mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36430 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			508 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			508 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the X86 implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86.h"
 | |
| #include "X86GenInstrInfo.inc"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
 | |
|   : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])),
 | |
|     TM(tm), RI(tm, *this) {
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
 | |
|                                unsigned& sourceReg,
 | |
|                                unsigned& destReg) const {
 | |
|   MachineOpCode oc = MI.getOpcode();
 | |
|   if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
 | |
|       oc == X86::MOV32rr || oc == X86::MOV64rr ||
 | |
|       oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
 | |
|       oc == X86::FpMOV  || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
 | |
|       oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
 | |
|       oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
 | |
|       oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
 | |
|       oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
 | |
|       oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
 | |
|       assert(MI.getNumOperands() >= 2 &&
 | |
|              MI.getOperand(0).isRegister() &&
 | |
|              MI.getOperand(1).isRegister() &&
 | |
|              "invalid register-register move instruction");
 | |
|       sourceReg = MI.getOperand(1).getReg();
 | |
|       destReg = MI.getOperand(0).getReg();
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI, 
 | |
|                                            int &FrameIndex) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV16_rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV32_rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::FpLD64m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|     if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() &&
 | |
|         MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() &&
 | |
|         MI->getOperand(2).getImmedValue() == 1 &&
 | |
|         MI->getOperand(3).getReg() == 0 &&
 | |
|         MI->getOperand(4).getImmedValue() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getFrameIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
 | |
|                                           int &FrameIndex) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::MOV8mr:
 | |
|   case X86::MOV16mr:
 | |
|   case X86::MOV16_mr:
 | |
|   case X86::MOV32mr:
 | |
|   case X86::MOV32_mr:
 | |
|   case X86::MOV64mr:
 | |
|   case X86::FpSTP64m:
 | |
|   case X86::MOVSSmr:
 | |
|   case X86::MOVSDmr:
 | |
|   case X86::MOVAPSmr:
 | |
|   case X86::MOVAPDmr:
 | |
|   case X86::MMX_MOVD64mr:
 | |
|   case X86::MMX_MOVQ64mr:
 | |
|   case X86::MMX_MOVNTQmr:
 | |
|     if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() &&
 | |
|         MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() &&
 | |
|         MI->getOperand(1).getImmedValue() == 1 &&
 | |
|         MI->getOperand(2).getReg() == 0 &&
 | |
|         MI->getOperand(3).getImmedValue() == 0) {
 | |
|       FrameIndex = MI->getOperand(0).getFrameIndex();
 | |
|       return MI->getOperand(4).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// convertToThreeAddress - This method must be implemented by targets that
 | |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
 | |
| /// may be able to convert a two-address instruction into a true
 | |
| /// three-address instruction on demand.  This allows the X86 target (for
 | |
| /// example) to convert ADD and SHL instructions into LEA instructions if they
 | |
| /// would require register copies due to two-addressness.
 | |
| ///
 | |
| /// This method returns a null pointer if the transformation cannot be
 | |
| /// performed, otherwise it returns the new instruction.
 | |
| ///
 | |
| MachineInstr *
 | |
| X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | |
|                                     MachineBasicBlock::iterator &MBBI,
 | |
|                                     LiveVariables &LV) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   // All instructions input are two-addr instructions.  Get the known operands.
 | |
|   unsigned Dest = MI->getOperand(0).getReg();
 | |
|   unsigned Src = MI->getOperand(1).getReg();
 | |
| 
 | |
|   MachineInstr *NewMI = NULL;
 | |
|   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
 | |
|   // we have better subtarget support, enable the 16-bit LEA generation here.
