mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20070423/048376.html git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36417 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			925 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			925 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Chris Lattner and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass munges the code in the input function to better prepare it for
 | |
| // SelectionDAG-based code generation.  This works around limitations in it's
 | |
| // basic-block-at-a-time approach.  It should eventually be removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "codegenprepare"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Target/TargetAsmInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {  
 | |
|   class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
 | |
|     /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | |
|     /// transformation profitability.
 | |
|     const TargetLowering *TLI;
 | |
|   public:
 | |
|     CodeGenPrepare(const TargetLowering *tli = 0) : TLI(tli) {}
 | |
|     bool runOnFunction(Function &F);
 | |
|     
 | |
|   private:
 | |
|     bool EliminateMostlyEmptyBlocks(Function &F);
 | |
|     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | |
|     void EliminateMostlyEmptyBlock(BasicBlock *BB);
 | |
|     bool OptimizeBlock(BasicBlock &BB);
 | |
|     bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
 | |
|                                const Type *AccessTy,
 | |
|                                DenseMap<Value*,Value*> &SunkAddrs);
 | |
|   };
 | |
| }
 | |
| static RegisterPass<CodeGenPrepare> X("codegenprepare",
 | |
|                                       "Optimize for code generation");
 | |
| 
 | |
| FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
 | |
|   return new CodeGenPrepare(TLI);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool CodeGenPrepare::runOnFunction(Function &F) {
 | |
|   bool EverMadeChange = false;
 | |
|   
 | |
|   // First pass, eliminate blocks that contain only PHI nodes and an
 | |
|   // unconditional branch.
 | |
|   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
 | |
|   
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|       MadeChange |= OptimizeBlock(*BB);
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
 | |
| /// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify) 
 | |
| /// often split edges in ways that are non-optimal for isel.  Start by
 | |
| /// eliminating these blocks so we can split them the way we want them.
 | |
| bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   // Note that this intentionally skips the entry block.
 | |
|   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
 | |
|     BasicBlock *BB = I++;
 | |
| 
 | |
|     // If this block doesn't end with an uncond branch, ignore it.
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional())
 | |
|       continue;
 | |
|     
 | |
|     // If the instruction before the branch isn't a phi node, then other stuff
 | |
|     // is happening here.
 | |
|     BasicBlock::iterator BBI = BI;
 | |
|     if (BBI != BB->begin()) {
 | |
|       --BBI;
 | |
|       if (!isa<PHINode>(BBI)) continue;
 | |
|     }
 | |
|     
 | |
|     // Do not break infinite loops.
 | |
|     BasicBlock *DestBB = BI->getSuccessor(0);
 | |
|     if (DestBB == BB)
 | |
|       continue;
 | |
|     
 | |
|     if (!CanMergeBlocks(BB, DestBB))
 | |
|       continue;
 | |
|     
 | |
|     EliminateMostlyEmptyBlock(BB);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
 | |
| /// single uncond branch between them, and BB contains no other non-phi
 | |
| /// instructions.
 | |
| bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
 | |
|                                     const BasicBlock *DestBB) const {
 | |
|   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | |
|   // the successor.  If there are more complex condition (e.g. preheaders),
 | |
|   // don't mess around with them.
 | |
|   BasicBlock::const_iterator BBI = BB->begin();
 | |
|   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|     for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       const Instruction *User = cast<Instruction>(*UI);
 | |
|       if (User->getParent() != DestBB || !isa<PHINode>(User))
 | |
|         return false;
 | |
|       // If User is inside DestBB block and it is a PHINode then check 
 | |
|       // incoming value. If incoming value is not from BB then this is 
 | |
|       // a complex condition (e.g. preheaders) we want to avoid here.
