap(V1, V2);
 | |
|   Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
 | |
|   return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
 | |
| }
 | |
| 
 | |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
 | |
| /// match movhlps. The lower half elements should come from upper half of
 | |
| /// V1 (and in order), and the upper half elements should come from the upper
 | |
| /// half of V2 (and in order).
 | |
| static bool ShouldXformToMOVHLPS(SDNode *Mask) {
 | |
|   unsigned NumElems = Mask->getNumOperands();
 | |
|   if (NumElems != 4)
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = 2; i != e; ++i)
 | |
|     if (!isUndefOrEqual(Mask->getOperand(i), i+2))
 | |
|       return false;
 | |
|   for (unsigned i = 2; i != 4; ++i)
 | |
|     if (!isUndefOrEqual(Mask->getOperand(i), i+4))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that
 | |
| /// is promoted to a vector.
 | |
| static inline bool isScalarLoadToVector(SDNode *N) {
 | |
|   if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|     N = N->getOperand(0).Val;
 | |
|     return ISD::isNON_EXTLoad(N);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
 | |
| /// match movlp{s|d}. The lower half elements should come from lower half of
 | |
| /// V1 (and in order), and the upper half elements should come from the upper
 | |
| /// half of V2 (and in order). And since V1 will become the source of the
 | |
| /// MOVLP, it must be either a vector load or a scalar load to vector.
 | |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
 | |
|   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
 | |
|     return false;
 | |
|   // Is V2 is a vector load, don't do this transformation. We will try to use
 | |
|   // load folding shufps op.
 | |
|   if (ISD::isNON_EXTLoad(V2))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = Mask->getNumOperands();
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
 | |
|     if (!isUndefOrEqual(Mask->getOperand(i), i))
 | |
|       return false;
 | |
|   for (unsigned i = NumElems/2; i != NumElems; ++i)
 | |
|     if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
 | |
| /// all the same.
 | |
| static bool isSplatVector(SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   SDOperand SplatValue = N->getOperand(0);
 | |
|   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (N->getOperand(i) != SplatValue)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
 | |
| /// to an undef.
 | |
| static bool isUndefShuffle(SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   SDOperand V1 = N->getOperand(0);
 | |
|   SDOperand V2 = N->getOperand(1);
 | |
|   SDOperand Mask = N->getOperand(2);
 | |
|   unsigned NumElems = Mask.getNumOperands();
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     SDOperand Arg = Mask.getOperand(i);
 | |
|     if (Arg.getOpcode() != ISD::UNDEF) {
 | |
|       unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|       if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
 | |
|         return false;
 | |
|       else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
 | |
| /// that point to V2 points to its first element.
 | |
| static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
 | |
|   assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   SmallVector<SDOperand, 8> MaskVec;
 | |
|   unsigned NumElems = Mask.getNumOperands();
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     SDOperand Arg = Mask.getOperand(i);
 | |
|     if (Arg.getOpcode() != ISD::UNDEF) {
 | |
|       unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
 | |
|       if (Val > NumElems) {
 | |
|         Arg = DAG.getConstant(NumElems, Arg.getValueType());
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|     MaskVec.push_back(Arg);
 | |
|   }
 | |
| 
 | |
|   if (Changed)
 | |
|     Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
 | |
|                        &MaskVec[0], MaskVec.size());
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
 | |
| /// operation of specified width.
 | |
| static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
 | |
|   MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
 | |
|   MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
 | |
| 
 | |
|   SmallVector<SDOperand, 8> MaskVec;
 | |
|   MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
 | |
|   for (unsigned i = 1; i != NumElems; ++i)
 | |
|     MaskVec.push_back(DAG.getConstant(i, BaseVT));
 | |
|   return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
 | |
| }
 | |
| 
 | |
| /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
 | |
| /// of specified width.
 | |
| static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
 | |
|   MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
 | |
|   MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
 | |
|   SmallVector<SDOperand, 8> MaskVec;
 | |
|   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
 | |
|     MaskVec.push_back(DAG.getConstant(i,            BaseVT));
 | |
|     MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
 | |
|   }
 | |
|   return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
 | |
| }
 | |
| 
 | |
| /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
 | |
| /// of specified width.
 | |
| static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
 | |
|   MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
 | |
|   MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
 | |
|   unsigned Half = NumElems/2;
 | |
|   SmallVector<SDOperand, 8> MaskVec;
 | |
|   for (unsigned i = 0; i != Half; ++i) {
 | |
|     MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
 | |
|     MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
 | |
|   }
 | |
|   return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
 | |
| }
 | |
| 
 | |
| /// getZeroVector - Returns a vector of specified type with all zero elements.
 | |
| ///
 | |
| static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
 | |
|   assert(MVT::isVector(VT) && "Expected a vector type");
 | |
|   unsigned NumElems = getVectorNumElements(VT);
 | |
|   MVT::ValueType EVT = MVT::getVectorBaseType(VT);
 | |
|   bool isFP = MVT::isFloatingPoint(EVT);
 | |
|   SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
 | |
|   SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
 | |
|   return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
 | |
| }
 | |
| 
 | |
| /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
 | |
| ///
 | |
| static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand V1 = Op.getOperand(0);
 | |
|   SDOperand Mask = Op.getOperand(2);
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   unsigned NumElems = Mask.getNumOperands();
 | |
|   Mask = getUnpacklMask(NumElems, DAG);
 | |
|   while (NumElems != 4) {
 | |
|     V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
 | |
|     NumElems >>= 1;
 | |
|   }
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
 | |
| 
 | |
|   MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
 | |
|   Mask = getZeroVector(MaskVT, DAG);
 | |
|   SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
 | |
|                                   DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
 | |
| }
 | |
| 
 | |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point
 | |
| /// constant +0.0.
 | |
| static inline bool isZeroNode(SDOperand Elt) {
 | |
|   return ((isa<ConstantSDNode>(Elt) &&
 | |
|            cast<ConstantSDNode>(Elt)->getValue() == 0) ||
 | |
|           (isa<ConstantFPSDNode>(Elt) &&
 | |
|            cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
 | |
| }
 | |
| 
 | |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
 | |
| /// vector and zero or undef vector.
 | |
| static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
 | |
|                                              unsigned NumElems, unsigned Idx,
 | |
|                                              bool isZero, SelectionDAG &DAG) {
 | |
|   SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
 | |
|   MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
 | |
|   MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
 | |
|   SDOperand Zero = DAG.getConstant(0, EVT);
 | |
|   SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
 | |
|   MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
 | |
|   SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                &MaskVec[0], MaskVec.size());
 | |
|   return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
 | |
| }
 | |
| 
 | |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
 | |
| ///
 | |
| static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
 | |
|                                        unsigned NumNonZero, unsigned NumZero,
 | |
|                                        SelectionDAG &DAG, TargetLowering &TLI) {
 | |
|   if (NumNonZero > 8)
 | |
|     return SDOperand();
 | |
| 
 | |
|   SDOperand V(0, 0);
 | |
|   bool First = true;
 | |
|   for (unsigned i = 0; i < 16; ++i) {
 | |
|     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
 | |
|     if (ThisIsNonZero && First) {
 | |
|       if (NumZero)
 | |
|         V = getZeroVector(MVT::v8i16, DAG);
 | |
|       else
 | |
|         V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
 | |
|       First = false;
 | |
|     }
 | |
| 
 | |
|     if ((i & 1) != 0) {
 | |
|       SDOperand ThisElt(0, 0), LastElt(0, 0);
 | |
|       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
 | |
|       if (LastIsNonZero) {
 | |
|         LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
 | |
|       }
 | |
|       if (ThisIsNonZero) {
 | |
|         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
 | |
|         ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
 | |
|                               ThisElt, DAG.getConstant(8, MVT::i8));
 | |
|         if (LastIsNonZero)
 | |
|           ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
 | |
|       } else
 | |
|         ThisElt = LastElt;
 | |
| 
 | |
|       if (ThisElt.Val)
 | |
|         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
 | |
|                         DAG.getConstant(i/2, TLI.getPointerTy()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
 | |
| }
 | |
| 
 | |
| /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
 | |
| ///
 | |
| static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
 | |
|                                        unsigned NumNonZero, unsigned NumZero,
 | |
|                                        SelectionDAG &DAG, TargetLowering &TLI) {
 | |
|   if (NumNonZero > 4)
 | |
|     return SDOperand();
 | |
| 
 | |
|   SDOperand V(0, 0);
 | |
|   bool First = true;
 | |
|   for (unsigned i = 0; i < 8; ++i) {
 | |
|     bool isNonZero = (NonZeros & (1 << i)) != 0;
 | |
|     if (isNonZero) {
 | |
|       if (First) {
 | |
|         if (NumZero)
 | |
|           V = getZeroVector(MVT::v8i16, DAG);
 | |
|         else
 | |
|           V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
 | |
|         First = false;
 | |
|       }
 | |
|       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
 | |
|                       DAG.getConstant(i, TLI.getPointerTy()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // All zero's are handled with pxor.
 | |
|   if (ISD::isBuildVectorAllZeros(Op.Val))
 | |
|     return Op;
 | |
| 
 | |
|   // All one's are handled with pcmpeqd.
 | |
|   if (ISD::isBuildVectorAllOnes(Op.Val))
 | |
|     return Op;
 | |
| 
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   MVT::ValueType EVT = MVT::getVectorBaseType(VT);
 | |
|   unsigned EVTBits = MVT::getSizeInBits(EVT);
 | |
| 
 | |
|   unsigned NumElems = Op.getNumOperands();
 | |
|   unsigned NumZero  = 0;
 | |
|   unsigned NumNonZero = 0;
 | |
|   unsigned NonZeros = 0;
 | |
|   std::set<SDOperand> Values;
 | |
|   for (unsigned i = 0; i < NumElems; ++i) {
 | |
|     SDOperand Elt = Op.getOperand(i);
 | |
|     if (Elt.getOpcode() != ISD::UNDEF) {
 | |
|       Values.insert(Elt);
 | |
|       if (isZeroNode(Elt))
 | |
|         NumZero++;
 | |
|       else {
 | |
|         NonZeros |= (1 << i);
 | |
|         NumNonZero++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NumNonZero == 0)
 | |
|     // Must be a mix of zero and undef. Return a zero vector.
 | |
|     return getZeroVector(VT, DAG);
 | |
| 
 | |
|   // Splat is obviously ok. Let legalizer expand it to a shuffle.
 | |
|   if (Values.size() == 1)
 | |
|     return SDOperand();
 | |
| 
 | |
|   // Special case for single non-zero element.
 | |
|   if (NumNonZero == 1) {
 | |
|     unsigned Idx = CountTrailingZeros_32(NonZeros);
 | |
|     SDOperand Item = Op.getOperand(Idx);
 | |
|     Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
 | |
|     if (Idx == 0)
 | |
|       // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
 | |
|       return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
 | |
|                                          NumZero > 0, DAG);
 | |
| 
 | |
|     if (EVTBits == 32) {
 | |
|       // Turn it into a shuffle of zero and zero-extended scalar to vector.
 | |
|       Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
 | |
|                                          DAG);
 | |
|       MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
 | |
|       MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
 | |
|       SmallVector<SDOperand, 8> MaskVec;
 | |
|       for (unsigned i = 0; i < NumElems; i++)
 | |
|         MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
 | |
|       SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                    &MaskVec[0], MaskVec.size());
 | |
|       return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
 | |
|                          DAG.getNode(ISD::UNDEF, VT), Mask);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Let legalizer expand 2-wide build_vectors.
 | |
|   if (EVTBits == 64)
 | |
|     return SDOperand();
 | |
| 
 | |
|   // If element VT is < 32 bits, convert it to inserts into a zero vector.
