mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	will follow. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36435 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1614 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1614 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This library implements the functionality defined in llvm/Assembly/Writer.h
 | |
| //
 | |
| // Note that these routines must be extremely tolerant of various errors in the
 | |
| // LLVM code, because it can be used for debugging transformations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Assembly/PrintModulePass.h"
 | |
| #include "llvm/Assembly/AsmAnnotationWriter.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/ParameterAttributes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instruction.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ValueSymbolTable.h"
 | |
| #include "llvm/TypeSymbolTable.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| // Make virtual table appear in this compilation unit.
 | |
| AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
 | |
| 
 | |
| /// This class provides computation of slot numbers for LLVM Assembly writing.
 | |
| /// @brief LLVM Assembly Writing Slot Computation.
 | |
| class SlotMachine {
 | |
| 
 | |
| /// @name Types
 | |
| /// @{
 | |
| public:
 | |
| 
 | |
|   /// @brief A mapping of Values to slot numbers
 | |
|   typedef std::map<const Value*,unsigned> ValueMap;
 | |
| 
 | |
| /// @}
 | |
| /// @name Constructors
 | |
| /// @{
 | |
| public:
 | |
|   /// @brief Construct from a module
 | |
|   SlotMachine(const Module *M);
 | |
| 
 | |
|   /// @brief Construct from a function, starting out in incorp state.
 | |
|   SlotMachine(const Function *F);
 | |
| 
 | |
| /// @}
 | |
| /// @name Accessors
 | |
| /// @{
 | |
| public:
 | |
|   /// Return the slot number of the specified value in it's type
 | |
|   /// plane.  If something is not in the SlotMachine, return -1.
 | |
|   int getLocalSlot(const Value *V);
 | |
|   int getGlobalSlot(const GlobalValue *V);
 | |
| 
 | |
| /// @}
 | |
| /// @name Mutators
 | |
| /// @{
 | |
| public:
 | |
|   /// If you'd like to deal with a function instead of just a module, use
 | |
|   /// this method to get its data into the SlotMachine.
 | |
|   void incorporateFunction(const Function *F) {
 | |
|     TheFunction = F;
 | |
|     FunctionProcessed = false;
 | |
|   }
 | |
| 
 | |
|   /// After calling incorporateFunction, use this method to remove the
 | |
|   /// most recently incorporated function from the SlotMachine. This
 | |
|   /// will reset the state of the machine back to just the module contents.
 | |
|   void purgeFunction();
 | |
| 
 | |
| /// @}
 | |
| /// @name Implementation Details
 | |
| /// @{
 | |
| private:
 | |
|   /// This function does the actual initialization.
 | |
|   inline void initialize();
 | |
| 
 | |
|   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | |
|   void CreateModuleSlot(const GlobalValue *V);
 | |
|   
 | |
|   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
 | |
|   void CreateFunctionSlot(const Value *V);
 | |
| 
 | |
|   /// Add all of the module level global variables (and their initializers)
 | |
|   /// and function declarations, but not the contents of those functions.