 | |
|       if (User->getParent() == DestBB) {
 | |
|         if (const PHINode *UPN = dyn_cast<PHINode>(User))
 | |
|           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | |
|             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | |
|             if (Insn && Insn->getParent() == BB &&
 | |
|                 Insn->getParent() != UPN->getIncomingBlock(I))
 | |
|               return false;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | |
|   // and DestBB may have conflicting incoming values for the block.  If so, we
 | |
|   // can't merge the block.
 | |
|   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | |
|   if (!DestBBPN) return true;  // no conflict.
 | |
|   
 | |
|   // Collect the preds of BB.
 | |
|   SmallPtrSet<BasicBlock*, 16> BBPreds;
 | |
|   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // It is faster to get preds from a PHI than with pred_iterator.
 | |
|     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|       BBPreds.insert(BBPN->getIncomingBlock(i));
 | |
|   } else {
 | |
|     BBPreds.insert(pred_begin(BB), pred_end(BB));
 | |
|   }
 | |
|   
 | |
|   // Walk the preds of DestBB.
 | |
|   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | |
|     if (BBPreds.count(Pred)) {   // Common predecessor?
 | |
|       BBI = DestBB->begin();
 | |
|       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|         const Value *V1 = PN->getIncomingValueForBlock(Pred);
 | |
|         const Value *V2 = PN->getIncomingValueForBlock(BB);
 | |
|         
 | |
|         // If V2 is a phi node in BB, look up what the mapped value will be.
 | |
|         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | |
|           if (V2PN->getParent() == BB)
 | |
|             V2 = V2PN->getIncomingValueForBlock(Pred);
 | |
|         
 | |
|         // If there is a conflict, bail out.
 | |
|         if (V1 != V2) return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
 | |
| /// an unconditional branch in it.
 | |
| void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   BasicBlock *DestBB = BI->getSuccessor(0);
 | |
|   
 | |
|   DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
 | |
|   
 | |
|   // If the destination block has a single pred, then this is a trivial edge,
 | |
|   // just collapse it.
 | |
|   if (DestBB->getSinglePredecessor()) {
 | |
|     // If DestBB has single-entry PHI nodes, fold them.
 | |
|     while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|       PN->eraseFromParent();
 | |
|     }
 | |
|     
 | |
|     // Splice all the PHI nodes from BB over to DestBB.
 | |
|     DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
 | |
|                                  BB->begin(), BI);
 | |
|     
 | |
|     // Anything that branched to BB now branches to DestBB.
 | |
|     BB->replaceAllUsesWith(DestBB);
 | |
|     
 | |
|     // Nuke BB.
 | |
|     BB->eraseFromParent();
 | |
|     
 | |
|     DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | |
|   // to handle the new incoming edges it is about to have.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator BBI = DestBB->begin();
 | |
|        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|     // Remove the incoming value for BB, and remember it.
 | |
|     Value *InVal = PN->removeIncomingValue(BB, false);
 | |
|     
 | |
|     // Two options: either the InVal is a phi node defined in BB or it is some
 | |
|     // value that dominates BB.
 | |
|     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | |
|     if (InValPhi && InValPhi->getParent() == BB) {
 | |
|       // Add all of the input values of the input PHI as inputs of this phi.
 | |
|       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | |
|         PN->addIncoming(InValPhi->getIncomingValue(i),
 | |
|                         InValPhi->getIncomingBlock(i));
 | |
|     } else {
 | |
|       // Otherwise, add one instance of the dominating value for each edge that
 | |
|       // we will be adding.
 | |
|       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
 | |
|       } else {
 | |
|         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|           PN->addIncoming(InVal, *PI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // The PHIs are now updated, change everything that refers to BB to use
 | |
|   // DestBB and remove BB.
 | |
|   BB->replaceAllUsesWith(DestBB);
 | |
|   BB->eraseFromParent();
 | |
|   
 | |
|   DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SplitEdgeNicely - Split the critical edge from TI to it's specified
 | |
| /// successor if it will improve codegen.  We only do this if the successor has
 | |
| /// phi nodes (otherwise critical edges are ok).  If there is already another
 | |
| /// predecessor of the succ that is empty (and thus has no phi nodes), use it
 | |
| /// instead of introducing a new block.
