mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34992 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1055 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1055 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass transforms loops that contain branches on loop-invariant conditions
 | |
| // to have multiple loops.  For example, it turns the left into the right code:
 | |
| //
 | |
| //  for (...)                  if (lic)
 | |
| //    A                          for (...)
 | |
| //    if (lic)                     A; B; C
 | |
| //      B                      else
 | |
| //    C                          for (...)
 | |
| //                                 A; C
 | |
| //
 | |
| // This can increase the size of the code exponentially (doubling it every time
 | |
| // a loop is unswitched) so we only unswitch if the resultant code will be
 | |
| // smaller than a threshold.
 | |
| //
 | |
| // This pass expects LICM to be run before it to hoist invariant conditions out
 | |
| // of the loop, to make the unswitching opportunity obvious.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unswitch"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBranches, "Number of branches unswitched");
 | |
| STATISTIC(NumSwitches, "Number of switches unswitched");
 | |
| STATISTIC(NumSelects , "Number of selects unswitched");
 | |
| STATISTIC(NumTrivial , "Number of unswitches that are trivial");
 | |
| STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
 | |
| 
 | |
| namespace {
 | |
|   cl::opt<unsigned>
 | |
|   Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
 | |
|             cl::init(10), cl::Hidden);
 | |
|   
 | |
|   class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
 | |
|     LoopInfo *LI;  // Loop information
 | |
|     LPPassManager *LPM;
 | |
| 
 | |
|     // LoopProcessWorklist - Used to check if second loop needs processing
 | |
|     // after RewriteLoopBodyWithConditionConstant rewrites first loop.
 | |
|     std::vector<Loop*> LoopProcessWorklist;
 | |
|     SmallPtrSet<Value *,8> UnswitchedVals;
 | |
| 
 | |
|   public:
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG...
 | |
|     ///
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
 | |
|     /// remove it.
 | |
|     void RemoveLoopFromWorklist(Loop *L) {
 | |
|       std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
 | |
|                                                  LoopProcessWorklist.end(), L);
 | |
|       if (I != LoopProcessWorklist.end())
 | |
|         LoopProcessWorklist.erase(I);
 | |
|     }
 | |
|       
 | |
|     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
 | |
|     unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
 | |
|     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
 | |
|                                   BasicBlock *ExitBlock);
 | |
|     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
 | |
|     BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
 | |
|     BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
 | |
| 
 | |
|     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | |
|                                               Constant *Val, bool isEqual);
 | |
|     
 | |
|     void SimplifyCode(std::vector<Instruction*> &Worklist);
 | |
|     void RemoveBlockIfDead(BasicBlock *BB,
 | |
|                            std::vector<Instruction*> &Worklist);
 | |
|     void RemoveLoopFromHierarchy(Loop *L);
 | |
|   };
 | |
|   RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
 | |
| }
 | |
| 
 | |
| LoopPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
 | |
| 
 | |
| /// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
 | |
| /// invariant in the loop, or has an invariant piece, return the invariant.
 | |
| /// Otherwise, return null.
 | |
| static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
 | |
|   // Constants should be folded, not unswitched on!
 | |
|   if (isa<Constant>(Cond)) return false;
 | |
|   
 | |
|   // TODO: Handle: br (VARIANT|INVARIANT).
 | |
|   // TODO: Hoist simple expressions out of loops.
 | |
|   if (L->isLoopInvariant(Cond)) return Cond;
 | |
|   
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
 | |
|     if (BO->getOpcode() == Instruction::And ||
 | |
|         BO->getOpcode() == Instruction::Or) {
 | |
|       // If either the left or right side is invariant, we can unswitch on this,
 | |
|       // which will cause the branch to go away in one loop and the condition to
 | |
|       // simplify in the other one.
 | |
|       if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
 | |
|         return LHS;
 | |
|       if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
 | |
|         return RHS;
 | |
|     }
 | |
|       
 | |
|       return 0;
 | |
| }
 | |
| 
 | |
| bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
 | |
|   assert(L->isLCSSAForm());
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   LPM = &LPM_Ref;
 | |
|   bool Changed = false;
 | |
|   
 | |
|   // Loop over all of the basic blocks in the loop.  If we find an interior
 | |
|   // block that is branching on a loop-invariant condition, we can unswitch this
 | |
|   // loop.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I) {
 | |
|     TerminatorInst *TI = (*I)->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       // If this isn't branching on an invariant condition, we can't unswitch
 | |
|       // it.
 | |
|       if (BI->isConditional()) {
 | |
|         // See if this, or some part of it, is loop invariant.  If so, we can
 | |
|         // unswitch on it if we desire.
 | |
|         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
 | |
|         if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
 | |
|                                              L)) {
 | |
|           ++NumBranches;
 | |
|           return true;
 | |
|         }
 | |
|       }      
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
 | |
|       if (LoopCond && SI->getNumCases() > 1) {
 | |
|         // Find a value to unswitch on:
 | |
|         // FIXME: this should chose the most expensive case!