 | |
|   if (EVTBits == 8 && NumElems == 16) {
 | |
|     SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
 | |
|                                         *this);
 | |
|     if (V.Val) return V;
 | |
|   }
 | |
| 
 | |
|   if (EVTBits == 16 && NumElems == 8) {
 | |
|     SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
 | |
|                                         *this);
 | |
|     if (V.Val) return V;
 | |
|   }
 | |
| 
 | |
|   // If element VT is == 32 bits, turn it into a number of shuffles.
 | |
|   SmallVector<SDOperand, 8> V;
 | |
|   V.resize(NumElems);
 | |
|   if (NumElems == 4 && NumZero > 0) {
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|       bool isZero = !(NonZeros & (1 << i));
 | |
|       if (isZero)
 | |
|         V[i] = getZeroVector(VT, DAG);
 | |
|       else
 | |
|         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0; i < 2; ++i) {
 | |
|       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
 | |
|         default: break;
 | |
|         case 0:
 | |
|           V[i] = V[i*2];  // Must be a zero vector.
 | |
|           break;
 | |
|         case 1:
 | |
|           V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
 | |
|                              getMOVLMask(NumElems, DAG));
 | |
|           break;
 | |
|         case 2:
 | |
|           V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
 | |
|                              getMOVLMask(NumElems, DAG));
 | |
|           break;
 | |
|         case 3:
 | |
|           V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
 | |
|                              getUnpacklMask(NumElems, DAG));
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
 | |
|     // clears the upper bits.
 | |
|     // FIXME: we can do the same for v4f32 case when we know both parts of
 | |
|     // the lower half come from scalar_to_vector (loadf32). We should do
 | |
|     // that in post legalizer dag combiner with target specific hooks.
 | |
|     if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
 | |
|       return V[0];
 | |
|     MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
 | |
|     MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
 | |
|     SmallVector<SDOperand, 8> MaskVec;
 | |
|     bool Reverse = (NonZeros & 0x3) == 2;
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       if (Reverse)
 | |
|         MaskVec.push_back(DAG.getConstant(1-i, EVT));
 | |
|       else
 | |
|         MaskVec.push_back(DAG.getConstant(i, EVT));
 | |
|     Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       if (Reverse)
 | |
|         MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
 | |
|       else
 | |
|         MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
 | |
|     SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                      &MaskVec[0], MaskVec.size());
 | |
|     return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
 | |
|   }
 | |
| 
 | |
|   if (Values.size() > 2) {
 | |
|     // Expand into a number of unpckl*.
 | |
|     // e.g. for v4f32
 | |
|     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
 | |
|     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
 | |
|     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
 | |
|     SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
 | |
|     for (unsigned i = 0; i < NumElems; ++i)
 | |
|       V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
 | |
|     NumElems >>= 1;
 | |
|     while (NumElems != 0) {
 | |
|       for (unsigned i = 0; i < NumElems; ++i)
 | |
|         V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
 | |
|                            UnpckMask);
 | |
|       NumElems >>= 1;
 | |
|     }
 | |
|     return V[0];
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand V1 = Op.getOperand(0);
 | |
|   SDOperand V2 = Op.getOperand(1);
 | |
|   SDOperand PermMask = Op.getOperand(2);
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   unsigned NumElems = PermMask.getNumOperands();
 | |
|   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
 | |
|   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
 | |
|   bool V1IsSplat = false;
 | |
|   bool V2IsSplat = false;
 | |
| 
 | |
|   if (isUndefShuffle(Op.Val))
 | |
|     return DAG.getNode(ISD::UNDEF, VT);
 | |
| 
 | |
|   if (isSplatMask(PermMask.Val)) {
 | |
|     if (NumElems <= 4) return Op;
 | |
|     // Promote it to a v4i32 splat.
 | |
|     return PromoteSplat(Op, DAG);
 | |
|   }
 | |
| 
 | |
|   if (X86::isMOVLMask(PermMask.Val))
 | |
|     return (V1IsUndef) ? V2 : Op;
 | |
| 
 | |
|   if (X86::isMOVSHDUPMask(PermMask.Val) ||
 | |
|       X86::isMOVSLDUPMask(PermMask.Val) ||
 | |
|       X86::isMOVHLPSMask(PermMask.Val) ||
 | |
|       X86::isMOVHPMask(PermMask.Val) ||
 | |
|       X86::isMOVLPMask(PermMask.Val))
 | |
|     return Op;
 | |
| 
 | |
|   if (ShouldXformToMOVHLPS(PermMask.Val) ||
 | |
|       ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
 | |
|     return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
 | |
| 
 | |
|   bool Commuted = false;
 | |
|   V1IsSplat = isSplatVector(V1.Val);
 | |
|   V2IsSplat = isSplatVector(V2.Val);
 | |
|   if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
 | |
|     Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
 | |
|     std::swap(V1IsSplat, V2IsSplat);
 | |
|     std::swap(V1IsUndef, V2IsUndef);
 | |
|     Commuted = true;
 | |
|   }
 | |
| 
 | |
|   if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
 | |
|     if (V2IsUndef) return V1;
 | |
|     Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
 | |
|     if (V2IsSplat) {
 | |
|       // V2 is a splat, so the mask may be malformed. That is, it may point
 | |
|       // to any V2 element. The instruction selectior won't like this. Get
 | |
|       // a corrected mask and commute to form a proper MOVS{S|D}.
 | |
|       SDOperand NewMask = getMOVLMask(NumElems, DAG);
 | |
|       if (NewMask.Val != PermMask.Val)
 | |
|         Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
 | |
|     }
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
 | |
|       X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
 | |
|       X86::isUNPCKLMask(PermMask.Val) ||
 | |
|       X86::isUNPCKHMask(PermMask.Val))
 | |
|     return Op;
 | |
| 
 | |
|   if (V2IsSplat) {
 | |
|     // Normalize mask so all entries that point to V2 points to its first
 | |
|     // element then try to match unpck{h|l} again. If match, return a
 | |
|     // new vector_shuffle with the corrected mask.
 | |
|     SDOperand NewMask = NormalizeMask(PermMask, DAG);
 | |
|     if (NewMask.Val != PermMask.Val) {
 | |
|       if (X86::isUNPCKLMask(PermMask.Val, true)) {
 | |
|         SDOperand NewMask = getUnpacklMask(NumElems, DAG);
 | |
|         return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
 | |
|       } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
 | |
|         SDOperand NewMask = getUnpackhMask(NumElems, DAG);
 | |
|         return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Normalize the node to match x86 shuffle ops if needed
 | |
|   if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
 | |
|       Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
 | |
| 
 | |
|   if (Commuted) {
 | |
|     // Commute is back and try unpck* again.
 | |
|     Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
 | |
|     if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
 | |
|         X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
 | |
|         X86::isUNPCKLMask(PermMask.Val) ||
 | |
|         X86::isUNPCKHMask(PermMask.Val))
 | |
|       return Op;
 | |
|   }
 | |
| 
 | |
|   // If VT is integer, try PSHUF* first, then SHUFP*.
 | |
|   if (MVT::isInteger(VT)) {
 | |
|     if (X86::isPSHUFDMask(PermMask.Val) ||
 | |
|         X86::isPSHUFHWMask(PermMask.Val) ||
 | |
|         X86::isPSHUFLWMask(PermMask.Val)) {
 | |
|       if (V2.getOpcode() != ISD::UNDEF)
 | |
|         return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
 | |
|                            DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
 | |
|       return Op;
 | |
|     }
 | |
| 
 | |
|     if (X86::isSHUFPMask(PermMask.Val))
 | |
|       return Op;
 | |
| 
 | |
|     // Handle v8i16 shuffle high / low shuffle node pair.
 | |
|     if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
 | |
|       MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
 | |
|       MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
 | |
|       SmallVector<SDOperand, 8> MaskVec;
 | |
|       for (unsigned i = 0; i != 4; ++i)
 | |
|         MaskVec.push_back(PermMask.getOperand(i));
 | |
|       for (unsigned i = 4; i != 8; ++i)
 | |
|         MaskVec.push_back(DAG.getConstant(i, BaseVT));
 | |
|       SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                    &MaskVec[0], MaskVec.size());
 | |
|       V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
 | |
|       MaskVec.clear();
 | |
|       for (unsigned i = 0; i != 4; ++i)
 | |
|         MaskVec.push_back(DAG.getConstant(i, BaseVT));
 | |
|       for (unsigned i = 4; i != 8; ++i)
 | |
|         MaskVec.push_back(PermMask.getOperand(i));
 | |
|       Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
 | |
|       return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
 | |
|     }
 | |
|   } else {
 | |
|     // Floating point cases in the other order.
 | |
|     if (X86::isSHUFPMask(PermMask.Val))
 | |
|       return Op;
 | |
|     if (X86::isPSHUFDMask(PermMask.Val) ||
 | |
|         X86::isPSHUFHWMask(PermMask.Val) ||
 | |
|         X86::isPSHUFLWMask(PermMask.Val)) {
 | |
|       if (V2.getOpcode() != ISD::UNDEF)
 | |
|         return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
 | |
|                            DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
 | |
|       return Op;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NumElems == 4) {
 | |
|     MVT::ValueType MaskVT = PermMask.getValueType();
 | |
|     MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
 | |
|     SmallVector<std::pair<int, int>, 8> Locs;
 | |
|     Locs.reserve(NumElems);
 | |
|     SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
 | |
|     SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
 | |
|     unsigned NumHi = 0;
 | |
|     unsigned NumLo = 0;
 | |
|     // If no more than two elements come from either vector. This can be
 | |
|     // implemented with two shuffles. First shuffle gather the elements.
 | |
|     // The second shuffle, which takes the first shuffle as both of its
 | |
|     // vector operands, put the elements into the right order.
 | |
|     for (unsigned i = 0; i != NumElems; ++i) {
 | |
|       SDOperand Elt = PermMask.getOperand(i);
 | |
|       if (Elt.getOpcode() == ISD::UNDEF) {
 | |
|         Locs[i] = std::make_pair(-1, -1);
 | |
|       } else {
 | |
|         unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
 | |
|         if (Val < NumElems) {
 | |
|           Locs[i] = std::make_pair(0, NumLo);
 | |
|           Mask1[NumLo] = Elt;
 | |
|           NumLo++;
 | |
|         } else {
 | |
|           Locs[i] = std::make_pair(1, NumHi);
 | |
|           if (2+NumHi < NumElems)
 | |
|             Mask1[2+NumHi] = Elt;
 | |
|           NumHi++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (NumLo <= 2 && NumHi <= 2) {
 | |
|       V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                    &Mask1[0], Mask1.size()));
 | |
|       for (unsigned i = 0; i != NumElems; ++i) {
 | |
|         if (Locs[i].first == -1)
 | |
|           continue;
 | |
|         else {
 | |
|           unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
 | |
|           Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
 | |
|           Mask2[i] = DAG.getConstant(Idx, MaskEVT);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
 | |
|                          DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                      &Mask2[0], Mask2.size()));
 | |
|     }
 | |
| 
 | |
|     // Break it into (shuffle shuffle_hi, shuffle_lo).
