mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36205 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			287 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			287 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
 | |
| // inserting a dummy basic block.  This pass may be "required" by passes that
 | |
| // cannot deal with critical edges.  For this usage, the structure type is
 | |
| // forward declared.  This pass obviously invalidates the CFG, but can update
 | |
| // forward dominator (set, immediate dominators, tree, and frontier)
 | |
| // information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "break-crit-edges"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBroken, "Number of blocks inserted");
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN BreakCriticalEdges : public FunctionPass {
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreserved<ETForest>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
| 
 | |
|       // No loop canonicalization guarantees are broken by this pass.
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   RegisterPass<BreakCriticalEdges> X("break-crit-edges",
 | |
|                                     "Break critical edges in CFG");
 | |
| }
 | |
| 
 | |
| // Publically exposed interface to pass...
 | |
| const PassInfo *llvm::BreakCriticalEdgesID = X.getPassInfo();
 | |
| FunctionPass *llvm::createBreakCriticalEdgesPass() {
 | |
|   return new BreakCriticalEdges();
 | |
| }
 | |
| 
 | |
| // runOnFunction - Loop over all of the edges in the CFG, breaking critical
 | |
| // edges as they are found.
 | |
| //
 | |
| bool BreakCriticalEdges::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|     TerminatorInst *TI = I->getTerminator();
 | |
|     if (TI->getNumSuccessors() > 1)
 | |
|       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|         if (SplitCriticalEdge(TI, i, this)) {
 | |
|           ++NumBroken;
 | |
|           Changed = true;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //    Implementation of the external critical edge manipulation functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // isCriticalEdge - Return true if the specified edge is a critical edge.
 | |
| // Critical edges are edges from a block with multiple successors to a block
 | |
| // with multiple predecessors.
 | |
| //
 | |
| bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
 | |
|                           bool AllowIdenticalEdges) {
 | |
|   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
 | |
|   if (TI->getNumSuccessors() == 1) return false;
 | |
| 
 | |
|   const BasicBlock *Dest = TI->getSuccessor(SuccNum);
 | |
|   pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);
 | |
| 
 | |
|   // If there is more than one predecessor, this is a critical edge...
 | |
|   assert(I != E && "No preds, but we have an edge to the block?");
 | |
|   const BasicBlock *FirstPred = *I;
 | |
|   ++I;        // Skip one edge due to the incoming arc from TI.
 | |
|   if (!AllowIdenticalEdges)
 | |
|     return I != E;
 | |
|   
 | |
|   // If AllowIdenticalEdges is true, then we allow this edge to be considered
 | |
|   // non-critical iff all preds come from TI's block.
 | |
|   for (; I != E; ++I)
 | |
|     if (*I != FirstPred) return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // SplitCriticalEdge - If this edge is a critical edge, insert a new node to
 | |
| // split the critical edge.  This will update ETForest, ImmediateDominator,
 | |
| // DominatorTree, and DominatorFrontier information if it is available, thus
 | |
| // calling this pass will not invalidate any of them.  This returns true if
 | |
| // the edge was split, false otherwise.  This ensures that all edges to that
 | |
| // dest go to one block instead of each going to a different block.
 | |
| //
 | |
| bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
 | |
|                              bool MergeIdenticalEdges) {
 | |
|   if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return false;
 | |
|   BasicBlock *TIBB = TI->getParent();
 | |
|   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
 | |
| 
 | |
|   // Create a new basic block, linking it into the CFG.
 | |
|   BasicBlock *NewBB = new BasicBlock(TIBB->getName() + "." +
 | |
|                                      DestBB->getName() + "_crit_edge");
 | |
|   // Create our unconditional branch...
 | |
|   new BranchInst(DestBB, NewBB);
 | |
| 
 | |
|   // Branch to the new block, breaking the edge.
 | |
|   TI->setSuccessor(SuccNum, NewBB);
 | |
| 
 | |
|   // Insert the block into the function... right after the block TI lives in.
 | |
|   Function &F = *TIBB->getParent();
 | |
|   Function::iterator FBBI = TIBB;
 | |
|   F.getBasicBlockList().insert(++FBBI, NewBB);
 | |
|   
 | |
|   // If there are any PHI nodes in DestBB, we need to update them so that they
 | |
|   // merge incoming values from NewBB instead of from TIBB.
 | |
|   //
 | |
|   for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     // We no longer enter through TIBB, now we come in through NewBB.  Revector
 | |
|     // exactly one entry in the PHI node that used to come from TIBB to come
 | |
|     // from NewBB.
 | |
|     int BBIdx = PN->getBasicBlockIndex(TIBB);
 | |
|     PN->setIncomingBlock(BBIdx, NewBB);
 | |
|   }
 | |
|   
 | |
|   // If there are any other edges from TIBB to DestBB, update those to go
 | |
|   // through the split block, making those edges non-critical as well (and
 | |
|   // reducing the number of phi entries in the DestBB if relevant).
 | |
|   if (MergeIdenticalEdges) {
 | |
|     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|       if (TI->getSuccessor(i) != DestBB) continue;
 | |
|       
 | |
|       // Remove an entry for TIBB from DestBB phi nodes.
 | |
|       DestBB->removePredecessor(TIBB);
 | |
|       
 | |
|       // We found another edge to DestBB, go to NewBB instead.
 | |
|       TI->setSuccessor(i, NewBB);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
| 
 | |
|   // If we don't have a pass object, we can't update anything...