 | |
|         Constant *UnswitchVal = SI->getCaseValue(1);
 | |
|         // Do not process same value again and again.
 | |
|         if (!UnswitchedVals.insert(UnswitchVal))
 | |
|           continue;
 | |
| 
 | |
|         if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
 | |
|           ++NumSwitches;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Scan the instructions to check for unswitchable values.
 | |
|     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 
 | |
|          BBI != E; ++BBI)
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
 | |
|         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
 | |
|         if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
 | |
|                                              L)) {
 | |
|           ++NumSelects;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   assert(L->isLCSSAForm());
 | |
|   
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// isTrivialLoopExitBlock - Check to see if all paths from BB either:
 | |
| ///   1. Exit the loop with no side effects.
 | |
| ///   2. Branch to the latch block with no side-effects.
 | |
| ///
 | |
| /// If these conditions are true, we return true and set ExitBB to the block we
 | |
| /// exit through.
 | |
| ///
 | |
| static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
 | |
|                                          BasicBlock *&ExitBB,
 | |
|                                          std::set<BasicBlock*> &Visited) {
 | |
|   if (!Visited.insert(BB).second) {
 | |
|     // Already visited and Ok, end of recursion.
 | |
|     return true;
 | |
|   } else if (!L->contains(BB)) {
 | |
|     // Otherwise, this is a loop exit, this is fine so long as this is the
 | |
|     // first exit.
 | |
|     if (ExitBB != 0) return false;
 | |
|     ExitBB = BB;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
 | |
|   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
 | |
|     // Check to see if the successor is a trivial loop exit.
 | |
|     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, everything after this looks good, check to make sure that this block
 | |
|   // doesn't include any side effects.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (I->mayWriteToMemory())
 | |
|       return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
 | |
| /// leads to an exit from the specified loop, and has no side-effects in the 
 | |
| /// process.  If so, return the block that is exited to, otherwise return null.
 | |
| static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
 | |
|   std::set<BasicBlock*> Visited;
 | |
|   Visited.insert(L->getHeader());  // Branches to header are ok.
 | |
|   BasicBlock *ExitBB = 0;
 | |
|   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
 | |
|     return ExitBB;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
 | |
| /// trivial: that is, that the condition controls whether or not the loop does
 | |
| /// anything at all.  If this is a trivial condition, unswitching produces no
 | |
| /// code duplications (equivalently, it produces a simpler loop and a new empty
 | |
| /// loop, which gets deleted).
 | |
| ///
 | |
| /// If this is a trivial condition, return true, otherwise return false.  When
 | |
| /// returning true, this sets Cond and Val to the condition that controls the
 | |
| /// trivial condition: when Cond dynamically equals Val, the loop is known to
 | |
| /// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
 | |
| /// Cond == Val.
 | |
| ///
 | |
| static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
 | |
|                                        BasicBlock **LoopExit = 0) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   TerminatorInst *HeaderTerm = Header->getTerminator();
 | |
|   
 | |
|   BasicBlock *LoopExitBB = 0;
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
 | |
|     // If the header block doesn't end with a conditional branch on Cond, we
 | |
|     // can't handle it.
 | |
|     if (!BI->isConditional() || BI->getCondition() != Cond)
 | |
|       return false;
 | |
|   
 | |
|     // Check to see if a successor of the branch is guaranteed to go to the
 | |
|     // latch block or exit through a one exit block without having any 
 | |
|     // side-effects.  If so, determine the value of Cond that causes it to do
 | |
|     // this.
 | |
|     if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
 | |
|       if (Val) *Val = ConstantInt::getTrue();
 | |
|     } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
 | |
|       if (Val) *Val = ConstantInt::getFalse();
 | |
|     }
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
 | |
|     // If this isn't a switch on Cond, we can't handle it.
 | |
|     if (SI->getCondition() != Cond) return false;
 | |
|     
 | |
|     // Check to see if a successor of the switch is guaranteed to go to the
 | |
|     // latch block or exit through a one exit block without having any 
 | |
|     // side-effects.  If so, determine the value of Cond that causes it to do
 | |
|     // this.  Note that we can't trivially unswitch on the default case.
 | |
|     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
 | |
|       if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
 | |
|         // Okay, we found a trivial case, remember the value that is trivial.
 | |
|         if (Val) *Val = SI->getCaseValue(i);
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a single unique LoopExit block, or if the loop exit block
 | |
|   // contains phi nodes, this isn't trivial.
 | |
|   if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
 | |
|     return false;   // Can't handle this.
 | |
|   
 | |
|   if (LoopExit) *LoopExit = LoopExitBB;
 | |
|   
 | |
|   // We already know that nothing uses any scalar values defined inside of this
 | |
|   // loop.  As such, we just have to check to see if this loop will execute any
 | |
|   // side-effecting instructions (e.g. stores, calls, volatile loads) in the
 | |
|   // part of the loop that the code *would* execute.  We already checked the
 | |
|   // tail, check the header now.