 | |
|     Locs.clear();
 | |
|     SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
 | |
|     SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
 | |
|     SmallVector<SDOperand,8> *MaskPtr = &LoMask;
 | |
|     unsigned MaskIdx = 0;
 | |
|     unsigned LoIdx = 0;
 | |
|     unsigned HiIdx = NumElems/2;
 | |
|     for (unsigned i = 0; i != NumElems; ++i) {
 | |
|       if (i == NumElems/2) {
 | |
|         MaskPtr = &HiMask;
 | |
|         MaskIdx = 1;
 | |
|         LoIdx = 0;
 | |
|         HiIdx = NumElems/2;
 | |
|       }
 | |
|       SDOperand Elt = PermMask.getOperand(i);
 | |
|       if (Elt.getOpcode() == ISD::UNDEF) {
 | |
|         Locs[i] = std::make_pair(-1, -1);
 | |
|       } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
 | |
|         Locs[i] = std::make_pair(MaskIdx, LoIdx);
 | |
|         (*MaskPtr)[LoIdx] = Elt;
 | |
|         LoIdx++;
 | |
|       } else {
 | |
|         Locs[i] = std::make_pair(MaskIdx, HiIdx);
 | |
|         (*MaskPtr)[HiIdx] = Elt;
 | |
|         HiIdx++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDOperand LoShuffle =
 | |
|       DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
 | |
|                   DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                               &LoMask[0], LoMask.size()));
 | |
|     SDOperand HiShuffle =
 | |
|       DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
 | |
|                   DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                               &HiMask[0], HiMask.size()));
 | |
|     SmallVector<SDOperand, 8> MaskOps;
 | |
|     for (unsigned i = 0; i != NumElems; ++i) {
 | |
|       if (Locs[i].first == -1) {
 | |
|         MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
 | |
|       } else {
 | |
|         unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
 | |
|         MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
 | |
|       }
 | |
|     }
 | |
|     return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                    &MaskOps[0], MaskOps.size()));
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
 | |
|   if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return SDOperand();
 | |
| 
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   // TODO: handle v16i8.
 | |
|   if (MVT::getSizeInBits(VT) == 16) {
 | |
|     // Transform it so it match pextrw which produces a 32-bit result.
 | |
|     MVT::ValueType EVT = (MVT::ValueType)(VT+1);
 | |
|     SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
 | |
|                                     Op.getOperand(0), Op.getOperand(1));
 | |
|     SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
 | |
|                                     DAG.getValueType(VT));
 | |
|     return DAG.getNode(ISD::TRUNCATE, VT, Assert);
 | |
|   } else if (MVT::getSizeInBits(VT) == 32) {
 | |
|     SDOperand Vec = Op.getOperand(0);
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
 | |
|     if (Idx == 0)
 | |
|       return Op;
 | |
|     // SHUFPS the element to the lowest double word, then movss.
 | |
|     MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
 | |
|     SmallVector<SDOperand, 8> IdxVec;
 | |
|     IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
 | |
|     IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
 | |
|     IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
 | |
|     IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
 | |
|     SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                  &IdxVec[0], IdxVec.size());
 | |
|     Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
 | |
|                       Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
 | |
|                        DAG.getConstant(0, getPointerTy()));
 | |
|   } else if (MVT::getSizeInBits(VT) == 64) {
 | |
|     SDOperand Vec = Op.getOperand(0);
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
 | |
|     if (Idx == 0)
 | |
|       return Op;
 | |
| 
 | |
|     // UNPCKHPD the element to the lowest double word, then movsd.
 | |
|     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
 | |
|     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
 | |
|     MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
 | |
|     SmallVector<SDOperand, 8> IdxVec;
 | |
|     IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
 | |
|     IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
 | |
|     SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                  &IdxVec[0], IdxVec.size());
 | |
|     Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
 | |
|                       Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
 | |
|                        DAG.getConstant(0, getPointerTy()));
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // Transform it so it match pinsrw which expects a 16-bit value in a GR32
 | |
|   // as its second argument.
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
 | |
|   SDOperand N0 = Op.getOperand(0);
 | |
|   SDOperand N1 = Op.getOperand(1);
 | |
|   SDOperand N2 = Op.getOperand(2);
 | |
|   if (MVT::getSizeInBits(BaseVT) == 16) {
 | |
|     if (N1.getValueType() != MVT::i32)
 | |
|       N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
 | |
|     if (N2.getValueType() != MVT::i32)
 | |
|       N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
 | |
|     return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
 | |
|   } else if (MVT::getSizeInBits(BaseVT) == 32) {
 | |
|     unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
 | |
|     if (Idx == 0) {
 | |
|       // Use a movss.
 | |
|       N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
 | |
|       MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
 | |
|       MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
 | |
|       SmallVector<SDOperand, 8> MaskVec;
 | |
|       MaskVec.push_back(DAG.getConstant(4, BaseVT));
 | |
|       for (unsigned i = 1; i <= 3; ++i)
 | |
|         MaskVec.push_back(DAG.getConstant(i, BaseVT));
 | |
|       return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
 | |
|                          DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
 | |
|                                      &MaskVec[0], MaskVec.size()));
 | |
|     } else {
 | |
|       // Use two pinsrw instructions to insert a 32 bit value.
 | |
|       Idx <<= 1;
 | |
|       if (MVT::isFloatingPoint(N1.getValueType())) {
 | |
|         if (ISD::isNON_EXTLoad(N1.Val)) {
 | |
|           // Just load directly from f32mem to GR32.
 | |
|           LoadSDNode *LD = cast<LoadSDNode>(N1);
 | |
|           N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
 | |
|                            LD->getSrcValue(), LD->getSrcValueOffset());
 | |
|         } else {
 | |
|           N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
 | |
|           N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
 | |
|           N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
 | |
|                            DAG.getConstant(0, getPointerTy()));
 | |
|         }
 | |
|       }
 | |
|       N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
 | |
|       N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
 | |
|                        DAG.getConstant(Idx, getPointerTy()));
 | |
|       N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
 | |
|       N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
 | |
|                        DAG.getConstant(Idx+1, getPointerTy()));
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
 | |
|   return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
 | |
| }
 | |
| 
 | |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
 | |
| // one of the above mentioned nodes. It has to be wrapped because otherwise
 | |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | |
| // be used to form addressing mode. These wrapped nodes will be selected
 | |
| // into MOV32ri.
 | |
| SDOperand
 | |
| X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
 | |
|                                                getPointerTy(),
 | |
|                                                CP->getAlignment());
 | |
|   Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       !Subtarget->isPICStyleRIPRel()) {
 | |
|     Result = DAG.getNode(ISD::ADD, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
 | |
|   GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
 | |
|   Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       !Subtarget->isPICStyleRIPRel()) {
 | |
|     Result = DAG.getNode(ISD::ADD, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
|   
 | |
|   // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
 | |
|   // load the value at address GV, not the value of GV itself. This means that
 | |
|   // the GlobalAddress must be in the base or index register of the address, not
 | |
|   // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
 | |
|   // The same applies for external symbols during PIC codegen
 | |
|   if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
 | |
|     Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model
 | |
| static SDOperand
 | |
| LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                               const MVT::ValueType PtrVT) {
 | |
|   SDOperand InFlag;
 | |
|   SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
 | |
|                                      DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                                  PtrVT), InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // emit leal symbol@TLSGD(,%ebx,1), %eax
 | |
|   SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
 | |
|   SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
 | |
|                                              GA->getValueType(0),
 | |
|                                              GA->getOffset());
 | |
|   SDOperand Ops[] = { Chain,  TGA, InFlag };
 | |
|   SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
 | |
|   InFlag = Result.getValue(2);
 | |
|   Chain = Result.getValue(1);
 | |
| 
 | |
|   // call ___tls_get_addr. This function receives its argument in
 | |
|   // the register EAX.
 | |
|   Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SDOperand Ops1[] = { Chain,
 | |
|                       DAG.getTargetExternalSymbol("___tls_get_addr",
 | |
|                                                   PtrVT),
 | |
|                       DAG.getRegister(X86::EAX, PtrVT),
 | |
|                       DAG.getRegister(X86::EBX, PtrVT),
 | |
|                       InFlag };
 | |
|   Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
 | |
| // "local exec" model.
 | |
| static SDOperand
 | |
| LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                          const MVT::ValueType PtrVT) {
 | |
|   // Get the Thread Pointer
 | |
|   SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
 | |
|   // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
 | |
|   // exec)
 | |
|   SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
 | |
|                                              GA->getValueType(0),
 | |
|                                              GA->getOffset());
 | |
|   SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
 | |
| 
 | |
|   if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
 | |
|     Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
 | |
| 
 | |
|   // The address of the thread local variable is the add of the thread
 | |
|   // pointer with the offset of the variable.
 | |
|   return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // TODO: implement the "local dynamic" model
 | |
|   // TODO: implement the "initial exec"model for pic executables
 | |
|   assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
 | |
|          "TLS not implemented for non-ELF and 64-bit targets");
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   // If the relocation model is PIC, use the "General Dynamic" TLS Model,
 | |
|   // otherwise use the "Local Exec"TLS Model
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | |
|     return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
 | |
|   else
 | |
|     return LowerToTLSExecModel(GA, DAG, getPointerTy());
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
 | |
|   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
 | |
|   SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
 | |
|   Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       !Subtarget->isPICStyleRIPRel()) {
 | |
|     Result = DAG.getNode(ISD::ADD, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
|   SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
 | |
|   Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       !Subtarget->isPICStyleRIPRel()) {
 | |
|     Result = DAG.getNode(ISD::ADD, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
 | |
|     assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
 | |
|            "Not an i64 shift!");
 | |
|     bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
 | |
|     SDOperand ShOpLo = Op.getOperand(0);
 | |
|     SDOperand ShOpHi = Op.getOperand(1);
 | |
|     SDOperand ShAmt  = Op.getOperand(2);
 | |
|     SDOperand Tmp1 = isSRA ?