 | |
|   bool DisableLEA16 = true;
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: return 0;
 | |
|   case X86::SHUFPSrri: {
 | |
|     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
 | |
|     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
 | |
|     
 | |
|     unsigned A = MI->getOperand(0).getReg();
 | |
|     unsigned B = MI->getOperand(1).getReg();
 | |
|     unsigned C = MI->getOperand(2).getReg();
 | |
|     unsigned M = MI->getOperand(3).getImm();
 | |
|     if (B != C) return 0;
 | |
|     NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL64ri: {
 | |
|     assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned Dest = MI->getOperand(0).getReg();
 | |
|     unsigned Src = MI->getOperand(1).getReg();
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
|     
 | |
|     NewMI = BuildMI(get(X86::LEA64r), Dest)
 | |
|       .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL32ri: {
 | |
|     assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned Dest = MI->getOperand(0).getReg();
 | |
|     unsigned Src = MI->getOperand(1).getReg();
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
|     
 | |
|     unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
 | |
|       X86::LEA64_32r : X86::LEA32r;
 | |
|     NewMI = BuildMI(get(Opc), Dest)
 | |
|       .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL16ri: {
 | |
|     assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
 | |
|     if (DisableLEA16) return 0;
 | |
|     
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned Dest = MI->getOperand(0).getReg();
 | |
|     unsigned Src = MI->getOperand(1).getReg();
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
|     
 | |
|     NewMI = BuildMI(get(X86::LEA16r), Dest)
 | |
|       .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // FIXME: None of these instructions are promotable to LEAs without
 | |
|   // additional information.  In particular, LEA doesn't set the flags that
 | |
|   // add and inc do.  :(
 | |
|   if (0)
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::INC32r:
 | |
|   case X86::INC64_32r:
 | |
|     assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
 | |
|     NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, 1);
 | |
|     break;
 | |
|   case X86::INC16r:
 | |
|   case X86::INC64_16r:
 | |
|     if (DisableLEA16) return 0;
 | |
|     assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
 | |
|     NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
 | |
|     break;
 | |
|   case X86::DEC32r:
 | |
|   case X86::DEC64_32r:
 | |
|     assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
 | |
|     NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, -1);
 | |
|     break;
 | |
|   case X86::DEC16r:
 | |
|   case X86::DEC64_16r:
 | |
|     if (DisableLEA16) return 0;
 | |
|     assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
 | |
|     NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
 | |
|     break;
 | |
|   case X86::ADD32rr:
 | |
|     assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
 | |
|     NewMI = addRegReg(BuildMI(get(X86::LEA32r), Dest), Src,
 | |
|                      MI->getOperand(2).getReg());
 | |
|     break;
 | |
|   case X86::ADD16rr:
 | |
|     if (DisableLEA16) return 0;
 | |
|     assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
 | |
|     NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
 | |
|                      MI->getOperand(2).getReg());
 | |
|     break;
 | |
|   case X86::ADD32ri:
 | |
|   case X86::ADD32ri8:
 | |
|     assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
 | |
|     if (MI->getOperand(2).isImmediate())
 | |
|       NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src,
 | |
|                           MI->getOperand(2).getImmedValue());
 | |
|     break;
 | |
|   case X86::ADD16ri:
 | |
|   case X86::ADD16ri8:
 | |
|     if (DisableLEA16) return 0;
 | |
|     assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
 | |
|     if (MI->getOperand(2).isImmediate())
 | |
|       NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
 | |
|                           MI->getOperand(2).getImmedValue());
 | |
|     break;
 | |
|   case X86::SHL16ri:
 | |
|     if (DisableLEA16) return 0;
 | |
|   case X86::SHL32ri:
 | |
|     assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
 | |
|            "Unknown shl instruction!");
 | |
|     unsigned ShAmt = MI->getOperand(2).getImmedValue();
 | |
|     if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
 | |
|       X86AddressMode AM;
 | |
|       AM.Scale = 1 << ShAmt;
 | |
|       AM.IndexReg = Src;
 | |
|       unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
 | |
|       NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (NewMI) {
 | |
|     NewMI->copyKillDeadInfo(MI);
 | |
|     LV.instructionChanged(MI, NewMI);  // Update live variables
 | |
|     MFI->insert(MBBI, NewMI);          // Insert the new inst    
 | |
|   }
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// commuteInstruction - We have a few instructions that must be hacked on to
 | |
| /// commute them.
 | |
| ///
 | |
| MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
 | |
|   // FIXME: Can commute cmoves by changing the condition!