 | |
|   for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
 | |
|     if (I->mayWriteToMemory())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
 | |
| /// we choose to unswitch the specified loop on the specified value.
 | |
| ///
 | |
| unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
 | |
|   // If the condition is trivial, always unswitch.  There is no code growth for
 | |
|   // this case.
 | |
|   if (IsTrivialUnswitchCondition(L, LIC))
 | |
|     return 0;
 | |
|   
 | |
|   // FIXME: This is really overly conservative.  However, more liberal 
 | |
|   // estimations have thus far resulted in excessive unswitching, which is bad
 | |
|   // both in compile time and in code size.  This should be replaced once
 | |
|   // someone figures out how a good estimation.
 | |
|   return L->getBlocks().size();
 | |
|   
 | |
|   unsigned Cost = 0;
 | |
|   // FIXME: this is brain dead.  It should take into consideration code
 | |
|   // shrinkage.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     // Do not include empty blocks in the cost calculation.  This happen due to
 | |
|     // loop canonicalization and will be removed.
 | |
|     if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
 | |
|       continue;
 | |
|     
 | |
|     // Count basic blocks.
 | |
|     ++Cost;
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| /// UnswitchIfProfitable - We have found that we can unswitch L when
 | |
| /// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
 | |
| /// unswitch the loop, reprocess the pieces, then return true.
 | |
| bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
 | |
|   // Check to see if it would be profitable to unswitch this loop.
 | |
|   unsigned Cost = getLoopUnswitchCost(L, LoopCond);
 | |
|   if (Cost > Threshold) {
 | |
|     // FIXME: this should estimate growth by the amount of code shared by the
 | |
|     // resultant unswitched loops.
 | |
|     //
 | |
|     DOUT << "NOT unswitching loop %"
 | |
|          << L->getHeader()->getName() << ", cost too high: "
 | |
|          << L->getBlocks().size() << "\n";
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // If this is a trivial condition to unswitch (which results in no code
 | |
|   // duplication), do it now.
 | |
|   Constant *CondVal;
 | |
|   BasicBlock *ExitBlock;
 | |
|   if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
 | |
|     UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
 | |
|   } else {
 | |
|     UnswitchNontrivialCondition(LoopCond, Val, L);
 | |
|   }
 | |
|  
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SplitBlock - Split the specified block at the specified instruction - every
 | |
| /// thing before SplitPt stays in Old and everything starting with SplitPt moves
 | |
| /// to a new block.  The two blocks are joined by an unconditional branch and
 | |
| /// the loop info is updated.
 | |
| ///
 | |
| BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
 | |
|   BasicBlock::iterator SplitIt = SplitPt;
 | |
|   while (isa<PHINode>(SplitIt))
 | |
|     ++SplitIt;
 | |
|   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
 | |
| 
 | |
|   // The new block lives in whichever loop the old one did.
 | |
|   if (Loop *L = LI->getLoopFor(Old))
 | |
|     L->addBasicBlockToLoop(New, *LI);
 | |
|   
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| 
 | |
| BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   TerminatorInst *LatchTerm = BB->getTerminator();
 | |
|   unsigned SuccNum = 0;
 | |
|   for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
 | |
|     assert(i != e && "Didn't find edge?");
 | |
|     if (LatchTerm->getSuccessor(i) == Succ) {
 | |
|       SuccNum = i;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this is a critical edge, let SplitCriticalEdge do it.
 | |
|   if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
 | |
|     return LatchTerm->getSuccessor(SuccNum);
 | |
| 
 | |
|   // If the edge isn't critical, then BB has a single successor or Succ has a
 | |
|   // single pred.  Split the block.
 | |
|   BasicBlock::iterator SplitPoint;
 | |
|   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
 | |
|     // If the successor only has a single pred, split the top of the successor
 | |
|     // block.
 | |
|     assert(SP == BB && "CFG broken");
 | |
|     return SplitBlock(Succ, Succ->begin());
 | |
|   } else {
 | |
|     // Otherwise, if BB has a single successor, split it at the bottom of the
 | |
|     // block.
 | |
|     assert(BB->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Should have a single succ!"); 
 | |
|     return SplitBlock(BB, BB->getTerminator());
 | |
|   }
 | |
| }
 | |
|   
 | |
| 
 | |
| 
 | |
| // RemapInstruction - Convert the instruction operands from referencing the
 | |
| // current values into those specified by ValueMap.
 | |
| //
 | |
| static inline void RemapInstruction(Instruction *I,
 | |
|                                     DenseMap<const Value *, Value*> &ValueMap) {
 | |
|   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | |
|     Value *Op = I->getOperand(op);
 | |
|     DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
 | |
|     if (It != ValueMap.end()) Op = It->second;
 | |
|     I->setOperand(op, Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CloneLoop - Recursively clone the specified loop and all of its children,
 | |
| /// mapping the blocks with the specified map.
 | |
| static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
 | |
|                        LoopInfo *LI, LPPassManager *LPM) {
 | |
|   Loop *New = new Loop();
 | |
| 
 | |
|   LPM->insertLoop(New, PL);
 | |
| 
 | |
|   // Add all of the blocks in L to the new loop.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I)
 | |
|     if (LI->getLoopFor(*I) == L)
 | |
|       New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
 | |
| 
 | |
|   // Add all of the subloops to the new loop.