 | |
|       DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
 | |
|       DAG.getConstant(0, MVT::i32);
 | |
| 
 | |
|     SDOperand Tmp2, Tmp3;
 | |
|     if (Op.getOpcode() == ISD::SHL_PARTS) {
 | |
|       Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
 | |
|       Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
 | |
|     } else {
 | |
|       Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
 | |
|       Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
 | |
|     }
 | |
| 
 | |
|     const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
 | |
|     SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
 | |
|                                     DAG.getConstant(32, MVT::i8));
 | |
|     SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
 | |
|     SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
 | |
| 
 | |
|     SDOperand Hi, Lo;
 | |
|     SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
| 
 | |
|     VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
 | |
|     SmallVector<SDOperand, 4> Ops;
 | |
|     if (Op.getOpcode() == ISD::SHL_PARTS) {
 | |
|       Ops.push_back(Tmp2);
 | |
|       Ops.push_back(Tmp3);
 | |
|       Ops.push_back(CC);
 | |
|       Ops.push_back(InFlag);
 | |
|       Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
 | |
|       InFlag = Hi.getValue(1);
 | |
| 
 | |
|       Ops.clear();
 | |
|       Ops.push_back(Tmp3);
 | |
|       Ops.push_back(Tmp1);
 | |
|       Ops.push_back(CC);
 | |
|       Ops.push_back(InFlag);
 | |
|       Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
 | |
|     } else {
 | |
|       Ops.push_back(Tmp2);
 | |
|       Ops.push_back(Tmp3);
 | |
|       Ops.push_back(CC);
 | |
|       Ops.push_back(InFlag);
 | |
|       Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
 | |
|       InFlag = Lo.getValue(1);
 | |
| 
 | |
|       Ops.clear();
 | |
|       Ops.push_back(Tmp3);
 | |
|       Ops.push_back(Tmp1);
 | |
|       Ops.push_back(CC);
 | |
|       Ops.push_back(InFlag);
 | |
|       Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
 | |
|     }
 | |
| 
 | |
|     VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
 | |
|     Ops.clear();
 | |
|     Ops.push_back(Lo);
 | |
|     Ops.push_back(Hi);
 | |
|     return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
 | |
|          Op.getOperand(0).getValueType() >= MVT::i16 &&
 | |
|          "Unknown SINT_TO_FP to lower!");
 | |
| 
 | |
|   SDOperand Result;
 | |
|   MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
 | |
|   unsigned Size = MVT::getSizeInBits(SrcVT)/8;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
 | |
|   SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|   SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
 | |
|                                  StackSlot, NULL, 0);
 | |
| 
 | |
|   // Build the FILD
 | |
|   SDVTList Tys;
 | |
|   if (X86ScalarSSE)
 | |
|     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
 | |
|   else
 | |
|     Tys = DAG.getVTList(MVT::f64, MVT::Other);
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(StackSlot);
 | |
|   Ops.push_back(DAG.getValueType(SrcVT));
 | |
|   Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
 | |
|                        Tys, &Ops[0], Ops.size());
 | |
| 
 | |
|   if (X86ScalarSSE) {
 | |
|     Chain = Result.getValue(1);
 | |
|     SDOperand InFlag = Result.getValue(2);
 | |
| 
 | |
|     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
 | |
|     // shouldn't be necessary except that RFP cannot be live across
 | |
|     // multiple blocks. When stackifier is fixed, they can be uncoupled.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
 | |
|     SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|     Tys = DAG.getVTList(MVT::Other);
 | |
|     SmallVector<SDOperand, 8> Ops;
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(Result);
 | |
|     Ops.push_back(StackSlot);
 | |
|     Ops.push_back(DAG.getValueType(Op.getValueType()));
 | |
|     Ops.push_back(InFlag);
 | |
|     Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
 | |
|     Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
 | |
|          "Unknown FP_TO_SINT to lower!");
 | |
|   // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
 | |
|   // stack slot.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
 | |
|   SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
| 
 | |
|   unsigned Opc;
 | |
|   switch (Op.getValueType()) {
 | |
|     default: assert(0 && "Invalid FP_TO_SINT to lower!");
 | |
|     case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
 | |
|     case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
 | |
|     case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
 | |
|   }
 | |
| 
 | |
|   SDOperand Chain = DAG.getEntryNode();
 | |
|   SDOperand Value = Op.getOperand(0);
 | |
|   if (X86ScalarSSE) {
 | |
|     assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
 | |
|     Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
 | |
|     SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
 | |
|     SDOperand Ops[] = {
 | |
|       Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
 | |
|     };
 | |
|     Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
 | |
|     Chain = Value.getValue(1);
 | |
|     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
 | |
|     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|   }
 | |
| 
 | |
|   // Build the FP_TO_INT*_IN_MEM
 | |
|   SDOperand Ops[] = { Chain, Value, StackSlot };
 | |
|   SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
 | |
| 
 | |
|   // Load the result.
 | |
|   return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   const Type *OpNTy =  MVT::getTypeForValueType(VT);
 | |
|   std::vector<Constant*> CV;
 | |
|   if (VT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|   }
 | |
|   Constant *CS = ConstantStruct::get(CV);
 | |
|   SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
 | |
|   SDVTList Tys = DAG.getVTList(VT, MVT::Other);
 | |
|   SmallVector<SDOperand, 3> Ops;
 | |
|   Ops.push_back(DAG.getEntryNode());
 | |
|   Ops.push_back(CPIdx);
 | |
|   Ops.push_back(DAG.getSrcValue(NULL));
 | |
|   SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
 | |
|   return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   const Type *OpNTy =  MVT::getTypeForValueType(VT);
 | |
|   std::vector<Constant*> CV;
 | |
|   if (VT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(OpNTy, 0.0));
 | |
|   }
 | |
|   Constant *CS = ConstantStruct::get(CV);
 | |
|   SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
 | |
|   SDVTList Tys = DAG.getVTList(VT, MVT::Other);
 | |
|   SmallVector<SDOperand, 3> Ops;
 | |
|   Ops.push_back(DAG.getEntryNode());
 | |
|   Ops.push_back(CPIdx);
 | |
|   Ops.push_back(DAG.getSrcValue(NULL));
 | |
|   SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
 | |
|   return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand Op0 = Op.getOperand(0);
 | |
|   SDOperand Op1 = Op.getOperand(1);
 | |
|   MVT::ValueType VT = Op.getValueType();
 | |
|   MVT::ValueType SrcVT = Op1.getValueType();
 | |
|   const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
 | |
| 
 | |
|   // If second operand is smaller, extend it first.
 | |
|   if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
 | |
|     Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
 | |
|     SrcVT = VT;
 | |
|   }
 | |
| 
 | |
|   // First get the sign bit of second operand.
 | |
|   std::vector<Constant*> CV;
 | |
|   if (SrcVT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|   }
 | |
|   Constant *CS = ConstantStruct::get(CV);
 | |
|   SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
 | |
|   SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
 | |
|   SmallVector<SDOperand, 3> Ops;
 | |
|   Ops.push_back(DAG.getEntryNode());
 | |
|   Ops.push_back(CPIdx);
 | |
|   Ops.push_back(DAG.getSrcValue(NULL));
 | |
|   SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
 | |
|   SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
 | |
| 
 | |
|   // Shift sign bit right or left if the two operands have different types.
 | |
|   if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
 | |
|     // Op0 is MVT::f32, Op1 is MVT::f64.
 | |
|     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
 | |
|     SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
 | |
|                           DAG.getConstant(32, MVT::i32));
 | |
|     SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
 | |
|     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
 | |
|                           DAG.getConstant(0, getPointerTy()));
 | |
|   }
 | |
| 
 | |
|   // Clear first operand sign bit.
 | |
|   CV.clear();
 | |
|   if (VT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|     CV.push_back(ConstantFP::get(SrcTy, 0.0));
 | |
|   }
 | |
|   CS = ConstantStruct::get(CV);
 | |
|   CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
 | |
|   Tys = DAG.getVTList(VT, MVT::Other);
 | |
|   Ops.clear();
 | |
|   Ops.push_back(DAG.getEntryNode());
 | |
|   Ops.push_back(CPIdx);
 | |
|   Ops.push_back(DAG.getSrcValue(NULL));
 | |
|   SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
 | |
|   SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
 | |
| 
 | |
|   // Or the value with the sign bit.
 | |
|   return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
 | |
|                                         SDOperand Chain) {
 | |
|   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
 | |
|   SDOperand Cond;
 | |
|   SDOperand Op0 = Op.getOperand(0);
 | |
|   SDOperand Op1 = Op.getOperand(1);
 | |
|   SDOperand CC = Op.getOperand(2);
 | |
|   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|   const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
 | |
|   const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
 | |
|   bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
 | |
|   unsigned X86CC;
 | |
| 
 | |
|   if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
 | |
|                      Op0, Op1, DAG)) {
 | |
|     SDOperand Ops1[] = { Chain, Op0, Op1 };
 | |
|     Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
 | |
|     SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
 | |
|     return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
 | |
|   }
 | |
| 
 | |
|   assert(isFP && "Illegal integer SetCC!");
 | |
| 
 | |
|   SDOperand COps[] = { Chain, Op0, Op1 };
 | |
|   Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
 | |
| 
 | |
|   switch (SetCCOpcode) {
 | |
|   default: assert(false && "Illegal floating point SetCC!");
 | |
|   case ISD::SETOEQ: {  // !PF & ZF
 | |
|     SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
 | |
|     SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
 | |
|     SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
 | |
|                          Tmp1.getValue(1) };
 | |
|     SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
 | |
|     return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
 | |
|   }
 | |
|   case ISD::SETUNE: {  // PF | !ZF
 | |
|     SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
 | |
|     SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
 | |
|     SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
 | |
|                          Tmp1.getValue(1) };
 | |
|     SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
 | |
|     return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
 | |
|   bool addTest = true;
 | |
|   SDOperand Chain = DAG.getEntryNode();
 | |
|   SDOperand Cond  = Op.getOperand(0);
 | |
|   SDOperand CC;
 | |
|   const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
 | |
| 
 | |
|   if (Cond.getOpcode() == ISD::SETCC)
 | |
|     Cond = LowerSETCC(Cond, DAG, Chain);
 | |
| 
 | |
|   if (Cond.getOpcode() == X86ISD::SETCC) {
 | |
|     CC = Cond.getOperand(0);
 | |
| 
 | |
|     // If condition flag is set by a X86ISD::CMP, then make a copy of it
 | |
|     // (since flag operand cannot be shared). Use it as the condition setting
 | |
|     // operand in place of the X86ISD::SETCC.
 | |
|     // If the X86ISD::SETCC has more than one use, then perhaps it's better
 | |
|     // to use a test instead of duplicating the X86ISD::CMP (for register
 | |
|     // pressure reason)?
 | |
|     SDOperand Cmp = Cond.getOperand(1);
 | |
|     unsigned Opc = Cmp.getOpcode();
 | |
|     bool IllegalFPCMov = !X86ScalarSSE &&
 | |
|       MVT::isFloatingPoint(Op.getValueType()) &&
 | |
|       !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
 | |
|     if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
 | |
|         !IllegalFPCMov) {
 | |
|       SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
 | |
|       Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
 | |
|       addTest = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|     SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
 | |
|     Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
 | |
|   }
 | |
| 
 | |
|   VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
 | |
|   SmallVector<SDOperand, 4> Ops;
 | |
|   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
 | |
|   // condition is true.
 | |
|   Ops.push_back(Op.getOperand(2));
 | |
|   Ops.push_back(Op.getOperand(1));
 | |
|   Ops.push_back(CC);
 | |
|   Ops.push_back(Cond.getValue(1));
 | |
|   return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
 | |
|   bool addTest = true;
 | |
|   SDOperand Chain = Op.getOperand(0);
 | |
|   SDOperand Cond  = Op.getOperand(1);
 | |
|   SDOperand Dest  = Op.getOperand(2);
 | |
|   SDOperand CC;
 | |
|   const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
 | |
| 
 | |
|   if (Cond.getOpcode() == ISD::SETCC)
 | |
|     Cond = LowerSETCC(Cond, DAG, Chain);
 | |
| 
 | |
|   if (Cond.getOpcode() == X86ISD::SETCC) {
 | |
|     CC = Cond.getOperand(0);
 | |
| 
 | |
|     // If condition flag is set by a X86ISD::CMP, then make a copy of it
 | |
|     // (since flag operand cannot be shared). Use it as the condition setting
 | |
|     // operand in place of the X86ISD::SETCC.
 | |
|     // If the X86ISD::SETCC has more than one use, then perhaps it's better
 | |
|     // to use a test instead of duplicating the X86ISD::CMP (for register
 | |
|     // pressure reason)?
 | |
|     SDOperand Cmp = Cond.getOperand(1);
 | |
|     unsigned Opc = Cmp.getOpcode();
 | |
|     if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
 | |
|       SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
 | |
|       Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
 | |
|       addTest = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|     SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
 | |
|     Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
 | |
|   }
 | |
|   return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
 | |
|                      Cond, Op.getOperand(2), CC, Cond.getValue(1));
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
 | |
|   unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
 | |
| 
 | |
|   if (Subtarget->is64Bit())
 | |
|     return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
 | |
|   else
 | |
|     switch (CallingConv) {
 | |
|     default:
 | |
|       assert(0 && "Unsupported calling convention");
 | |
|     case CallingConv::Fast:
 | |
|       // TODO: Implement fastcc
 | |
|       // Falls through
 | |
|     case CallingConv::C:
 | |
|     case CallingConv::X86_StdCall:
 | |
|       return LowerCCCCallTo(Op, DAG, CallingConv);
 | |
|     case CallingConv::X86_FastCall:
 | |
|       return LowerFastCCCallTo(Op, DAG, CallingConv);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
 | |
| // Calls to _alloca is needed to probe the stack when allocating more than 4k
 | |
| // bytes in one go. Touching the stack at 4K increments is necessary to ensure
 | |
| // that the guard pages used by the OS virtual memory manager are allocated in
 | |
| // correct sequence.