 | |
|   void processModule();
 | |
| 
 | |
|   /// Add all of the functions arguments, basic blocks, and instructions
 | |
|   void processFunction();
 | |
| 
 | |
|   SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
 | |
|   void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
 | |
| 
 | |
| /// @}
 | |
| /// @name Data
 | |
| /// @{
 | |
| public:
 | |
| 
 | |
|   /// @brief The module for which we are holding slot numbers
 | |
|   const Module* TheModule;
 | |
| 
 | |
|   /// @brief The function for which we are holding slot numbers
 | |
|   const Function* TheFunction;
 | |
|   bool FunctionProcessed;
 | |
| 
 | |
|   /// @brief The TypePlanes map for the module level data
 | |
|   ValueMap mMap;
 | |
|   unsigned mNext;
 | |
| 
 | |
|   /// @brief The TypePlanes map for the function level data
 | |
|   ValueMap fMap;
 | |
|   unsigned fNext;
 | |
| 
 | |
| /// @}
 | |
| 
 | |
| };
 | |
| 
 | |
| }  // end namespace llvm
 | |
| 
 | |
| static RegisterPass<PrintModulePass>
 | |
| X("printm", "Print module to stderr");
 | |
| static RegisterPass<PrintFunctionPass>
 | |
| Y("print","Print function to stderr");
 | |
| 
 | |
| static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
 | |
|                                std::map<const Type *, std::string> &TypeTable,
 | |
|                                    SlotMachine *Machine);
 | |
| 
 | |
| static const Module *getModuleFromVal(const Value *V) {
 | |
|   if (const Argument *MA = dyn_cast<Argument>(V))
 | |
|     return MA->getParent() ? MA->getParent()->getParent() : 0;
 | |
|   else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | |
|     return BB->getParent() ? BB->getParent()->getParent() : 0;
 | |
|   else if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
 | |
|     return M ? M->getParent() : 0;
 | |
|   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | |
|     return GV->getParent();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static SlotMachine *createSlotMachine(const Value *V) {
 | |
|   if (const Argument *FA = dyn_cast<Argument>(V)) {
 | |
|     return new SlotMachine(FA->getParent());
 | |
|   } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     return new SlotMachine(I->getParent()->getParent());
 | |
|   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
 | |
|     return new SlotMachine(BB->getParent());
 | |
|   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
 | |
|     return new SlotMachine(GV->getParent());
 | |
|   } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)){
 | |
|     return new SlotMachine(GA->getParent());    
 | |
|   } else if (const Function *Func = dyn_cast<Function>(V)) {
 | |
|     return new SlotMachine(Func);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
 | |
| /// with ""'s.
 | |
| static bool NameNeedsQuotes(const std::string &Name) {
 | |
|   if (Name[0] >= '0' && Name[0] <= '9') return true;
 | |
|   // Scan to see if we have any characters that are not on the "white list"
 | |
|   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
 | |
|     char C = Name[i];
 | |
|     assert(C != '"' && "Illegal character in LLVM value name!");
 | |
|     if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
 | |
|         C != '-' && C != '.' && C != '_')
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| enum PrefixType {
 | |
|   GlobalPrefix,
 | |
|   LabelPrefix,
 | |
|   LocalPrefix
 | |
| };
 | |
| 
 | |
| /// getLLVMName - Turn the specified string into an 'LLVM name', which is either
 | |
| /// prefixed with % (if the string only contains simple characters) or is
 | |
| /// surrounded with ""'s (if it has special chars in it).
 | |
| static std::string getLLVMName(const std::string &Name, PrefixType Prefix) {
 | |
|   assert(!Name.empty() && "Cannot get empty name!");
 | |
| 
 | |
|   // First character cannot start with a number...
 | |
|   if (NameNeedsQuotes(Name)) {
 | |
|     if (Prefix == GlobalPrefix)
 | |
|       return "@\"" + Name + "\"";
 | |
|     return "\"" + Name + "\"";
 | |
|   }
 | |
| 
 | |
|   // If we get here, then the identifier is legal to use as a "VarID".
 | |
|   switch (Prefix) {
 | |
|   default: assert(0 && "Bad prefix!");
 | |
|   case GlobalPrefix: return '@' + Name;
 | |
|   case LabelPrefix:  return Name;
 | |
|   case LocalPrefix:  return '%' + Name;
 | |
|   }      
 | |
| }
 | |
| 
 | |
| 
 | |
| /// fillTypeNameTable - If the module has a symbol table, take all global types
 | |
| /// and stuff their names into the TypeNames map.
 | |
| ///
 | |
| static void fillTypeNameTable(const Module *M,
 | |
|                               std::map<const Type *, std::string> &TypeNames) {
 | |
|   if (!M) return;
 | |
|   const TypeSymbolTable &ST = M->getTypeSymbolTable();
 | |
|   TypeSymbolTable::const_iterator TI = ST.begin();
 | |
|   for (; TI != ST.end(); ++TI) {
 | |
|     // As a heuristic, don't insert pointer to primitive types, because
 | |
|     // they are used too often to have a single useful name.