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     CloneLoop(*I, New, VM, LI, LPM);
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
 | |
| /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
 | |
| /// code immediately before InsertPt.
 | |
| static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
 | |
|                                            BasicBlock *TrueDest,
 | |
|                                            BasicBlock *FalseDest,
 | |
|                                            Instruction *InsertPt) {
 | |
|   // Insert a conditional branch on LIC to the two preheaders.  The original
 | |
|   // code is the true version and the new code is the false version.
 | |
|   Value *BranchVal = LIC;
 | |
|   if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
 | |
|     BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
 | |
|   else if (Val != ConstantInt::getTrue())
 | |
|     // We want to enter the new loop when the condition is true.
 | |
|     std::swap(TrueDest, FalseDest);
 | |
| 
 | |
|   // Insert the new branch.
 | |
|   new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
 | |
| /// condition in it (a cond branch from its header block to its latch block,
 | |
| /// where the path through the loop that doesn't execute its body has no 
 | |
| /// side-effects), unswitch it.  This doesn't involve any code duplication, just
 | |
| /// moving the conditional branch outside of the loop and updating loop info.
 | |
| void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 
 | |
|                                             Constant *Val, 
 | |
|                                             BasicBlock *ExitBlock) {
 | |
|   DOUT << "loop-unswitch: Trivial-Unswitch loop %"
 | |
|        << L->getHeader()->getName() << " [" << L->getBlocks().size()
 | |
|        << " blocks] in Function " << L->getHeader()->getParent()->getName()
 | |
|        << " on cond: " << *Val << " == " << *Cond << "\n";
 | |
|   
 | |
|   // First step, split the preheader, so that we know that there is a safe place
 | |
|   // to insert the conditional branch.  We will change 'OrigPH' to have a
 | |
|   // conditional branch on Cond.
 | |
|   BasicBlock *OrigPH = L->getLoopPreheader();
 | |
|   BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
 | |
| 
 | |
|   // Now that we have a place to insert the conditional branch, create a place
 | |
|   // to branch to: this is the exit block out of the loop that we should
 | |
|   // short-circuit to.
 | |
|   
 | |
|   // Split this block now, so that the loop maintains its exit block, and so
 | |
|   // that the jump from the preheader can execute the contents of the exit block
 | |
|   // without actually branching to it (the exit block should be dominated by the
 | |
|   // loop header, not the preheader).
 | |
|   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
 | |
|   BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
 | |
|     
 | |
|   // Okay, now we have a position to branch from and a position to branch to, 
 | |
|   // insert the new conditional branch.
 | |
|   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 
 | |
|                                  OrigPH->getTerminator());
 | |
|   OrigPH->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // We need to reprocess this loop, it could be unswitched again.
 | |
|   LPM->redoLoop(L);
 | |
|   
 | |
|   // Now that we know that the loop is never entered when this condition is a
 | |
|   // particular value, rewrite the loop with this info.  We know that this will
 | |
|   // at least eliminate the old branch.
 | |
|   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
 | |
|   ++NumTrivial;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// VersionLoop - We determined that the loop is profitable to unswitch when LIC
 | |
| /// equal Val.  Split it into loop versions and test the condition outside of
 | |
| /// either loop.  Return the loops created as Out1/Out2.
 | |
| void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 
 | |
|                                                Loop *L) {
 | |
|   Function *F = L->getHeader()->getParent();
 | |
|   DOUT << "loop-unswitch: Unswitching loop %"
 | |
|        << L->getHeader()->getName() << " [" << L->getBlocks().size()
 | |
|        << " blocks] in Function " << F->getName()
 | |
|        << " when '" << *Val << "' == " << *LIC << "\n";
 | |
| 
 | |
|   // LoopBlocks contains all of the basic blocks of the loop, including the
 | |
|   // preheader of the loop, the body of the loop, and the exit blocks of the 
 | |
|   // loop, in that order.
 | |
|   std::vector<BasicBlock*> LoopBlocks;
 | |
| 
 | |
|   // First step, split the preheader and exit blocks, and add these blocks to
 | |
|   // the LoopBlocks list.
 | |
|   BasicBlock *OrigPreheader = L->getLoopPreheader();
 | |
|   LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
 | |
| 
 | |
|   // We want the loop to come after the preheader, but before the exit blocks.