 | |
| SDOperand X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
 | |
|                                                      SelectionDAG &DAG) {
 | |
|   assert(Subtarget->isTargetCygMing() &&
 | |
|          "This should be used only on Cygwin/Mingw targets");
 | |
|   
 | |
|   // Get the inputs.
 | |
|   SDOperand Chain = Op.getOperand(0);
 | |
|   SDOperand Size  = Op.getOperand(1);
 | |
|   // FIXME: Ensure alignment here
 | |
| 
 | |
|   TargetLowering::ArgListTy Args; 
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   MVT::ValueType IntPtr = getPointerTy();
 | |
|   MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
 | |
|   const Type *IntPtrTy = getTargetData()->getIntPtrType();
 | |
|   
 | |
|   Entry.Node    = Size;
 | |
|   Entry.Ty      = IntPtrTy;
 | |
|   Entry.isInReg = true; // Should pass in EAX
 | |
|   Args.push_back(Entry);
 | |
|   std::pair<SDOperand, SDOperand> CallResult =
 | |
|     LowerCallTo(Chain, IntPtrTy, false, false, CallingConv::C, false,
 | |
|                 DAG.getExternalSymbol("_alloca", IntPtr), Args, DAG);
 | |
| 
 | |
|   SDOperand SP = DAG.getCopyFromReg(CallResult.second, X86StackPtr, SPTy);
 | |
|   
 | |
|   std::vector<MVT::ValueType> Tys;
 | |
|   Tys.push_back(SPTy);
 | |
|   Tys.push_back(MVT::Other);
 | |
|   SDOperand Ops[2] = { SP, CallResult.second };
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const Function* Fn = MF.getFunction();
 | |
|   if (Fn->hasExternalLinkage() &&
 | |
|       Subtarget->isTargetCygMing() &&
 | |
|       Fn->getName() == "main")
 | |
|     MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
 | |
| 
 | |
|   unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
 | |
|   if (Subtarget->is64Bit())
 | |
|     return LowerX86_64CCCArguments(Op, DAG);
 | |
|   else
 | |
|     switch(CC) {
 | |
|     default:
 | |
|       assert(0 && "Unsupported calling convention");
 | |
|     case CallingConv::Fast:
 | |
|       // TODO: implement fastcc.
 | |
|       
 | |
|       // Falls through
 | |
|     case CallingConv::C:
 | |
|       return LowerCCCArguments(Op, DAG);
 | |
|     case CallingConv::X86_StdCall:
 | |
|       MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
 | |
|       return LowerCCCArguments(Op, DAG, true);
 | |
|     case CallingConv::X86_FastCall:
 | |
|       MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
 | |
|       return LowerFastCCArguments(Op, DAG);
 | |
|     }
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand InFlag(0, 0);
 | |
|   SDOperand Chain = Op.getOperand(0);
 | |
|   unsigned Align =
 | |
|     (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
 | |
|   if (Align == 0) Align = 1;
 | |
| 
 | |
|   ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
 | |
|   // If not DWORD aligned, call memset if size is less than the threshold.
 | |
|   // It knows how to align to the right boundary first.
 | |
|   if ((Align & 3) != 0 ||
 | |
|       (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
 | |
|     MVT::ValueType IntPtr = getPointerTy();
 | |
|     const Type *IntPtrTy = getTargetData()->getIntPtrType();
 | |
|     TargetLowering::ArgListTy Args; 
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     Entry.Node = Op.getOperand(1);
 | |
|     Entry.Ty = IntPtrTy;
 | |
|     Args.push_back(Entry);
 | |
|     // Extend the unsigned i8 argument to be an int value for the call.
 | |
|     Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
 | |
|     Entry.Ty = IntPtrTy;
 | |
|     Args.push_back(Entry);
 | |
|     Entry.Node = Op.getOperand(3);
 | |
|     Args.push_back(Entry);
 | |
|     std::pair<SDOperand,SDOperand> CallResult =
 | |
|       LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
 | |
|                   DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
 | |
|     return CallResult.second;
 | |
|   }
 | |
| 
 | |
|   MVT::ValueType AVT;
 | |
|   SDOperand Count;
 | |
|   ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | |
|   unsigned BytesLeft = 0;
 | |
|   bool TwoRepStos = false;
 | |
|   if (ValC) {
 | |
|     unsigned ValReg;
 | |
|     uint64_t Val = ValC->getValue() & 255;
 | |
| 
 | |
|     // If the value is a constant, then we can potentially use larger sets.
 | |
|     switch (Align & 3) {
 | |
|       case 2:   // WORD aligned
 | |
|         AVT = MVT::i16;
 | |
|         ValReg = X86::AX;
 | |
|         Val = (Val << 8) | Val;
 | |
|         break;
 | |
|       case 0:  // DWORD aligned
 | |
|         AVT = MVT::i32;
 | |
|         ValReg = X86::EAX;
 | |
|         Val = (Val << 8)  | Val;
 | |
|         Val = (Val << 16) | Val;
 | |
|         if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
 | |
|           AVT = MVT::i64;
 | |
|           ValReg = X86::RAX;
 | |
|           Val = (Val << 32) | Val;
 | |
|         }
 | |
|         break;
 | |
|       default:  // Byte aligned
 | |
|         AVT = MVT::i8;
 | |
|         ValReg = X86::AL;
 | |
|         Count = Op.getOperand(3);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (AVT > MVT::i8) {
 | |
|       if (I) {
 | |
|         unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
 | |
|         Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
 | |
|         BytesLeft = I->getValue() % UBytes;
 | |
|       } else {
 | |
|         assert(AVT >= MVT::i32 &&
 | |
|                "Do not use rep;stos if not at least DWORD aligned");
 | |
|         Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
 | |
|                             Op.getOperand(3), DAG.getConstant(2, MVT::i8));
 | |
|         TwoRepStos = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
 | |
|                               InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   } else {
 | |
|     AVT = MVT::i8;
 | |
|     Count  = Op.getOperand(3);
 | |
|     Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
 | |
|                             Count, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
|   Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
 | |
|                             Op.getOperand(1), InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getValueType(AVT));
 | |
|   Ops.push_back(InFlag);
 | |
|   Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
 | |
| 
 | |
|   if (TwoRepStos) {
 | |
|     InFlag = Chain.getValue(1);
 | |
|     Count = Op.getOperand(3);
 | |
|     MVT::ValueType CVT = Count.getValueType();
 | |
|     SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
 | |
|                                DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
 | |
|     Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
 | |
|                               Left, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|     Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     Ops.clear();
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(DAG.getValueType(MVT::i8));
 | |
|     Ops.push_back(InFlag);
 | |
|     Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
 | |
|   } else if (BytesLeft) {
 | |
|     // Issue stores for the last 1 - 7 bytes.
 | |
|     SDOperand Value;
 | |
|     unsigned Val = ValC->getValue() & 255;
 | |
|     unsigned Offset = I->getValue() - BytesLeft;
 | |
|     SDOperand DstAddr = Op.getOperand(1);
 | |
|     MVT::ValueType AddrVT = DstAddr.getValueType();
 | |
|     if (BytesLeft >= 4) {
 | |
|       Val = (Val << 8)  | Val;
 | |
|       Val = (Val << 16) | Val;
 | |
|       Value = DAG.getConstant(Val, MVT::i32);
 | |
|       Chain = DAG.getStore(Chain, Value,
 | |
|                            DAG.getNode(ISD::ADD, AddrVT, DstAddr,
 | |
|                                        DAG.getConstant(Offset, AddrVT)),
 | |
|                            NULL, 0);
 | |
|       BytesLeft -= 4;
 | |
|       Offset += 4;
 | |
|     }
 | |
|     if (BytesLeft >= 2) {
 | |
|       Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
 | |
|       Chain = DAG.getStore(Chain, Value,
 | |
|                            DAG.getNode(ISD::ADD, AddrVT, DstAddr,
 | |
|                                        DAG.getConstant(Offset, AddrVT)),
 | |
|                            NULL, 0);
 | |
|       BytesLeft -= 2;
 | |
|       Offset += 2;
 | |
|     }
 | |
|     if (BytesLeft == 1) {
 | |
|       Value = DAG.getConstant(Val, MVT::i8);
 | |
|       Chain = DAG.getStore(Chain, Value,
 | |
|                            DAG.getNode(ISD::ADD, AddrVT, DstAddr,
 | |
|                                        DAG.getConstant(Offset, AddrVT)),
 | |
|                            NULL, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand Chain = Op.getOperand(0);
 | |
|   unsigned Align =
 | |
|     (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
 | |
|   if (Align == 0) Align = 1;
 | |
| 
 | |
|   ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
 | |
|   // If not DWORD aligned, call memcpy if size is less than the threshold.
 | |
|   // It knows how to align to the right boundary first.
 | |
|   if ((Align & 3) != 0 ||
 | |
|       (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
 | |
|     MVT::ValueType IntPtr = getPointerTy();
 | |
|     TargetLowering::ArgListTy Args;
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     Entry.Ty = getTargetData()->getIntPtrType();
 | |
|     Entry.Node = Op.getOperand(1); Args.push_back(Entry);
 | |
|     Entry.Node = Op.getOperand(2); Args.push_back(Entry);
 | |
|     Entry.Node = Op.getOperand(3); Args.push_back(Entry);
 | |
|     std::pair<SDOperand,SDOperand> CallResult =
 | |
|       LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
 | |
|                   DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
 | |
|     return CallResult.second;
 | |
|   }
 | |
| 
 | |
|   MVT::ValueType AVT;
 | |
|   SDOperand Count;
 | |
|   unsigned BytesLeft = 0;
 | |
|   bool TwoRepMovs = false;
 | |
|   switch (Align & 3) {
 | |
|     case 2:   // WORD aligned
 | |
|       AVT = MVT::i16;
 | |
|       break;
 | |
|     case 0:  // DWORD aligned
 | |
|       AVT = MVT::i32;
 | |
|       if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
 | |
|         AVT = MVT::i64;
 | |
|       break;
 | |
|     default:  // Byte aligned
 | |
|       AVT = MVT::i8;
 | |
|       Count = Op.getOperand(3);
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (AVT > MVT::i8) {
 | |
|     if (I) {
 | |
|       unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
 | |
|       Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
 | |
|       BytesLeft = I->getValue() % UBytes;
 | |
|     } else {
 | |
|       assert(AVT >= MVT::i32 &&
 | |
|              "Do not use rep;movs if not at least DWORD aligned");
 | |
|       Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
 | |
|                           Op.getOperand(3), DAG.getConstant(2, MVT::i8));
 | |
|       TwoRepMovs = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDOperand InFlag(0, 0);
 | |
|   Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
 | |
|                             Count, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
|   Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
 | |
|                             Op.getOperand(1), InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
|   Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
 | |
|                             Op.getOperand(2), InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getValueType(AVT));
 | |
|   Ops.push_back(InFlag);
 | |
|   Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
 | |
| 
 | |
|   if (TwoRepMovs) {
 | |
|     InFlag = Chain.getValue(1);
 | |
|     Count = Op.getOperand(3);
 | |
|     MVT::ValueType CVT = Count.getValueType();
 | |
|     SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
 | |
|                                DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
 | |
|     Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
 | |
|                               Left, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|     Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     Ops.clear();
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(DAG.getValueType(MVT::i8));
 | |
|     Ops.push_back(InFlag);
 | |
|     Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
 | |
|   } else if (BytesLeft) {
 | |
|     // Issue loads and stores for the last 1 - 7 bytes.