 | |
| static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
 | |
|   BasicBlock *TIBB = TI->getParent();
 | |
|   BasicBlock *Dest = TI->getSuccessor(SuccNum);
 | |
|   assert(isa<PHINode>(Dest->begin()) &&
 | |
|          "This should only be called if Dest has a PHI!");
 | |
|   
 | |
|   /// TIPHIValues - This array is lazily computed to determine the values of
 | |
|   /// PHIs in Dest that TI would provide.
 | |
|   std::vector<Value*> TIPHIValues;
 | |
|   
 | |
|   // Check to see if Dest has any blocks that can be used as a split edge for
 | |
|   // this terminator.
 | |
|   for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
 | |
|     BasicBlock *Pred = *PI;
 | |
|     // To be usable, the pred has to end with an uncond branch to the dest.
 | |
|     BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
 | |
|     if (!PredBr || !PredBr->isUnconditional() ||
 | |
|         // Must be empty other than the branch.
 | |
|         &Pred->front() != PredBr)
 | |
|       continue;
 | |
|     
 | |
|     // Finally, since we know that Dest has phi nodes in it, we have to make
 | |
|     // sure that jumping to Pred will have the same affect as going to Dest in
 | |
|     // terms of PHI values.
 | |
|     PHINode *PN;
 | |
|     unsigned PHINo = 0;
 | |
|     bool FoundMatch = true;
 | |
|     for (BasicBlock::iterator I = Dest->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
 | |
|       if (PHINo == TIPHIValues.size())
 | |
|         TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
 | |
|       
 | |
|       // If the PHI entry doesn't work, we can't use this pred.
 | |
|       if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
 | |
|         FoundMatch = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If we found a workable predecessor, change TI to branch to Succ.
 | |
|     if (FoundMatch) {
 | |
|       Dest->removePredecessor(TIBB);
 | |
|       TI->setSuccessor(SuccNum, Pred);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   SplitCriticalEdge(TI, SuccNum, P, true);  
 | |
| }
 | |
| 
 | |
| /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
 | |
| /// copy (e.g. it's casting from one pointer type to another, int->uint, or
 | |
| /// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
 | |
| /// registers that must be created and coallesced.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
 | |
|   // If this is a noop copy, 
 | |
|   MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
 | |
|   MVT::ValueType DstVT = TLI.getValueType(CI->getType());
 | |
|   
 | |
|   // This is an fp<->int conversion?
 | |
|   if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
 | |
|     return false;
 | |
|   
 | |
|   // If this is an extension, it will be a zero or sign extension, which
 | |
|   // isn't a noop.
 | |
|   if (SrcVT < DstVT) return false;
 | |
|   
 | |
|   // If these values will be promoted, find out what they will be promoted
 | |
|   // to.  This helps us consider truncates on PPC as noop copies when they
 | |
|   // are.
 | |
|   if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
 | |
|     SrcVT = TLI.getTypeToTransformTo(SrcVT);
 | |
|   if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
 | |
|     DstVT = TLI.getTypeToTransformTo(DstVT);
 | |
|   
 | |
|   // If, after promotion, these are the same types, this is a noop copy.
 | |
|   if (SrcVT != DstVT)
 | |
|     return false;
 | |
|   
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
|   
 | |
|   /// InsertedCasts - Only insert a cast in each block once.
 | |
|   std::map<BasicBlock*, CastInst*> InsertedCasts;
 | |
|   
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); 
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     
 | |
|     // Figure out which BB this cast is used in.  For PHI's this is the
 | |
|     // appropriate predecessor block.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       unsigned OpVal = UI.getOperandNo()/2;
 | |
|       UserBB = PN->getIncomingBlock(OpVal);
 | |
|     }
 | |
|     
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
|     
 | |
|     // If this user is in the same block as the cast, don't change the cast.