 | |
|   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | |
| 
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Split all of the edges from inside the loop to their exit blocks.  Update
 | |
|   // the appropriate Phi nodes as we do so.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBlock = ExitBlocks[i];
 | |
|     std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
 | |
| 
 | |
|     for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
 | |
|       assert(L->contains(Preds[j]) &&
 | |
|              "All preds of loop exit blocks must be the same loop!");
 | |
|       BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock);
 | |
|       BasicBlock* StartBlock = Preds[j];
 | |
|       BasicBlock* EndBlock;
 | |
|       if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
 | |
|         EndBlock = MiddleBlock;
 | |
|         MiddleBlock = EndBlock->getSinglePredecessor();;
 | |
|       } else {
 | |
|         EndBlock = ExitBlock;
 | |
|       }
 | |
|       
 | |
|       std::set<PHINode*> InsertedPHIs;
 | |
|       PHINode* OldLCSSA = 0;
 | |
|       for (BasicBlock::iterator I = EndBlock->begin();
 | |
|            (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
 | |
|         Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
 | |
|         PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
 | |
|                                         OldLCSSA->getName() + ".us-lcssa",
 | |
|                                         MiddleBlock->getTerminator());
 | |
|         NewLCSSA->addIncoming(OldValue, StartBlock);
 | |
|         OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
 | |
|                                    NewLCSSA);
 | |
|         InsertedPHIs.insert(NewLCSSA);
 | |
|       }
 | |
| 
 | |
|       BasicBlock::iterator InsertPt = EndBlock->begin();
 | |
|       while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
 | |
|       for (BasicBlock::iterator I = MiddleBlock->begin();
 | |
|          (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
 | |
|          ++I) {
 | |
|         PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
 | |
|                                         OldLCSSA->getName() + ".us-lcssa",
 | |
|                                         InsertPt);
 | |
|         OldLCSSA->replaceAllUsesWith(NewLCSSA);
 | |
|         NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
 | |
|       }
 | |
|     }    
 | |
|   }
 | |
|   
 | |
|   // The exit blocks may have been changed due to edge splitting, recompute.
 | |
|   ExitBlocks.clear();
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Add exit blocks to the loop blocks.
 | |
|   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
 | |
| 
 | |
|   // Next step, clone all of the basic blocks that make up the loop (including
 | |
|   // the loop preheader and exit blocks), keeping track of the mapping between
 | |
|   // the instructions and blocks.
 | |
|   std::vector<BasicBlock*> NewBlocks;
 | |
|   NewBlocks.reserve(LoopBlocks.size());
 | |
|   DenseMap<const Value*, Value*> ValueMap;
 | |
|   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
 | |
|     NewBlocks.push_back(New);
 | |
|     ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
 | |
|   }
 | |
| 
 | |
|   // Splice the newly inserted blocks into the function right before the
 | |
|   // original preheader.
 | |
|   F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
 | |
|                                 NewBlocks[0], F->end());
 | |
| 
 | |
|   // Now we create the new Loop object for the versioned loop.
 | |
|   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
 | |
|   Loop *ParentLoop = L->getParentLoop();
 | |
|   if (ParentLoop) {
 | |
|     // Make sure to add the cloned preheader and exit blocks to the parent loop
 | |
|     // as well.
 | |
|     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
 | |
|   }
 | |
|   
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
 | |
|     // The new exit block should be in the same loop as the old one.
 | |
|     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
 | |
|       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
 | |
|     
 | |
|     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Exit block should have been split to have one successor!");
 | |
|     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
 | |
|     
 | |
|     // If the successor of the exit block had PHI nodes, add an entry for
 | |
|     // NewExit.
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = ExitSucc->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
 | |
|       DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
 | |
|       if (It != ValueMap.end()) V = It->second;
 | |
|       PN->addIncoming(V, NewExit);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewrite the code to refer to itself.
 | |
|   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
 | |
|     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | |
|            E = NewBlocks[i]->end(); I != E; ++I)
 | |
|       RemapInstruction(I, ValueMap);
 | |
|   
 | |
|   // Rewrite the original preheader to select between versions of the loop.
 | |
|   BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
 | |
|   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
 | |
|          "Preheader splitting did not work correctly!");
 | |
| 
 | |
|   // Emit the new branch that selects between the two versions of this loop.
 | |
|   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
 | |
|   OldBR->eraseFromParent();
 | |
|   
 | |
|   LoopProcessWorklist.push_back(NewLoop);
 | |
|   LPM->redoLoop(L);
 | |
| 
 | |
|   // Now we rewrite the original code to know that the condition is true and the
 | |
|   // new code to know that the condition is false.
 | |
|   RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
 | |
|   
 | |
|   // It's possible that simplifying one loop could cause the other to be
 | |
|   // deleted.  If so, don't simplify it.