 | |
|     //
 | |
|     const Type *Ty = cast<Type>(TI->second);
 | |
|     if (!isa<PointerType>(Ty) ||
 | |
|         !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
 | |
|         !cast<PointerType>(Ty)->getElementType()->isInteger() ||
 | |
|         isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
 | |
|       TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void calcTypeName(const Type *Ty,
 | |
|                          std::vector<const Type *> &TypeStack,
 | |
|                          std::map<const Type *, std::string> &TypeNames,
 | |
|                          std::string & Result){
 | |
|   if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
 | |
|     Result += Ty->getDescription();  // Base case
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check to see if the type is named.
 | |
|   std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | |
|   if (I != TypeNames.end()) {
 | |
|     Result += I->second;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isa<OpaqueType>(Ty)) {
 | |
|     Result += "opaque";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check to see if the Type is already on the stack...
 | |
|   unsigned Slot = 0, CurSize = TypeStack.size();
 | |
|   while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
 | |
| 
 | |
|   // This is another base case for the recursion.  In this case, we know
 | |
|   // that we have looped back to a type that we have previously visited.
 | |
|   // Generate the appropriate upreference to handle this.
 | |
|   if (Slot < CurSize) {
 | |
|     Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
 | |
|     Result += "i" + utostr(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *FTy = cast<FunctionType>(Ty);
 | |
|     calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
 | |
|     Result += " (";
 | |
|     unsigned Idx = 1;
 | |
|     const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | |
|     for (FunctionType::param_iterator I = FTy->param_begin(),
 | |
|            E = FTy->param_end(); I != E; ++I) {
 | |
|       if (I != FTy->param_begin())
 | |
|         Result += ", ";
 | |
|       calcTypeName(*I, TypeStack, TypeNames, Result);
 | |
|       if (Attrs && Attrs->getParamAttrs(Idx) != ParamAttr::None) {
 | |
|         Result += + " ";
 | |
|         Result += Attrs->getParamAttrsTextByIndex(Idx);
 | |
|       }
 | |
|       Idx++;
 | |
|     }
 | |
|     if (FTy->isVarArg()) {
 | |
|       if (FTy->getNumParams()) Result += ", ";
 | |
|       Result += "...";
 | |
|     }
 | |
|     Result += ")";
 | |
|     if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None) {
 | |
|       Result += " ";
 | |
|       Result += Attrs->getParamAttrsTextByIndex(0);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *STy = cast<StructType>(Ty);
 | |
|     if (STy->isPacked())
 | |
|       Result += '<';
 | |
|     Result += "{ ";
 | |
|     for (StructType::element_iterator I = STy->element_begin(),
 | |
|            E = STy->element_end(); I != E; ++I) {
 | |
|       if (I != STy->element_begin())
 | |
|         Result += ", ";
 | |
|       calcTypeName(*I, TypeStack, TypeNames, Result);
 | |
|     }
 | |
|     Result += " }";
 | |
|     if (STy->isPacked())
 | |
|       Result += '>';
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID:
 | |
|     calcTypeName(cast<PointerType>(Ty)->getElementType(),
 | |
|                           TypeStack, TypeNames, Result);
 | |
|     Result += "*";
 | |
|     break;
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     Result += "[" + utostr(ATy->getNumElements()) + " x ";
 | |
|     calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
 | |
|     Result += "]";
 | |
|     break;
 | |
|   }
 | |
|   case Type::VectorTyID: {
 | |
|     const VectorType *PTy = cast<VectorType>(Ty);
 | |
|     Result += "<" + utostr(PTy->getNumElements()) + " x ";
 | |
|     calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
 | |
|     Result += ">";
 | |
|     break;
 | |
|   }
 | |
|   case Type::OpaqueTyID:
 | |
|     Result += "opaque";
 | |
|     break;
 | |
|   default:
 | |
|     Result += "<unrecognized-type>";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   TypeStack.pop_back();       // Remove self from stack...
 | |
| }
 | |
| 
 | |
| 
 | |
| /// printTypeInt - The internal guts of printing out a type that has a
 | |
| /// potentially named portion.