 | |
|     if (UserBB == DefBB) continue;
 | |
|     
 | |
|     // If we have already inserted a cast into this block, use it.
 | |
|     CastInst *&InsertedCast = InsertedCasts[UserBB];
 | |
| 
 | |
|     if (!InsertedCast) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->begin();
 | |
|       while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|       
 | |
|       InsertedCast = 
 | |
|         CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 
 | |
|                          InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     
 | |
|     // Replace a use of the cast with a use of the new casat.
 | |
|     TheUse = InsertedCast;
 | |
|   }
 | |
|   
 | |
|   // If we removed all uses, nuke the cast.
 | |
|   if (CI->use_empty())
 | |
|     CI->eraseFromParent();
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// EraseDeadInstructions - Erase any dead instructions
 | |
| static void EraseDeadInstructions(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !I->use_empty()) return;
 | |
|   
 | |
|   SmallPtrSet<Instruction*, 16> Insts;
 | |
|   Insts.insert(I);
 | |
|   
 | |
|   while (!Insts.empty()) {
 | |
|     I = *Insts.begin();
 | |
|     Insts.erase(I);
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           Insts.insert(U);
 | |
|       I->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
 | |
| /// holds actual Value*'s for register values.
 | |
| struct ExtAddrMode : public TargetLowering::AddrMode {
 | |
|   Value *BaseReg;
 | |
|   Value *ScaledReg;
 | |
|   ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
 | |
|   void dump() const;
 | |
| };
 | |
| 
 | |
| static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
 | |
|   bool NeedPlus = false;
 | |
|   OS << "[";
 | |
|   if (AM.BaseGV)
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
 | |
|   
 | |
|   if (AM.BaseOffs)
 | |
|     OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
 | |
|   
 | |
|   if (AM.BaseReg)
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
 | |
|   if (AM.Scale)
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
 | |
|   
 | |
|   return OS << "]";
 | |
| }
 | |
| 
 | |
| void ExtAddrMode::dump() const {
 | |
|   cerr << *this << "\n";
 | |
| }
 | |
| 
 | |
| static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
 | |
|                                    const Type *AccessTy, ExtAddrMode &AddrMode,
 | |
|                                    SmallVector<Instruction*, 16> &AddrModeInsts,
 | |
|                                    const TargetLowering &TLI, unsigned Depth);
 | |
|   
 | |
| /// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
 | |
| /// Addr into the specified addressing mode.  If Addr can't be added to AddrMode
 | |
| /// this returns false.  This assumes that Addr is either a pointer type or
 | |
| /// intptr_t for the target.
 | |
| static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
 | |
|                                            ExtAddrMode &AddrMode,
 | |
|                                    SmallVector<Instruction*, 16> &AddrModeInsts,
 | |
|                                            const TargetLowering &TLI,
 | |
|                                            unsigned Depth) {
 | |
|   
 | |
|   // If this is a global variable, fold it into the addressing mode if possible.
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
 | |
|     if (AddrMode.BaseGV == 0) {
 | |
|       AddrMode.BaseGV = GV;
 | |
|       if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|         return true;
 | |
|       AddrMode.BaseGV = 0;
 | |
|     }
 | |
|   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
 | |
|     AddrMode.BaseOffs += CI->getSExtValue();
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|       return true;
 | |
|     AddrMode.BaseOffs -= CI->getSExtValue();
 | |
|   } else if (isa<ConstantPointerNull>(Addr)) {
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Look through constant exprs and instructions.
 | |
|   unsigned Opcode = ~0U;
 | |
|   User *AddrInst = 0;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(Addr)) {
 | |
|     Opcode = I->getOpcode();
 | |
|     AddrInst = I;
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | |
|     Opcode = CE->getOpcode();
 | |
|     AddrInst = CE;
 | |
|   }
 | |
| 
 | |
|   // Limit recursion to avoid exponential behavior.