 | |
|   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
 | |
|     RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
 | |
| }
 | |
| 
 | |
| /// RemoveFromWorklist - Remove all instances of I from the worklist vector
 | |
| /// specified.
 | |
| static void RemoveFromWorklist(Instruction *I, 
 | |
|                                std::vector<Instruction*> &Worklist) {
 | |
|   std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
 | |
|                                                      Worklist.end(), I);
 | |
|   while (WI != Worklist.end()) {
 | |
|     unsigned Offset = WI-Worklist.begin();
 | |
|     Worklist.erase(WI);
 | |
|     WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
 | |
| /// program, replacing all uses with V and update the worklist.
 | |
| static void ReplaceUsesOfWith(Instruction *I, Value *V, 
 | |
|                               std::vector<Instruction*> &Worklist) {
 | |
|   DOUT << "Replace with '" << *V << "': " << *I;
 | |
| 
 | |
|   // Add uses to the worklist, which may be dead now.
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|       Worklist.push_back(Use);
 | |
| 
 | |
|   // Add users to the worklist which may be simplified now.
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI)
 | |
|     Worklist.push_back(cast<Instruction>(*UI));
 | |
|   I->replaceAllUsesWith(V);
 | |
|   I->eraseFromParent();
 | |
|   RemoveFromWorklist(I, Worklist);
 | |
|   ++NumSimplify;
 | |
| }
 | |
| 
 | |
| /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
 | |
| /// information, and remove any dead successors it has.
 | |
| ///
 | |
| void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
 | |
|                                      std::vector<Instruction*> &Worklist) {
 | |
|   if (pred_begin(BB) != pred_end(BB)) {
 | |
|     // This block isn't dead, since an edge to BB was just removed, see if there
 | |
|     // are any easy simplifications we can do now.
 | |
|     if (BasicBlock *Pred = BB->getSinglePredecessor()) {
 | |
|       // If it has one pred, fold phi nodes in BB.
 | |
|       while (isa<PHINode>(BB->begin()))
 | |
|         ReplaceUsesOfWith(BB->begin(), 
 | |
|                           cast<PHINode>(BB->begin())->getIncomingValue(0), 
 | |
|                           Worklist);
 | |
|       
 | |
|       // If this is the header of a loop and the only pred is the latch, we now
 | |
|       // have an unreachable loop.
 | |
|       if (Loop *L = LI->getLoopFor(BB))
 | |
|         if (L->getHeader() == BB && L->contains(Pred)) {
 | |
|           // Remove the branch from the latch to the header block, this makes
 | |
|           // the header dead, which will make the latch dead (because the header
 | |
|           // dominates the latch).
 | |
|           Pred->getTerminator()->eraseFromParent();
 | |
|           new UnreachableInst(Pred);
 | |
|           
 | |
|           // The loop is now broken, remove it from LI.
 | |
|           RemoveLoopFromHierarchy(L);
 | |
|           
 | |
|           // Reprocess the header, which now IS dead.
 | |
|           RemoveBlockIfDead(BB, Worklist);
 | |
|           return;
 | |
|         }
 | |
|       
 | |
|       // If pred ends in a uncond branch, add uncond branch to worklist so that
 | |
|       // the two blocks will get merged.
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
 | |
|         if (BI->isUnconditional())
 | |
|           Worklist.push_back(BI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DOUT << "Nuking dead block: " << *BB;
 | |
|   
 | |
|   // Remove the instructions in the basic block from the worklist.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|     RemoveFromWorklist(I, Worklist);
 | |
|     
 | |
|     // Anything that uses the instructions in this basic block should have their
 | |
|     // uses replaced with undefs.
 | |
|     if (!I->use_empty())
 | |
|       I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|   }
 | |
|   
 | |
|   // If this is the edge to the header block for a loop, remove the loop and
 | |
|   // promote all subloops.
 | |
|   if (Loop *BBLoop = LI->getLoopFor(BB)) {
 | |
|     if (BBLoop->getLoopLatch() == BB)
 | |
|       RemoveLoopFromHierarchy(BBLoop);
 | |
|   }
 | |
| 
 | |
|   // Remove the block from the loop info, which removes it from any loops it
 | |
|   // was in.
 | |
|   LI->removeBlock(BB);
 | |
|   
 | |
|   
 | |
|   // Remove phi node entries in successors for this block.
 | |
|   TerminatorInst *TI = BB->getTerminator();
 | |
|   std::vector<BasicBlock*> Succs;
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|     Succs.push_back(TI->getSuccessor(i));
 | |
|     TI->getSuccessor(i)->removePredecessor(BB);
 | |
|   }
 | |
|   
 | |
|   // Unique the successors, remove anything with multiple uses.
 | |
|   std::sort(Succs.begin(), Succs.end());
 | |
|   Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
 | |
|   
 | |
|   // Remove the basic block, including all of the instructions contained in it.