 | |
|   if (P == 0) return true;
 | |
| 
 | |
|   // Now update analysis information.  Since the only predecessor of NewBB is
 | |
|   // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
 | |
|   // anything, as there are other successors of DestBB.  However, if all other
 | |
|   // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
 | |
|   // loop header) then NewBB dominates DestBB.
 | |
|   SmallVector<BasicBlock*, 8> OtherPreds;
 | |
| 
 | |
|   for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; ++I)
 | |
|     if (*I != NewBB)
 | |
|       OtherPreds.push_back(*I);
 | |
|   
 | |
|   bool NewBBDominatesDestBB = true;
 | |
|   
 | |
|   // Update the forest?
 | |
|   if (ETForest *EF = P->getAnalysisToUpdate<ETForest>()) {
 | |
|     // NewBB is dominated by TIBB.
 | |
|     EF->addNewBlock(NewBB, TIBB);
 | |
|     
 | |
|     // If NewBBDominatesDestBB hasn't been computed yet, do so with EF.
 | |
|     if (!OtherPreds.empty()) {
 | |
|       while (!OtherPreds.empty() && NewBBDominatesDestBB) {
 | |
|         NewBBDominatesDestBB = EF->dominates(DestBB, OtherPreds.back());
 | |
|         OtherPreds.pop_back();
 | |
|       }
 | |
|       OtherPreds.clear();
 | |
|     }
 | |
|     
 | |
|     // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
 | |
|     // doesn't dominate anything.
 | |
|     if (NewBBDominatesDestBB)
 | |
|       EF->setImmediateDominator(DestBB, NewBB);
 | |
|   }
 | |
|   
 | |
|   // Should we update DominatorTree information?
 | |
|   if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>()) {
 | |
|     DominatorTree::Node *TINode = DT->getNode(TIBB);
 | |
| 
 | |
|     // The new block is not the immediate dominator for any other nodes, but
 | |
|     // TINode is the immediate dominator for the new node.
 | |
|     //
 | |
|     if (TINode) {       // Don't break unreachable code!
 | |
|       DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, TINode);
 | |
|       DominatorTree::Node *DestBBNode = 0;
 | |
|      
 | |
|       // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
 | |
|       if (!OtherPreds.empty()) {
 | |
|         DestBBNode = DT->getNode(DestBB);
 | |
|         while (!OtherPreds.empty() && NewBBDominatesDestBB) {
 | |
|           if (DominatorTree::Node *OPNode = DT->getNode(OtherPreds.back()))
 | |
|             NewBBDominatesDestBB = DestBBNode->dominates(OPNode);
 | |
|           OtherPreds.pop_back();
 | |
|         }
 | |
|         OtherPreds.clear();
 | |
|       }
 | |
|       
 | |
|       // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
 | |
|       // doesn't dominate anything.
 | |
|       if (NewBBDominatesDestBB) {
 | |
|         if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
 | |
|         DT->changeImmediateDominator(DestBBNode, NewBBNode);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Should we update DominanceFrontier information?
 | |
|   if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>()) {
 | |
|     // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
 | |
|     if (!OtherPreds.empty()) {
 | |
|       // FIXME: IMPLEMENT THIS!
 | |
|       assert(0 && "Requiring domfrontiers but not idom/domtree/domset."
 | |
|              " not implemented yet!");
 | |
|     }
 | |
|     
 | |
|     // Since the new block is dominated by its only predecessor TIBB,
 | |
|     // it cannot be in any block's dominance frontier.  If NewBB dominates
 | |
|     // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
 | |
|     // just {DestBB}.
 | |
|     DominanceFrontier::DomSetType NewDFSet;
 | |
|     if (NewBBDominatesDestBB) {
 | |
|       DominanceFrontier::iterator I = DF->find(DestBB);
 | |
|       if (I != DF->end())
 | |
|         DF->addBasicBlock(NewBB, I->second);
 | |
|       else
 | |
|         DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
 | |
|     } else {
 | |
|       DominanceFrontier::DomSetType NewDFSet;
 | |
|       NewDFSet.insert(DestBB);
 | |
|       DF->addBasicBlock(NewBB, NewDFSet);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Update LoopInfo if it is around.
 | |
|   if (LoopInfo *LI = P->getAnalysisToUpdate<LoopInfo>()) {
 | |
|     // If one or the other blocks were not in a loop, the new block is not
 | |
|     // either, and thus LI doesn't need to be updated.
 | |
|     if (Loop *TIL = LI->getLoopFor(TIBB))
 | |
|       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
 | |
|         if (TIL == DestLoop) {
 | |
|           // Both in the same loop, the NewBB joins loop.
 | |
|           DestLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
|         } else if (TIL->contains(DestLoop->getHeader())) {
 | |
|           // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | |
|           TIL->addBasicBlockToLoop(NewBB, *LI);
 | |
|         } else if (DestLoop->contains(TIL->getHeader())) {
 | |
|           // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | |
|           DestLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
|         } else {
 | |
|           // Edge from two loops with no containment relation.  Because these
 | |
|           // are natural loops, we know that the destination block must be the
 | |
|           // header of its loop (adding a branch into a loop elsewhere would
 | |
|           // create an irreducible loop).
 | |
|           assert(DestLoop->getHeader() == DestBB &&
 | |
|                  "Should not create irreducible loops!");
 | |
|           if (Loop *P = DestLoop->getParentLoop())
 | |
|             P->addBasicBlockToLoop(NewBB, *LI);
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   return true;
 | |
| }
 |