 | |
|   if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
 | |
| 
 | |
|   // If this is really an instruction, add it to our list of related
 | |
|   // instructions.
 | |
|   if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
 | |
|     AddrModeInsts.push_back(I);
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::PtrToInt:
 | |
|     // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | |
|     if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
 | |
|                                        AddrMode, AddrModeInsts, TLI, Depth))
 | |
|       return true;
 | |
|     break;
 | |
|   case Instruction::IntToPtr:
 | |
|     // This inttoptr is a no-op if the integer type is pointer sized.
 | |
|     if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
 | |
|         TLI.getPointerTy()) {
 | |
|       if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
 | |
|                                          AddrMode, AddrModeInsts, TLI, Depth))
 | |
|         return true;
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Add: {
 | |
|     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
|     if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
 | |
|                                        AddrMode, AddrModeInsts, TLI, Depth+1) &&
 | |
|         FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
 | |
|                                        AddrMode, AddrModeInsts, TLI, Depth+1))
 | |
|       return true;
 | |
| 
 | |
|     // Restore the old addr mode info.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     
 | |
|     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
 | |
|     if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
 | |
|                                        AddrMode, AddrModeInsts, TLI, Depth+1) &&
 | |
|         FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
 | |
|                                        AddrMode, AddrModeInsts, TLI, Depth+1))
 | |
|       return true;
 | |
|     
 | |
|     // Otherwise we definitely can't merge the ADD in.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     break;    
 | |
|   }
 | |
|   case Instruction::Or: {
 | |
|     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | |
|     if (!RHS) break;
 | |
|     // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl: {
 | |
|     // Can only handle X*C and X << C, and can only handle this when the scale
 | |
|     // field is available.
 | |
|     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | |
|     if (!RHS) break;
 | |
|     int64_t Scale = RHS->getSExtValue();
 | |
|     if (Opcode == Instruction::Shl)
 | |
|       Scale = 1 << Scale;
 | |
|     
 | |
|     if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
 | |
|                                AddrMode, AddrModeInsts, TLI, Depth))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::GetElementPtr: {
 | |
|     // Scan the GEP.  We check it if it contains constant offsets and at most
 | |
|     // one variable offset.
 | |
|     int VariableOperand = -1;
 | |
|     unsigned VariableScale = 0;
 | |
|     
 | |
|     int64_t ConstantOffset = 0;
 | |
|     const TargetData *TD = TLI.getTargetData();
 | |
|     gep_type_iterator GTI = gep_type_begin(AddrInst);
 | |
|     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|       if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         const StructLayout *SL = TD->getStructLayout(STy);
 | |
|         unsigned Idx =
 | |
|           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
 | |
|         ConstantOffset += SL->getElementOffset(Idx);
 | |
|       } else {
 | |
|         uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
 | |
|           ConstantOffset += CI->getSExtValue()*TypeSize;
 | |
|         } else if (TypeSize) {  // Scales of zero don't do anything.
 | |
|           // We only allow one variable index at the moment.
 | |
|           if (VariableOperand != -1) {
 | |
|             VariableOperand = -2;
 | |
|             break;
 | |
|           }
 | |
|           
 | |
|           // Remember the variable index.
 | |
|           VariableOperand = i;
 | |
|           VariableScale = TypeSize;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the GEP had multiple variable indices, punt.
 | |
|     if (VariableOperand == -2)
 | |
|       break;
 | |
| 
 | |
|     // A common case is for the GEP to only do a constant offset.  In this case,
 | |
|     // just add it to the disp field and check validity.
 | |
|     if (VariableOperand == -1) {
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
 | |
|         // Check to see if we can fold the base pointer in too.