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
 | |
|   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
 | |
|   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
 | |
|   case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
 | |
|     unsigned Opc;
 | |
|     unsigned Size;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: assert(0 && "Unreachable!");
 | |
|     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
 | |
|     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
 | |
|     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
 | |
|     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
 | |
|     }
 | |
|     unsigned Amt = MI->getOperand(3).getImmedValue();
 | |
|     unsigned A = MI->getOperand(0).getReg();
 | |
|     unsigned B = MI->getOperand(1).getReg();
 | |
|     unsigned C = MI->getOperand(2).getReg();
 | |
|     bool BisKill = MI->getOperand(1).isKill();
 | |
|     bool CisKill = MI->getOperand(2).isKill();
 | |
|     return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
 | |
|       .addReg(B, false, false, BisKill).addImm(Size-Amt);
 | |
|   }
 | |
|   default:
 | |
|     return TargetInstrInfo::commuteInstruction(MI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
 | |
|   switch (BrOpc) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::JE:  return X86::COND_E;
 | |
|   case X86::JNE: return X86::COND_NE;
 | |
|   case X86::JL:  return X86::COND_L;
 | |
|   case X86::JLE: return X86::COND_LE;
 | |
|   case X86::JG:  return X86::COND_G;
 | |
|   case X86::JGE: return X86::COND_GE;
 | |
|   case X86::JB:  return X86::COND_B;
 | |
|   case X86::JBE: return X86::COND_BE;
 | |
|   case X86::JA:  return X86::COND_A;
 | |
|   case X86::JAE: return X86::COND_AE;
 | |
|   case X86::JS:  return X86::COND_S;
 | |
|   case X86::JNS: return X86::COND_NS;
 | |
|   case X86::JP:  return X86::COND_P;
 | |
|   case X86::JNP: return X86::COND_NP;
 | |
|   case X86::JO:  return X86::COND_O;
 | |
|   case X86::JNO: return X86::COND_NO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: assert(0 && "Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::JE;
 | |
|   case X86::COND_NE: return X86::JNE;
 | |
|   case X86::COND_L:  return X86::JL;
 | |
|   case X86::COND_LE: return X86::JLE;
 | |
|   case X86::COND_G:  return X86::JG;
 | |
|   case X86::COND_GE: return X86::JGE;
 | |
|   case X86::COND_B:  return X86::JB;
 | |
|   case X86::COND_BE: return X86::JBE;
 | |
|   case X86::COND_A:  return X86::JA;
 | |
|   case X86::COND_AE: return X86::JAE;
 | |
|   case X86::COND_S:  return X86::JS;
 | |
|   case X86::COND_NS: return X86::JNS;
 | |
|   case X86::COND_P:  return X86::JP;
 | |
|   case X86::COND_NP: return X86::JNP;
 | |
|   case X86::COND_O:  return X86::JO;
 | |
|   case X86::COND_NO: return X86::JNO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetOppositeBranchCondition - Return the inverse of the specified condition,
 | |
| /// e.g. turning COND_E to COND_NE.
 | |
| X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: assert(0 && "Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::COND_NE;
 | |
|   case X86::COND_NE: return X86::COND_E;
 | |
|   case X86::COND_L:  return X86::COND_GE;
 | |
|   case X86::COND_LE: return X86::COND_G;
 | |
|   case X86::COND_G:  return X86::COND_LE;
 | |
|   case X86::COND_GE: return X86::COND_L;
 | |
|   case X86::COND_B:  return X86::COND_AE;
 | |
|   case X86::COND_BE: return X86::COND_A;
 | |
|   case X86::COND_A:  return X86::COND_BE;
 | |
|   case X86::COND_AE: return X86::COND_B;
 | |
|   case X86::COND_S:  return X86::COND_NS;
 | |
|   case X86::COND_NS: return X86::COND_S;
 | |
|   case X86::COND_P:  return X86::COND_NP;
 | |
|   case X86::COND_NP: return X86::COND_P;
 | |
|   case X86::COND_O:  return X86::COND_NO;
 | |
|   case X86::COND_NO: return X86::COND_O;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 
 | |
|                                  MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  std::vector<MachineOperand> &Cond) const {
 | |
|   // TODO: If FP_REG_KILL is around, ignore it.