 | |
|   BB->eraseFromParent();
 | |
|   
 | |
|   // Remove successor blocks here that are not dead, so that we know we only
 | |
|   // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
 | |
|   // then getting removed before we revisit them, which is badness.
 | |
|   //
 | |
|   for (unsigned i = 0; i != Succs.size(); ++i)
 | |
|     if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
 | |
|       // One exception is loop headers.  If this block was the preheader for a
 | |
|       // loop, then we DO want to visit the loop so the loop gets deleted.
 | |
|       // We know that if the successor is a loop header, that this loop had to
 | |
|       // be the preheader: the case where this was the latch block was handled
 | |
|       // above and headers can only have two predecessors.
 | |
|       if (!LI->isLoopHeader(Succs[i])) {
 | |
|         Succs.erase(Succs.begin()+i);
 | |
|         --i;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
 | |
|     RemoveBlockIfDead(Succs[i], Worklist);
 | |
| }
 | |
| 
 | |
| /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
 | |
| /// become unwrapped, either because the backedge was deleted, or because the
 | |
| /// edge into the header was removed.  If the edge into the header from the
 | |
| /// latch block was removed, the loop is unwrapped but subloops are still alive,
 | |
| /// so they just reparent loops.  If the loops are actually dead, they will be
 | |
| /// removed later.
 | |
| void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
 | |
|   LPM->deleteLoopFromQueue(L);
 | |
|   RemoveLoopFromWorklist(L);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
 | |
| // the value specified by Val in the specified loop, or we know it does NOT have
 | |
| // that value.  Rewrite any uses of LIC or of properties correlated to it.
 | |
| void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | |
|                                                         Constant *Val,
 | |
|                                                         bool IsEqual) {
 | |
|   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
 | |
|   
 | |
|   // FIXME: Support correlated properties, like:
 | |
|   //  for (...)
 | |
|   //    if (li1 < li2)
 | |
|   //      ...
 | |
|   //    if (li1 > li2)
 | |
|   //      ...
 | |
|   
 | |
|   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
 | |
|   // selects, switches.
 | |
|   std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
 | |
|   std::vector<Instruction*> Worklist;
 | |
| 
 | |
|   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
 | |
|   // in the loop with the appropriate one directly.
 | |
|   if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
 | |
|     Value *Replacement;
 | |
|     if (IsEqual)
 | |
|       Replacement = Val;
 | |
|     else
 | |
|       Replacement = ConstantInt::get(Type::Int1Ty, 
 | |
|                                      !cast<ConstantInt>(Val)->getZExtValue());
 | |
|     
 | |
|     for (unsigned i = 0, e = Users.size(); i != e; ++i)
 | |
|       if (Instruction *U = cast<Instruction>(Users[i])) {
 | |
|         if (!L->contains(U->getParent()))
 | |
|           continue;
 | |
|         U->replaceUsesOfWith(LIC, Replacement);
 | |
|         Worklist.push_back(U);
 | |
|       }
 | |
|   } else {
 | |
|     // Otherwise, we don't know the precise value of LIC, but we do know that it
 | |
|     // is certainly NOT "Val".  As such, simplify any uses in the loop that we
 | |
|     // can.  This case occurs when we unswitch switch statements.
 | |
|     for (unsigned i = 0, e = Users.size(); i != e; ++i)
 | |
|       if (Instruction *U = cast<Instruction>(Users[i])) {
 | |
|         if (!L->contains(U->getParent()))
 | |
|           continue;
 | |
| 
 | |
|         Worklist.push_back(U);
 | |
| 
 | |
|         // If we know that LIC is not Val, use this info to simplify code.
 | |
|         if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
 | |
|           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
 | |
|             if (SI->getCaseValue(i) == Val) {
 | |
|               // Found a dead case value.  Don't remove PHI nodes in the 
 | |
|               // successor if they become single-entry, those PHI nodes may
 | |
|               // be in the Users list.
 | |
|               
 | |
|               // FIXME: This is a hack.  We need to keep the successor around
 | |
|               // and hooked up so as to preserve the loop structure, because
 | |
|               // trying to update it is complicated.  So instead we preserve the
 | |
|               // loop structure and put the block on an dead code path.
 | |
|               
 | |
|               BasicBlock* Old = SI->getParent();
 | |
|               BasicBlock* Split = SplitBlock(Old, SI);
 | |
|               
 | |
|               Instruction* OldTerm = Old->getTerminator();
 | |
|               new BranchInst(Split, SI->getSuccessor(i),
 | |
|                              ConstantInt::getTrue(), OldTerm);
 | |
|               
 | |
|               Old->getTerminator()->eraseFromParent();
 | |
|               
 | |
|               
 | |
|               PHINode *PN;
 | |
|               for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
 | |
|                    (PN = dyn_cast<PHINode>(II)); ++II) {
 | |
|                 Value *InVal = PN->removeIncomingValue(Split, false);
 | |
|                 PN->addIncoming(InVal, Old);
 | |
|               }
 | |
| 
 | |
|               SI->removeCase(i);
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         // TODO: We could do other simplifications, for example, turning 
 | |
|         // LIC == Val -> false.