 | |
|         if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
 | |
|                                            AddrMode, AddrModeInsts, TLI,
 | |
|                                            Depth+1))
 | |
|           return true;
 | |
|       }
 | |
|       AddrMode.BaseOffs -= ConstantOffset;
 | |
|     } else {
 | |
|       // Check that this has no base reg yet.  If so, we won't have a place to
 | |
|       // put the base of the GEP (assuming it is not a null ptr).
 | |
|       bool SetBaseReg = false;
 | |
|       if (AddrMode.HasBaseReg) {
 | |
|         if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
 | |
|           break;
 | |
|       } else {
 | |
|         AddrMode.HasBaseReg = true;
 | |
|         AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|         SetBaseReg = true;
 | |
|       }
 | |
|       
 | |
|       // See if the scale amount is valid for this target.
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
 | |
|                                  VariableScale, AccessTy, AddrMode, 
 | |
|                                  AddrModeInsts, TLI, Depth)) {
 | |
|         if (!SetBaseReg) return true;
 | |
| 
 | |
|         // If this match succeeded, we know that we can form an address with the
 | |
|         // GepBase as the basereg.  See if we can match *more*.
 | |
|         AddrMode.HasBaseReg = false;
 | |
|         AddrMode.BaseReg = 0;
 | |
|         if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
 | |
|                                            AddrMode, AddrModeInsts, TLI,
 | |
|                                            Depth+1))
 | |
|           return true;
 | |
|         // Strange, shouldn't happen.  Restore the base reg and succeed the easy
 | |
|         // way.        
 | |
|         AddrMode.HasBaseReg = true;
 | |
|         AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|         return true;
 | |
|       }
 | |
|       
 | |
|       AddrMode.BaseOffs -= ConstantOffset;
 | |
|       if (SetBaseReg) {
 | |
|         AddrMode.HasBaseReg = false;
 | |
|         AddrMode.BaseReg = 0;
 | |
|       }
 | |
|     }
 | |
|     break;    
 | |
|   }
 | |
|   }
 | |
|   
 | |
|   if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
 | |
|     assert(AddrModeInsts.back() == I && "Stack imbalance");
 | |
|     AddrModeInsts.pop_back();
 | |
|   }
 | |
|   
 | |
|   // Worse case, the target should support [reg] addressing modes. :)
 | |
|   if (!AddrMode.HasBaseReg) {
 | |
|     AddrMode.HasBaseReg = true;
 | |
|     // Still check for legality in case the target supports [imm] but not [i+r].
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
 | |
|       AddrMode.BaseReg = Addr;
 | |
|       return true;
 | |
|     }
 | |
|     AddrMode.HasBaseReg = false;
 | |
|   }
 | |
|   
 | |
|   // If the base register is already taken, see if we can do [r+r].
 | |
|   if (AddrMode.Scale == 0) {
 | |
|     AddrMode.Scale = 1;
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
 | |
|       AddrMode.ScaledReg = Addr;
 | |
|       return true;
 | |
|     }
 | |
|     AddrMode.Scale = 0;
 | |
|   }
 | |
|   // Couldn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
 | |
| /// addressing mode.  Return true if this addr mode is legal for the target,
 | |
| /// false if not.
 | |
| static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
 | |
|                                    const Type *AccessTy, ExtAddrMode &AddrMode,
 | |
|                                    SmallVector<Instruction*, 16> &AddrModeInsts,
 | |
|                                    const TargetLowering &TLI, unsigned Depth) {
 | |
|   // If we already have a scale of this value, we can add to it, otherwise, we
 | |
|   // need an available scale field.
 | |
|   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
 | |
|     return false;
 | |
|   
 | |
|   ExtAddrMode InputAddrMode = AddrMode;
 | |
|   
 | |
|   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
 | |
|   // [A+B + A*7] -> [B+A*8].
 | |
|   AddrMode.Scale += Scale;
 | |
|   AddrMode.ScaledReg = ScaleReg;
 | |
|   
 | |
|   if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
 | |
|     // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
 | |
|     // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
 | |
|     // X*Scale + C*Scale to addr mode.