 | |
|                                    
 | |
|   // If the block has no terminators, it just falls into the block after it.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode()))
 | |
|     return false;
 | |
| 
 | |
|   // Get the last instruction in the block.
 | |
|   MachineInstr *LastInst = I;
 | |
|   
 | |
|   // If there is only one terminator instruction, process it.
 | |
|   if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) {
 | |
|     if (!isBranch(LastInst->getOpcode()))
 | |
|       return true;
 | |
|     
 | |
|     // If the block ends with a branch there are 3 possibilities:
 | |
|     // it's an unconditional, conditional, or indirect branch.
 | |
|     
 | |
|     if (LastInst->getOpcode() == X86::JMP) {
 | |
|       TBB = LastInst->getOperand(0).getMachineBasicBlock();
 | |
|       return false;
 | |
|     }
 | |
|     X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
 | |
|     if (BranchCode == X86::COND_INVALID)
 | |
|       return true;  // Can't handle indirect branch.
 | |
| 
 | |
|     // Otherwise, block ends with fall-through condbranch.
 | |
|     TBB = LastInst->getOperand(0).getMachineBasicBlock();
 | |
|     Cond.push_back(MachineOperand::CreateImm(BranchCode));
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Get the instruction before it if it's a terminator.
 | |
|   MachineInstr *SecondLastInst = I;
 | |
|   
 | |
|   // If there are three terminators, we don't know what sort of block this is.
 | |
|   if (SecondLastInst && I != MBB.begin() &&
 | |
|       isTerminatorInstr((--I)->getOpcode()))
 | |
|     return true;
 | |
| 
 | |
|   // If the block ends with X86::JMP and a conditional branch, handle it.
 | |
|   X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
 | |
|   if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
 | |
|     TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
 | |
|     Cond.push_back(MachineOperand::CreateImm(BranchCode));
 | |
|     FBB = LastInst->getOperand(0).getMachineBasicBlock();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, can't handle this.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin()) return;
 | |
|   --I;
 | |
|   if (I->getOpcode() != X86::JMP && 
 | |
|       GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
 | |
|     return;
 | |
|   
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
|   
 | |
|   I = MBB.end();
 | |
|   
 | |
|   if (I == MBB.begin()) return;
 | |
|   --I;
 | |
|   if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
 | |
|     return;
 | |
|   
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                                 MachineBasicBlock *FBB,
 | |
|                                 const std::vector<MachineOperand> &Cond) const {
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 1 || Cond.size() == 0) &&
 | |
|          "X86 branch conditions have one component!");
 | |
| 
 | |
|   if (FBB == 0) { // One way branch.
 | |
|     if (Cond.empty()) {
 | |
|       // Unconditional branch?
 | |
|       BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
 | |
|     } else {
 | |
|       // Conditional branch.
 | |
|       unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
 | |
|       BuildMI(&MBB, get(Opc)).addMBB(TBB);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Two-way Conditional branch.
 | |
|   unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
 | |
|   BuildMI(&MBB, get(Opc)).addMBB(TBB);
 | |
|   BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
 | |
|   if (MBB.empty()) return false;
 | |
|   
 | |
|   switch (MBB.back().getOpcode()) {
 | |
|   case X86::JMP:     // Uncond branch.
 | |
|   case X86::JMP32r:  // Indirect branch.
 | |
|   case X86::JMP32m:  // Indirect branch through mem.
 | |
|     return true;
 | |
|   default: return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
 | |
|   Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
 | |
|   const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
 | |
|   if (Subtarget->is64Bit())
 | |
|     return &X86::GR64RegClass;
 | |
|   else
 | |
|     return &X86::GR32RegClass;
 | |
| }
 |