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   SimplifyCode(Worklist);
 | |
| }
 | |
| 
 | |
| /// SimplifyCode - Okay, now that we have simplified some instructions in the 
 | |
| /// loop, walk over it and constant prop, dce, and fold control flow where
 | |
| /// possible.  Note that this is effectively a very simple loop-structure-aware
 | |
| /// optimizer.  During processing of this loop, L could very well be deleted, so
 | |
| /// it must not be used.
 | |
| ///
 | |
| /// FIXME: When the loop optimizer is more mature, separate this out to a new
 | |
| /// pass.
 | |
| ///
 | |
| void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
|     
 | |
|     // Simple constant folding.
 | |
|     if (Constant *C = ConstantFoldInstruction(I)) {
 | |
|       ReplaceUsesOfWith(I, C, Worklist);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Simple DCE.
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       DOUT << "Remove dead instruction '" << *I;
 | |
|       
 | |
|       // Add uses to the worklist, which may be dead now.
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           Worklist.push_back(Use);
 | |
|       I->eraseFromParent();
 | |
|       RemoveFromWorklist(I, Worklist);
 | |
|       ++NumSimplify;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Special case hacks that appear commonly in unswitched code.
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::Select:
 | |
|       if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
 | |
|         ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist);
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     case Instruction::And:
 | |
|       if (isa<ConstantInt>(I->getOperand(0)) && 
 | |
|           I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
 | |
|         cast<BinaryOperator>(I)->swapOperands();
 | |
|       if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1))) 
 | |
|         if (CB->getType() == Type::Int1Ty) {
 | |
|           if (CB->isOne())      // X & 1 -> X
 | |
|             ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
 | |
|           else                  // X & 0 -> 0
 | |
|             ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
 | |
|           continue;
 | |
|         }
 | |
|       break;
 | |
|     case Instruction::Or:
 | |
|       if (isa<ConstantInt>(I->getOperand(0)) &&
 | |
|           I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
 | |
|         cast<BinaryOperator>(I)->swapOperands();
 | |
|       if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
 | |
|         if (CB->getType() == Type::Int1Ty) {
 | |
|           if (CB->isOne())   // X | 1 -> 1
 | |
|             ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
 | |
|           else                  // X | 0 -> X
 | |
|             ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
 | |
|           continue;
 | |
|         }
 | |
|       break;
 | |
|     case Instruction::Br: {
 | |
|       BranchInst *BI = cast<BranchInst>(I);
 | |
|       if (BI->isUnconditional()) {
 | |
|         // If BI's parent is the only pred of the successor, fold the two blocks
 | |
|         // together.
 | |
|         BasicBlock *Pred = BI->getParent();
 | |
|         BasicBlock *Succ = BI->getSuccessor(0);
 | |
|         BasicBlock *SinglePred = Succ->getSinglePredecessor();
 | |
|         if (!SinglePred) continue;  // Nothing to do.
 | |
|         assert(SinglePred == Pred && "CFG broken");
 | |
| 
 | |
|         DOUT << "Merging blocks: " << Pred->getName() << " <- " 
 | |
|              << Succ->getName() << "\n";
 | |
|         
 | |
|         // Resolve any single entry PHI nodes in Succ.
 | |
|         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
 | |
|           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
 | |
|         
 | |
|         // Move all of the successor contents from Succ to Pred.
 | |
|         Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
 | |
|                                    Succ->end());
 | |
|         BI->eraseFromParent();
 | |
|         RemoveFromWorklist(BI, Worklist);
 | |
|         
 | |
|         // If Succ has any successors with PHI nodes, update them to have
 | |
|         // entries coming from Pred instead of Succ.
 | |
|         Succ->replaceAllUsesWith(Pred);
 | |
|         
 | |
|         // Remove Succ from the loop tree.
 | |
|         LI->removeBlock(Succ);
 | |
|         Succ->eraseFromParent();
 | |
|         ++NumSimplify;
 | |
|       } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
 | |
|         // Conditional branch.  Turn it into an unconditional branch, then
 | |
|         // remove dead blocks.
 | |
|         break;  // FIXME: Enable.
 | |
| 
 | |
|         DOUT << "Folded branch: " << *BI;
 | |
|         BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
 | |
|         BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
 | |
|         DeadSucc->removePredecessor(BI->getParent(), true);
 | |
|         Worklist.push_back(new BranchInst(LiveSucc, BI));
 | |
|         BI->eraseFromParent();
 | |
|         RemoveFromWorklist(BI, Worklist);
 | |
|         ++NumSimplify;
 | |
| 
 | |
|         RemoveBlockIfDead(DeadSucc, Worklist);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| }
 |