 | |
|     BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
 | |
|     if (BinOp && BinOp->getOpcode() == Instruction::Add &&
 | |
|         isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
 | |
|       
 | |
|       InputAddrMode.Scale = Scale;
 | |
|       InputAddrMode.ScaledReg = BinOp->getOperand(0);
 | |
|       InputAddrMode.BaseOffs += 
 | |
|         cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
 | |
|       if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
 | |
|         AddrModeInsts.push_back(BinOp);
 | |
|         AddrMode = InputAddrMode;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, not (x+c)*scale, just return what we have.
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, back this attempt out.
 | |
|   AddrMode.Scale -= Scale;
 | |
|   if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// IsNonLocalValue - Return true if the specified values are defined in a
 | |
| /// different basic block than BB.
 | |
| static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() != BB;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// OptimizeLoadStoreInst - Load and Store Instructions have often have
 | |
| /// addressing modes that can do significant amounts of computation.  As such,
 | |
| /// instruction selection will try to get the load or store to do as much
 | |
| /// computation as possible for the program.  The problem is that isel can only
 | |
| /// see within a single block.  As such, we sink as much legal addressing mode
 | |
| /// stuff into the block as possible.
 | |
| bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
 | |
|                                            const Type *AccessTy,
 | |
|                                            DenseMap<Value*,Value*> &SunkAddrs) {
 | |
|   // Figure out what addressing mode will be built up for this operation.
 | |
|   SmallVector<Instruction*, 16> AddrModeInsts;
 | |
|   ExtAddrMode AddrMode;
 | |
|   bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
 | |
|                                                 AddrModeInsts, *TLI, 0);
 | |
|   Success = Success; assert(Success && "Couldn't select *anything*?");
 | |
|   
 | |
|   // Check to see if any of the instructions supersumed by this addr mode are
 | |
|   // non-local to I's BB.
 | |
|   bool AnyNonLocal = false;
 | |
|   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
 | |
|     if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
 | |
|       AnyNonLocal = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If all the instructions matched are already in this BB, don't do anything.
 | |
|   if (!AnyNonLocal) {
 | |
|     DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Insert this computation right after this user.  Since our caller is
 | |
|   // scanning from the top of the BB to the bottom, reuse of the expr are
 | |
|   // guaranteed to happen later.
 | |
|   BasicBlock::iterator InsertPt = LdStInst;
 | |
|   
 | |
|   // Now that we determined the addressing expression we want to use and know
 | |
|   // that we have to sink it into this block.  Check to see if we have already
 | |
|   // done this for some other load/store instr in this block.  If so, reuse the
 | |
|   // computation.
 | |
|   Value *&SunkAddr = SunkAddrs[Addr];
 | |
|   if (SunkAddr) {
 | |
|     DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
 | |
|     if (SunkAddr->getType() != Addr->getType())
 | |
|       SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
 | |
|   } else {
 | |
|     DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
 | |
|     const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
 | |
|     
 | |
|     Value *Result = 0;
 | |
|     // Start with the scale value.
 | |
|     if (AddrMode.Scale) {
 | |
|       Value *V = AddrMode.ScaledReg;
 | |
|       if (V->getType() == IntPtrTy) {
 | |
|         // done.
 | |
|       } else if (isa<PointerType>(V->getType())) {
 | |
|         V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | |
|                  cast<IntegerType>(V->getType())->getBitWidth()) {
 | |
|         V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       } else {
 | |
|         V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       }
 | |
|       if (AddrMode.Scale != 1)
 | |
|         V = BinaryOperator::createMul(V, ConstantInt::get(IntPtrTy,
 | |
|                                                           AddrMode.Scale),
 | |
|                                       "sunkaddr", InsertPt);
 | |
|       Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the base register.