 | |
|     unsigned Offset = I->getValue() - BytesLeft;
 | |
|     SDOperand DstAddr = Op.getOperand(1);
 | |
|     MVT::ValueType DstVT = DstAddr.getValueType();
 | |
|     SDOperand SrcAddr = Op.getOperand(2);
 | |
|     MVT::ValueType SrcVT = SrcAddr.getValueType();
 | |
|     SDOperand Value;
 | |
|     if (BytesLeft >= 4) {
 | |
|       Value = DAG.getLoad(MVT::i32, Chain,
 | |
|                           DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
 | |
|                                       DAG.getConstant(Offset, SrcVT)),
 | |
|                           NULL, 0);
 | |
|       Chain = Value.getValue(1);
 | |
|       Chain = DAG.getStore(Chain, Value,
 | |
|                            DAG.getNode(ISD::ADD, DstVT, DstAddr,
 | |
|                                        DAG.getConstant(Offset, DstVT)),
 | |
|                            NULL, 0);
 | |
|       BytesLeft -= 4;
 | |
|       Offset += 4;
 | |
|     }
 | |
|     if (BytesLeft >= 2) {
 | |
|       Value = DAG.getLoad(MVT::i16, Chain,
 | |
|                           DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
 | |
|                                       DAG.getConstant(Offset, SrcVT)),
 | |
|                           NULL, 0);
 | |
|       Chain = Value.getValue(1);
 | |
|       Chain = DAG.getStore(Chain, Value,
 | |
|                            DAG.getNode(ISD::ADD, DstVT, DstAddr,
 | |
|                                        DAG.getConstant(Offset, DstVT)),
 | |
|                            NULL, 0);
 | |
|       BytesLeft -= 2;
 | |
|       Offset += 2;
 | |
|     }
 | |
| 
 | |
|     if (BytesLeft == 1) {
 | |
|       Value = DAG.getLoad(MVT::i8, Chain,
 | |
|                           DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
 | |
|                                       DAG.getConstant(Offset, SrcVT)),
 | |
|                           NULL, 0);
 | |
|       Chain = Value.getValue(1);
 | |
|       Chain = DAG.getStore(Chain, Value,
 | |
|                            DAG.getNode(ISD::ADD, DstVT, DstAddr,
 | |
|                                        DAG.getConstant(Offset, DstVT)),
 | |
|                            NULL, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SDOperand TheOp = Op.getOperand(0);
 | |
|   SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
 | |
|     SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
 | |
|                                          MVT::i64, Copy1.getValue(2));
 | |
|     SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
 | |
|                                 DAG.getConstant(32, MVT::i8));
 | |
|     SDOperand Ops[] = {
 | |
|       DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
 | |
|     };
 | |
|     
 | |
|     Tys = DAG.getVTList(MVT::i64, MVT::Other);
 | |
|     return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
 | |
|   }
 | |
|   
 | |
|   SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
 | |
|   SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
 | |
|                                        MVT::i32, Copy1.getValue(2));
 | |
|   SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
 | |
|   Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|     // memory location argument.
 | |
|     SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
 | |
|     return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
 | |
|                         SV->getOffset());
 | |
|   }
 | |
| 
 | |
|   // __va_list_tag:
 | |
|   //   gp_offset         (0 - 6 * 8)
 | |
|   //   fp_offset         (48 - 48 + 8 * 16)
 | |
|   //   overflow_arg_area (point to parameters coming in memory).
 | |
|   //   reg_save_area
 | |
|   SmallVector<SDOperand, 8> MemOps;
 | |
|   SDOperand FIN = Op.getOperand(1);
 | |
|   // Store gp_offset
 | |
|   SDOperand Store = DAG.getStore(Op.getOperand(0),
 | |
|                                  DAG.getConstant(VarArgsGPOffset, MVT::i32),
 | |
|                                  FIN, SV->getValue(), SV->getOffset());
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store fp_offset
 | |
|   FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
 | |
|                     DAG.getConstant(4, getPointerTy()));
 | |
|   Store = DAG.getStore(Op.getOperand(0),
 | |
|                        DAG.getConstant(VarArgsFPOffset, MVT::i32),
 | |
|                        FIN, SV->getValue(), SV->getOffset());
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store ptr to overflow_arg_area
 | |
|   FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
 | |
|                     DAG.getConstant(4, getPointerTy()));
 | |
|   SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
 | |
|   Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
 | |
|                        SV->getOffset());
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store ptr to reg_save_area.
 | |
|   FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
 | |
|                     DAG.getConstant(8, getPointerTy()));
 | |
|   SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
 | |
|   Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
 | |
|                        SV->getOffset());
 | |
|   MemOps.push_back(Store);
 | |
|   return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
 | |
|   SDOperand Chain = Op.getOperand(0);
 | |
|   SDOperand DstPtr = Op.getOperand(1);
 | |
|   SDOperand SrcPtr = Op.getOperand(2);
 | |
|   SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
 | |
|   SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
 | |
| 
 | |
|   SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
 | |
|                        SrcSV->getValue(), SrcSV->getOffset());
 | |
|   Chain = SrcPtr.getValue(1);
 | |
|   for (unsigned i = 0; i < 3; ++i) {
 | |
|     SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
 | |
|                                 SrcSV->getValue(), SrcSV->getOffset());
 | |
|     Chain = Val.getValue(1);
 | |
|     Chain = DAG.getStore(Chain, Val, DstPtr,
 | |
|                          DstSV->getValue(), DstSV->getOffset());
 | |
|     if (i == 2)
 | |
|       break;
 | |
|     SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr, 
 | |
|                          DAG.getConstant(8, getPointerTy()));
 | |
|     DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr, 
 | |
|                          DAG.getConstant(8, getPointerTy()));
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDOperand
 | |
| X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
 | |
|   switch (IntNo) {
 | |
|   default: return SDOperand();    // Don't custom lower most intrinsics.
 | |
|     // Comparison intrinsics.
 | |
|   case Intrinsic::x86_sse_comieq_ss:
 | |
|   case Intrinsic::x86_sse_comilt_ss:
 | |
|   case Intrinsic::x86_sse_comile_ss:
 | |
|   case Intrinsic::x86_sse_comigt_ss:
 | |
|   case Intrinsic::x86_sse_comige_ss:
 | |
|   case Intrinsic::x86_sse_comineq_ss:
 | |
|   case Intrinsic::x86_sse_ucomieq_ss:
 | |
|   case Intrinsic::x86_sse_ucomilt_ss:
 | |
|   case Intrinsic::x86_sse_ucomile_ss:
 | |
|   case Intrinsic::x86_sse_ucomigt_ss:
 | |
|   case Intrinsic::x86_sse_ucomige_ss:
 | |
|   case Intrinsic::x86_sse_ucomineq_ss:
 | |
|   case Intrinsic::x86_sse2_comieq_sd:
 | |
|   case Intrinsic::x86_sse2_comilt_sd:
 | |
|   case Intrinsic::x86_sse2_comile_sd:
 | |
|   case Intrinsic::x86_sse2_comigt_sd:
 | |
|   case Intrinsic::x86_sse2_comige_sd:
 | |
|   case Intrinsic::x86_sse2_comineq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomieq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomilt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomile_sd:
 | |
|   case Intrinsic::x86_sse2_ucomigt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomige_sd:
 | |
|   case Intrinsic::x86_sse2_ucomineq_sd: {
 | |
|     unsigned Opc = 0;
 | |
|     ISD::CondCode CC = ISD::SETCC_INVALID;
 | |
|     switch (IntNo) {
 | |
|     default: break;
 | |
|     case Intrinsic::x86_sse_comieq_ss:
 | |
|     case Intrinsic::x86_sse2_comieq_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETEQ;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comilt_ss:
 | |
|     case Intrinsic::x86_sse2_comilt_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETLT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comile_ss:
 | |
|     case Intrinsic::x86_sse2_comile_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETLE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comigt_ss:
 | |
|     case Intrinsic::x86_sse2_comigt_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETGT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comige_ss:
 | |
|     case Intrinsic::x86_sse2_comige_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETGE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comineq_ss:
 | |
|     case Intrinsic::x86_sse2_comineq_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETNE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomieq_ss:
 | |
|     case Intrinsic::x86_sse2_ucomieq_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETEQ;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomilt_ss:
 | |
|     case Intrinsic::x86_sse2_ucomilt_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETLT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomile_ss:
 | |
|     case Intrinsic::x86_sse2_ucomile_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETLE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomigt_ss:
 | |
|     case Intrinsic::x86_sse2_ucomigt_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETGT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomige_ss:
 | |
|     case Intrinsic::x86_sse2_ucomige_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETGE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomineq_ss:
 | |
|     case Intrinsic::x86_sse2_ucomineq_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETNE;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     unsigned X86CC;
 | |
|     SDOperand LHS = Op.getOperand(1);
 | |
|     SDOperand RHS = Op.getOperand(2);
 | |
|     translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
 | |
| 
 | |
|     const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
 | |
|     SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
 | |
|     SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
 | |
|     VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
 | |
|     SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
 | |
|     SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // Depths > 0 not supported yet!
 | |
|   if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
 | |
|     return SDOperand();
 | |
|   
 | |
|   // Just load the return address
 | |
|   SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
 | |
|   return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
 | |
| }
 | |
| 
 | |
| SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // Depths > 0 not supported yet!
 | |
|   if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
 | |
|     return SDOperand();
 | |
|     
 | |
|   SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
 | |
|   return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 
 | |
|                      DAG.getConstant(4, getPointerTy()));
 | |
| }
 | |
| 
 | |
| /// LowerOperation - Provide custom lowering hooks for some operations.
 | |
| ///
 | |
| SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: assert(0 && "Should not custom lower this!");
 | |
|   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
 | |
|   case ISD::SHL_PARTS:
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
 | |
|   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
 | |
|   case ISD::FABS:               return LowerFABS(Op, DAG);
 | |
|   case ISD::FNEG:               return LowerFNEG(Op, DAG);
 | |
|   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
 | |
|   case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
 | |
|   case ISD::SELECT:             return LowerSELECT(Op, DAG);
 | |
|   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
 | |
|   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | |
|   case ISD::CALL:               return LowerCALL(Op, DAG);
 | |
|   case ISD::RET:                return LowerRET(Op, DAG);
 | |
|   case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
 | |
|   case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
 | |
|   case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
 | |
|   case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
 | |
|   case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | |
|   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return NULL;
 | |
|   case X86ISD::SHLD:               return "X86ISD::SHLD";
 | |
|   case X86ISD::SHRD:               return "X86ISD::SHRD";
 | |
|   case X86ISD::FAND:               return "X86ISD::FAND";
 | |
|   case X86ISD::FOR:                return "X86ISD::FOR";
 | |
|   case X86ISD::FXOR:               return "X86ISD::FXOR";
 | |
|   case X86ISD::FSRL:               return "X86ISD::FSRL";
 | |
|   case X86ISD::FILD:               return "X86ISD::FILD";
 | |
|   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
 | |
|   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
 | |
|   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
 | |
|   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
 | |
|   case X86ISD::FLD:                return "X86ISD::FLD";
 | |
|   case X86ISD::FST:                return "X86ISD::FST";
 | |
|   case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
 | |
|   case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
 | |
|   case X86ISD::CALL:               return "X86ISD::CALL";
 | |
|   case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
 | |
|   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
 | |
|   case X86ISD::CMP:                return "X86ISD::CMP";
 | |
|   case X86ISD::COMI:               return "X86ISD::COMI";
 | |
|   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
 | |
|   case X86ISD::SETCC:              return "X86ISD::SETCC";
 | |
|   case X86ISD::CMOV:               return "X86ISD::CMOV";
 | |
|   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
 | |
|   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
 | |
|   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
 | |
|   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
 | |
|   case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
 | |
|   case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
 | |
|   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
 | |
|   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
 | |
|   case X86ISD::S2VEC:              return "X86ISD::S2VEC";
 | |
|   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
 | |
|   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
 | |
|   case X86ISD::FMAX:               return "X86ISD::FMAX";
 | |
|   case X86ISD::FMIN:               return "X86ISD::FMIN";
 | |
|   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
 | |
|   case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // isLegalAddressingMode - Return true if the addressing mode represented
 | |
| // by AM is legal for this target, for a load/store of the specified type.