 | |
|     if (AddrMode.BaseReg) {
 | |
|       Value *V = AddrMode.BaseReg;
 | |
|       if (V->getType() != IntPtrTy)
 | |
|         V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       if (Result)
 | |
|         Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
|     
 | |
|     // Add in the BaseGV if present.
 | |
|     if (AddrMode.BaseGV) {
 | |
|       Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
 | |
|                                   InsertPt);
 | |
|       if (Result)
 | |
|         Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
|     
 | |
|     // Add in the Base Offset if present.
 | |
|     if (AddrMode.BaseOffs) {
 | |
|       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | |
|       if (Result)
 | |
|         Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     if (Result == 0)
 | |
|       SunkAddr = Constant::getNullValue(Addr->getType());
 | |
|     else
 | |
|       SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
 | |
|   }
 | |
|   
 | |
|   LdStInst->replaceUsesOfWith(Addr, SunkAddr);
 | |
|   
 | |
|   if (Addr->use_empty())
 | |
|     EraseDeadInstructions(Addr);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // In this pass we look for GEP and cast instructions that are used
 | |
| // across basic blocks and rewrite them to improve basic-block-at-a-time
 | |
| // selection.
 | |
| bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
 | |
|   bool MadeChange = false;
 | |
|   
 | |
|   // Split all critical edges where the dest block has a PHI and where the phi
 | |
|   // has shared immediate operands.
 | |
|   TerminatorInst *BBTI = BB.getTerminator();
 | |
|   if (BBTI->getNumSuccessors() > 1) {
 | |
|     for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
 | |
|       if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
 | |
|           isCriticalEdge(BBTI, i, true))
 | |
|         SplitEdgeNicely(BBTI, i, this);
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Keep track of non-local addresses that have been sunk into this block.
 | |
|   // This allows us to avoid inserting duplicate code for blocks with multiple
 | |
|   // load/stores of the same address.
 | |
|   DenseMap<Value*, Value*> SunkAddrs;
 | |
|   
 | |
|   for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
 | |
|     Instruction *I = BBI++;
 | |
|     
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|       // If the source of the cast is a constant, then this should have
 | |
|       // already been constant folded.  The only reason NOT to constant fold
 | |
|       // it is if something (e.g. LSR) was careful to place the constant
 | |
|       // evaluation in a block other than then one that uses it (e.g. to hoist
 | |
|       // the address of globals out of a loop).  If this is the case, we don't
 | |
|       // want to forward-subst the cast.
 | |
|       if (isa<Constant>(CI->getOperand(0)))
 | |
|         continue;
 | |
|       
 | |
|       if (TLI)
 | |
|         MadeChange |= OptimizeNoopCopyExpression(CI, *TLI);
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|       if (TLI)
 | |
|         MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
 | |
|                                             SunkAddrs);
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|       if (TLI)
 | |
|         MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
 | |
|                                             SI->getOperand(0)->getType(),
 | |
|                                             SunkAddrs);
 | |
|     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|       if (GEPI->hasAllZeroIndices()) {
 | |
|         /// The GEP operand must be a pointer, so must its result -> BitCast
 | |
|         Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 
 | |
|                                           GEPI->getName(), GEPI);
 | |
|         GEPI->replaceAllUsesWith(NC);
 | |
|         GEPI->eraseFromParent();
 | |
|         MadeChange = true;
 | |
|         BBI = NC;
 | |
|       }
 | |
|     } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|       // If we found an inline asm expession, and if the target knows how to
 | |
|       // lower it to normal LLVM code, do so now.
 | |
|       if (TLI && isa<InlineAsm>(CI->getCalledValue()))
 | |
|         if (const TargetAsmInfo *TAI = 
 | |
|             TLI->getTargetMachine().getTargetAsmInfo()) {
 | |
|           if (TAI->ExpandInlineAsm(CI))
 | |
|             BBI = BB.begin();
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 |