 | |
| bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 
 | |
|                                               const Type *Ty) const {
 | |
|   // X86 supports extremely general addressing modes.
 | |
|   
 | |
|   // X86 allows a sign-extended 32-bit immediate field as a displacement.
 | |
|   if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
 | |
|     return false;
 | |
|   
 | |
|   if (AM.BaseGV) {
 | |
|     // X86-64 only supports addr of globals in small code model.
 | |
|     if (Subtarget->is64Bit() &&
 | |
|         getTargetMachine().getCodeModel() != CodeModel::Small)
 | |
|       return false;
 | |
|     
 | |
|     // We can only fold this if we don't need a load either.
 | |
|     if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   switch (AM.Scale) {
 | |
|   case 0:
 | |
|   case 1:
 | |
|   case 2:
 | |
|   case 4:
 | |
|   case 8:
 | |
|     // These scales always work.
 | |
|     break;
 | |
|   case 3:
 | |
|   case 5:
 | |
|   case 9:
 | |
|     // These scales are formed with basereg+scalereg.  Only accept if there is
 | |
|     // no basereg yet.
 | |
|     if (AM.HasBaseReg)
 | |
|       return false;
 | |
|     break;
 | |
|   default:  // Other stuff never works.
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
| /// are assumed to be legal.
 | |
| bool
 | |
| X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
 | |
|   // Only do shuffles on 128-bit vector types for now.
 | |
|   if (MVT::getSizeInBits(VT) == 64) return false;
 | |
|   return (Mask.Val->getNumOperands() <= 4 ||
 | |
|           isSplatMask(Mask.Val)  ||
 | |
|           isPSHUFHW_PSHUFLWMask(Mask.Val) ||
 | |
|           X86::isUNPCKLMask(Mask.Val) ||
 | |
|           X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
 | |
|           X86::isUNPCKH_v_undef_Mask(Mask.Val) ||
 | |
|           X86::isUNPCKHMask(Mask.Val));
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
 | |
|                                                MVT::ValueType EVT,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   unsigned NumElts = BVOps.size();
 | |
|   // Only do shuffles on 128-bit vector types for now.
 | |
|   if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
 | |
|   if (NumElts == 2) return true;
 | |
|   if (NumElts == 4) {
 | |
|     return (isMOVLMask(&BVOps[0], 4)  ||
 | |
|             isCommutedMOVL(&BVOps[0], 4, true) ||
 | |
|             isSHUFPMask(&BVOps[0], 4) || 
 | |
|             isCommutedSHUFP(&BVOps[0], 4));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Scheduler Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
 | |
|                                            MachineBasicBlock *BB) {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: assert(false && "Unexpected instr type to insert");
 | |
|   case X86::CMOV_FR32:
 | |
|   case X86::CMOV_FR64:
 | |
|   case X86::CMOV_V4F32:
 | |
|   case X86::CMOV_V2F64:
 | |
|   case X86::CMOV_V2I64: {
 | |
|     // To "insert" a SELECT_CC instruction, we actually have to insert the
 | |
|     // diamond control-flow pattern.  The incoming instruction knows the
 | |
|     // destination vreg to set, the condition code register to branch on, the
 | |
|     // true/false values to select between, and a branch opcode to use.
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     ilist<MachineBasicBlock>::iterator It = BB;
 | |
|     ++It;
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB = BB;
 | |
|     MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|     unsigned Opc =
 | |
|       X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
 | |
|     BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     F->getBasicBlockList().insert(It, copy0MBB);
 | |
|     F->getBasicBlockList().insert(It, sinkMBB);
 | |
|     // Update machine-CFG edges by first adding all successors of the current
 | |
|     // block to the new block which will contain the Phi node for the select.
 | |
|     for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
 | |
|         e = BB->succ_end(); i != e; ++i)
 | |
|       sinkMBB->addSuccessor(*i);
 | |
|     // Next, remove all successors of the current block, and add the true
 | |
|     // and fallthrough blocks as its successors.
 | |
|     while(!BB->succ_empty())
 | |
|       BB->removeSuccessor(BB->succ_begin());
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
 | |
|       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
 | |
|       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
| 
 | |
|     delete MI;   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case X86::FP_TO_INT16_IN_MEM:
 | |
|   case X86::FP_TO_INT32_IN_MEM:
 | |
|   case X86::FP_TO_INT64_IN_MEM: {
 | |
|     // Change the floating point control register to use "round towards zero"
 | |
|     // mode when truncating to an integer value.
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
 | |
|     addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
 | |
| 
 | |
|     // Load the old value of the high byte of the control word...
 | |
|     unsigned OldCW =
 | |
|       F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
 | |
|     addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
 | |
| 
 | |
|     // Set the high part to be round to zero...
 | |
|     addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
 | |
|       .addImm(0xC7F);
 | |
| 
 | |
|     // Reload the modified control word now...
 | |
|     addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
 | |
| 
 | |
|     // Restore the memory image of control word to original value
 | |
|     addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
 | |
|       .addReg(OldCW);
 | |
| 
 | |
|     // Get the X86 opcode to use.
 | |
|     unsigned Opc;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: assert(0 && "illegal opcode!");
 | |
|     case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
 | |
|     case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
 | |
|     case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
 | |
|     }
 | |
| 
 | |
|     X86AddressMode AM;
 | |
|     MachineOperand &Op = MI->getOperand(0);
 | |
|     if (Op.isRegister()) {
 | |
|       AM.BaseType = X86AddressMode::RegBase;
 | |
|       AM.Base.Reg = Op.getReg();
 | |
|     } else {
 | |
|       AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = Op.getFrameIndex();
 | |
|     }
 | |
|     Op = MI->getOperand(1);
 | |
|     if (Op.isImmediate())
 | |
|       AM.Scale = Op.getImm();
 | |
|     Op = MI->getOperand(2);
 | |
|     if (Op.isImmediate())
 | |
|       AM.IndexReg = Op.getImm();
 | |
|     Op = MI->getOperand(3);
 | |
|     if (Op.isGlobalAddress()) {
 | |
|       AM.GV = Op.getGlobal();
 | |
|     } else {
 | |
|       AM.Disp = Op.getImm();
 | |
|     }
 | |
|     addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
 | |
|                       .addReg(MI->getOperand(4).getReg());
 | |
| 
 | |
|     // Reload the original control word now.
 | |
|     addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
 | |
| 
 | |
|     delete MI;   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
 | |
|                                                        uint64_t Mask,
 | |
|                                                        uint64_t &KnownZero,
 | |
|                                                        uint64_t &KnownOne,
 | |
|                                                        unsigned Depth) const {
 | |
|   unsigned Opc = Op.getOpcode();
 | |
|   assert((Opc >= ISD::BUILTIN_OP_END ||
 | |
|           Opc == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Opc == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Opc == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
| 
 | |
|   KnownZero = KnownOne = 0;   // Don't know anything.
 | |
|   switch (Opc) {
 | |
|   default: break;
 | |
|   case X86ISD::SETCC:
 | |
|     KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getShuffleScalarElt - Returns the scalar element that will make up the ith
 | |
| /// element of the result of the vector shuffle.
 | |
| static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   SDOperand PermMask = N->getOperand(2);
 | |
|   unsigned NumElems = PermMask.getNumOperands();
 | |
|   SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
 | |
|   i %= NumElems;
 | |
|   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|     return (i == 0)
 | |
|       ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
 | |
|   } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
 | |
|     SDOperand Idx = PermMask.getOperand(i);
 | |
|     if (Idx.getOpcode() == ISD::UNDEF)
 | |
|       return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
 | |
|     return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
 | |
| /// node is a GlobalAddress + an offset.
 | |
| static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
 | |
|   unsigned Opc = N->getOpcode();
 | |
|   if (Opc == X86ISD::Wrapper) {
 | |
|     if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
 | |
|       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
 | |
|       return true;
 | |
|     }
 | |
|   } else if (Opc == ISD::ADD) {
 | |
|     SDOperand N1 = N->getOperand(0);
 | |
|     SDOperand N2 = N->getOperand(1);
 | |
|     if (isGAPlusOffset(N1.Val, GA, Offset)) {
 | |
|       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
 | |
|       if (V) {
 | |
|         Offset += V->getSignExtended();
 | |
|         return true;
 | |
|       }
 | |
|     } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
 | |
|       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
 | |
|       if (V) {
 | |
|         Offset += V->getSignExtended();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isConsecutiveLoad - Returns true if N is loading from an address of Base
 | |
| /// + Dist * Size.
 | |
| static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
 | |
|                               MachineFrameInfo *MFI) {
 | |
|   if (N->getOperand(0).Val != Base->getOperand(0).Val)
 | |
|     return false;
 | |
| 
 | |
|   SDOperand Loc = N->getOperand(1);
 | |
|   SDOperand BaseLoc = Base->getOperand(1);
 | |
|   if (Loc.getOpcode() == ISD::FrameIndex) {
 | |
|     if (BaseLoc.getOpcode() != ISD::FrameIndex)
 | |
|       return false;
 | |
|     int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
 | |
|     int FS  = MFI->getObjectSize(FI);
 | |
|     int BFS = MFI->getObjectSize(BFI);
 | |
|     if (FS != BFS || FS != Size) return false;
 | |
|     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
 | |
|   } else {
 | |
|     GlobalValue *GV1 = NULL;
 | |
|     GlobalValue *GV2 = NULL;
 | |
|     int64_t Offset1 = 0;
 | |
|     int64_t Offset2 = 0;
 | |
|     bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
 | |
|     bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
 | |
|     if (isGA1 && isGA2 && GV1 == GV2)
 | |
|       return Offset1 == (Offset2 + Dist*Size);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
 | |
|                               const X86Subtarget *Subtarget) {
 | |
|   GlobalValue *GV;
 | |
|   int64_t Offset;
 | |
|   if (isGAPlusOffset(Base, GV, Offset))
 | |
|     return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
 | |
|   else {
 | |
|     assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
 | |
|     int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|     if (BFI < 0)
 | |
|       // Fixed objects do not specify alignment, however the offsets are known.
 | |
|       return ((Subtarget->getStackAlignment() % 16) == 0 &&
 | |
|               (MFI->getObjectOffset(BFI) % 16) == 0);
 | |
|     else
 | |
|       return MFI->getObjectAlignment(BFI) >= 16;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
 | |
| /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
 | |
| /// if the load addresses are consecutive, non-overlapping, and in the right
 | |
| /// order.
 | |
| static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                        const X86Subtarget *Subtarget) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   MVT::ValueType EVT = MVT::getVectorBaseType(VT);
 | |
|   SDOperand PermMask = N->getOperand(2);
 | |
|   int NumElems = (int)PermMask.getNumOperands();
 | |
|   SDNode *Base = NULL;
 | |
|   for (int i = 0; i < NumElems; ++i) {
 | |
|     SDOperand Idx = PermMask.getOperand(i);
 | |
|     if (Idx.getOpcode() == ISD::UNDEF) {
 | |
|       if (!Base) return SDOperand();
 | |
|     } else {
 | |
|       SDOperand Arg =
 | |
|         getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
 | |
|       if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
 | |
|         return SDOperand();
 | |
|       if (!Base)
 | |
|         Base = Arg.Val;
 | |
|       else if (!isConsecutiveLoad(Arg.Val, Base,
 | |
|                                   i, MVT::getSizeInBits(EVT)/8,MFI))
 | |
|         return SDOperand();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
 | |
|   if (isAlign16) {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Base);
 | |
|     return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
 | |
|                        LD->getSrcValueOffset());
 | |
|   } else {
 | |
|     // Just use movups, it's shorter.
 | |
|     SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
 | |
|     SmallVector<SDOperand, 3> Ops;
 | |
|     Ops.push_back(Base->getOperand(0));
 | |
|     Ops.push_back(Base->getOperand(1));
 | |
|     Ops.push_back(Base->getOperand(2));
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, VT,
 | |
|                        DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
 | |
| static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                       const X86Subtarget *Subtarget) {
 | |
|   SDOperand Cond = N->getOperand(0);
 | |
| 
 | |
|   // If we have SSE[12] support, try to form min/max nodes.
 | |
|   if (Subtarget->hasSSE2() &&
 | |
|       (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
 | |
|     if (Cond.getOpcode() == ISD::SETCC) {
 | |
|       // Get the LHS/RHS of the select.
 | |
|       SDOperand LHS = N->getOperand(1);
 | |
|       SDOperand RHS = N->getOperand(2);
 | |
|       ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | |
| 
 | |
|       unsigned Opcode = 0;
 | |
|       if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
 | |
|         switch (CC) {
 | |
|         default: break;
 | |
|         case ISD::SETOLE: // (X <= Y) ? X : Y -> min
 | |
|         case ISD::SETULE:
 | |
|         case ISD::SETLE:
 | |
|           if (!UnsafeFPMath) break;
 | |
|           // FALL THROUGH.
 | |
|         case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
 | |
|         case ISD::SETLT:
 | |
|           Opcode = X86ISD::FMIN;
 | |
|           break;
 | |
| 
 | |
|         case ISD::SETOGT: // (X > Y) ? X : Y -> max
 | |
|         case ISD::SETUGT:
 | |
|         case ISD::SETGT:
 | |
|           if (!UnsafeFPMath) break;
 | |
|           // FALL THROUGH.
 | |
|         case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
 | |
|         case ISD::SETGE:
 | |
|           Opcode = X86ISD::FMAX;
 | |
|           break;
 | |
|         }
 | |
|       } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
 | |
|         switch (CC) {
 | |
|         default: break;
 | |
|         case ISD::SETOGT: // (X > Y) ? Y : X -> min
 | |
|         case ISD::SETUGT:
 | |
|         case ISD::SETGT:
 | |
|           if (!UnsafeFPMath) break;
 | |
|           // FALL THROUGH.
 | |
|         case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
 | |
|         case ISD::SETGE:
 | |
|           Opcode = X86ISD::FMIN;
 | |
|           break;
 | |
| 
 | |
|         case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
 | |
|         case ISD::SETULE:
 | |
|         case ISD::SETLE:
 | |
|           if (!UnsafeFPMath) break;
 | |
|           // FALL THROUGH.
 | |
|         case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
 | |
|         case ISD::SETLT:
 | |
|           Opcode = X86ISD::FMAX;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Opcode)
 | |
|         return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                                DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     return PerformShuffleCombine(N, DAG, Subtarget);
 | |
|   case ISD::SELECT:
 | |
|     return PerformSELECTCombine(N, DAG, Subtarget);
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| X86TargetLowering::ConstraintType
 | |
| X86TargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'A':
 | |
|     case 'r':
 | |
|     case 'R':
 | |
|     case 'l':
 | |
|     case 'q':
 | |
|     case 'Q':
 | |
|     case 'x':
 | |
|     case 'Y':
 | |
|       return C_RegisterClass;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// isOperandValidForConstraint - Return the specified operand (possibly
 | |
| /// modified) if the specified SDOperand is valid for the specified target
 | |
| /// constraint letter, otherwise return null.
 | |
| SDOperand X86TargetLowering::
 | |
| isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
 | |
|   switch (Constraint) {
 | |
|   default: break;
 | |
|   case 'I':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getValue() <= 31)
 | |
|         return Op;
 | |
|     }
 | |
|     return SDOperand(0,0);
 | |
|   case 'N':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getValue() <= 255)
 | |
|         return Op;
 | |
|     }
 | |
|     return SDOperand(0,0);
 | |
|   case 'i':
 | |
|     // Literal immediates are always ok.
 | |
|     if (isa<ConstantSDNode>(Op)) return Op;
 | |
| 
 | |
|     // If we are in non-pic codegen mode, we allow the address of a global to
 | |
|     // be used with 'i'.
 | |
|     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
 | |
|       if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | |
|         return SDOperand(0, 0);
 | |
| 
 | |
|       if (GA->getOpcode() != ISD::TargetGlobalAddress)
 | |
|         Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
 | |
|                                         GA->getOffset());
 | |
|       return Op;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, not valid for this mode.
 | |
|     return SDOperand(0, 0);
 | |
|   }
 | |
|   return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> X86TargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   MVT::ValueType VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // FIXME: not handling fp-stack yet!
 | |
|     switch (Constraint[0]) {      // GCC X86 Constraint Letters
 | |
|     default: break;  // Unknown constraint letter
 | |
|     case 'A':   // EAX/EDX
 | |
|       if (VT == MVT::i32 || VT == MVT::i64)
 | |
|         return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
 | |
|       break;
 | |
|     case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
 | |
|     case 'Q':   // Q_REGS
 | |
|       if (VT == MVT::i32)
 | |
|         return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
 | |
|       else if (VT == MVT::i16)
 | |
|         return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
 | |
|       else if (VT == MVT::i8)
 | |
|         return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 MVT::ValueType VT) const {
 | |
|   // First, see if this is a constraint that directly corresponds to an LLVM
 | |
|   // register class.
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'r':   // GENERAL_REGS
 | |
|     case 'R':   // LEGACY_REGS
 | |
|     case 'l':   // INDEX_REGS
 | |
|       if (VT == MVT::i64 && Subtarget->is64Bit())
 | |
|         return std::make_pair(0U, X86::GR64RegisterClass);
 | |
|       if (VT == MVT::i32)
 | |
|         return std::make_pair(0U, X86::GR32RegisterClass);
 | |
|       else if (VT == MVT::i16)
 | |
|         return std::make_pair(0U, X86::GR16RegisterClass);
 | |
|       else if (VT == MVT::i8)
 | |
|         return std::make_pair(0U, X86::GR8RegisterClass);
 | |
|       break;
 | |
|     case 'y':   // MMX_REGS if MMX allowed.
 | |
|       if (!Subtarget->hasMMX()) break;
 | |
|       return std::make_pair(0U, X86::VR64RegisterClass);
 | |
|       break;
 | |
|     case 'Y':   // SSE_REGS if SSE2 allowed
 | |
|       if (!Subtarget->hasSSE2()) break;
 | |
|       // FALL THROUGH.
 | |
|     case 'x':   // SSE_REGS if SSE1 allowed
 | |
|       if (!Subtarget->hasSSE1()) break;
 | |
|       
 | |
|       switch (VT) {
 | |
|       default: break;
 | |
|       // Scalar SSE types.
 | |
|       case MVT::f32:
 | |
|       case MVT::i32:
 | |
|         return std::make_pair(0U, X86::FR32RegisterClass);
 | |
|       case MVT::f64:
 | |
|       case MVT::i64:
 | |
|         return std::make_pair(0U, X86::FR64RegisterClass);
 | |
|       // Vector types.
 | |
|       case MVT::Vector:
 | |
|       case MVT::v16i8:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v2i64:
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v2f64:
 | |
|         return std::make_pair(0U, X86::VR128RegisterClass);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Use the default implementation in TargetLowering to convert the register
 | |
|   // constraint into a member of a register class.
 | |
|   std::pair<unsigned, const TargetRegisterClass*> Res;
 | |
|   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| 
 | |
|   // Not found as a standard register?
 | |
|   if (Res.second == 0) {
 | |
|     // GCC calls "st(0)" just plain "st".
 | |
|     if (StringsEqualNoCase("{st}", Constraint)) {
 | |
|       Res.first = X86::ST0;
 | |
|       Res.second = X86::RSTRegisterClass;
 | |
|     }
 | |
| 
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, check to see if this is a register class of the wrong value
 | |
|   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
 | |
|   // turn into {ax},{dx}.
 | |
|   if (Res.second->hasType(VT))
 | |
|     return Res;   // Correct type already, nothing to do.
 | |
| 
 | |
|   // All of the single-register GCC register classes map their values onto
 | |
|   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
 | |
|   // really want an 8-bit or 32-bit register, map to the appropriate register
 | |
|   // class and return the appropriate register.
 | |
|   if (Res.second != X86::GR16RegisterClass)
 | |
|     return Res;
 | |
| 
 | |
|   if (VT == MVT::i8) {
 | |
|     unsigned DestReg = 0;
 | |
|     switch (Res.first) {
 | |
|     default: break;
 | |
|     case X86::AX: DestReg = X86::AL; break;
 | |
|     case X86::DX: DestReg = X86::DL; break;
 | |
|     case X86::CX: DestReg = X86::CL; break;
 | |
|     case X86::BX: DestReg = X86::BL; break;
 | |
|     }
 | |
|     if (DestReg) {
 | |
|       Res.first = DestReg;
 | |
|       Res.second = Res.second = X86::GR8RegisterClass;
 | |
|     }
 | |
|   } else if (VT == MVT::i32) {
 | |
|     unsigned DestReg = 0;
 | |
|     switch (Res.first) {
 | |
|     default: break;
 | |
|     case X86::AX: DestReg = X86::EAX; break;
 | |
|     case X86::DX: DestReg = X86::EDX; break;
 | |
|     case X86::CX: DestReg = X86::ECX; break;
 | |
|     case X86::BX: DestReg = X86::EBX; break;
 | |
|     case X86::SI: DestReg = X86::ESI; break;
 | |
|     case X86::DI: DestReg = X86::EDI; break;
 | |
|     case X86::BP: DestReg = X86::EBP; break;
 | |
|     case X86::SP: DestReg = X86::ESP; break;
 | |
|     }
 | |
|     if (DestReg) {
 | |
|       Res.first = DestReg;
 | |
|       Res.second = Res.second = X86::GR32RegisterClass;
 | |
|     }
 | |
|   } else if (VT == MVT::i64) {
 | |
|     unsigned DestReg = 0;
 | |
|     switch (Res.first) {
 | |
|     default: break;
 | |
|     case X86::AX: DestReg = X86::RAX; break;
 | |
|     case X86::DX: DestReg = X86::RDX; break;
 | |
|     case X86::CX: DestReg = X86::RCX; break;
 | |
|     case X86::BX: DestReg = X86::RBX; break;
 | |
|     case X86::SI: DestReg = X86::RSI; break;
 | |
|     case X86::DI: DestReg = X86::RDI; break;
 | |
|     case X86::BP: DestReg = X86::RBP; break;
 | |
|     case X86::SP: DestReg = X86::RSP; break;
 | |
|     }
 | |
|     if (DestReg) {
 | |
|       Res.first = DestReg;
 | |
|       Res.second = Res.second = X86::GR64RegisterClass;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 |