 | |
| ///
 | |
| static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
 | |
|                               std::map<const Type *, std::string> &TypeNames) {
 | |
|   // Primitive types always print out their description, regardless of whether
 | |
|   // they have been named or not.
 | |
|   //
 | |
|   if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
 | |
|     return Out << Ty->getDescription();
 | |
| 
 | |
|   // Check to see if the type is named.
 | |
|   std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | |
|   if (I != TypeNames.end()) return Out << I->second;
 | |
| 
 | |
|   // Otherwise we have a type that has not been named but is a derived type.
 | |
|   // Carefully recurse the type hierarchy to print out any contained symbolic
 | |
|   // names.
 | |
|   //
 | |
|   std::vector<const Type *> TypeStack;
 | |
|   std::string TypeName;
 | |
|   calcTypeName(Ty, TypeStack, TypeNames, TypeName);
 | |
|   TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
 | |
|   return (Out << TypeName);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
 | |
| /// type, iff there is an entry in the modules symbol table for the specified
 | |
| /// type or one of it's component types. This is slower than a simple x << Type
 | |
| ///
 | |
| std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
 | |
|                                       const Module *M) {
 | |
|   Out << ' ';
 | |
| 
 | |
|   // If they want us to print out a type, but there is no context, we can't
 | |
|   // print it symbolically.
 | |
|   if (!M)
 | |
|     return Out << Ty->getDescription();
 | |
|     
 | |
|   std::map<const Type *, std::string> TypeNames;
 | |
|   fillTypeNameTable(M, TypeNames);
 | |
|   return printTypeInt(Out, Ty, TypeNames);
 | |
| }
 | |
| 
 | |
| // PrintEscapedString - Print each character of the specified string, escaping
 | |
| // it if it is not printable or if it is an escape char.
 | |
| static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
 | |
|   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
 | |
|     unsigned char C = Str[i];
 | |
|     if (isprint(C) && C != '"' && C != '\\') {
 | |
|       Out << C;
 | |
|     } else {
 | |
|       Out << '\\'
 | |
|           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
 | |
|           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const char *getPredicateText(unsigned predicate) {
 | |
|   const char * pred = "unknown";
 | |
|   switch (predicate) {
 | |
|     case FCmpInst::FCMP_FALSE: pred = "false"; break;
 | |
|     case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
 | |
|     case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
 | |
|     case FCmpInst::FCMP_OGE:   pred = "oge"; break;
 | |
|     case FCmpInst::FCMP_OLT:   pred = "olt"; break;
 | |
|     case FCmpInst::FCMP_OLE:   pred = "ole"; break;
 | |
|     case FCmpInst::FCMP_ONE:   pred = "one"; break;
 | |
|     case FCmpInst::FCMP_ORD:   pred = "ord"; break;
 | |
|     case FCmpInst::FCMP_UNO:   pred = "uno"; break;
 | |
|     case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
 | |
|     case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
 | |
|     case FCmpInst::FCMP_UGE:   pred = "uge"; break;
 | |
|     case FCmpInst::FCMP_ULT:   pred = "ult"; break;
 | |
|     case FCmpInst::FCMP_ULE:   pred = "ule"; break;
 | |
|     case FCmpInst::FCMP_UNE:   pred = "une"; break;
 | |
|     case FCmpInst::FCMP_TRUE:  pred = "true"; break;
 | |
|     case ICmpInst::ICMP_EQ:    pred = "eq"; break;
 | |
|     case ICmpInst::ICMP_NE:    pred = "ne"; break;
 | |
|     case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
 | |
|     case ICmpInst::ICMP_SGE:   pred = "sge"; break;
 | |
|     case ICmpInst::ICMP_SLT:   pred = "slt"; break;
 | |
|     case ICmpInst::ICMP_SLE:   pred = "sle"; break;
 | |
|     case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
 | |
|     case ICmpInst::ICMP_UGE:   pred = "uge"; break;
 | |
|     case ICmpInst::ICMP_ULT:   pred = "ult"; break;
 | |
|     case ICmpInst::ICMP_ULE:   pred = "ule"; break;
 | |
|   }
 | |
|   return pred;
 | |
| }
 | |
| 
 | |
| /// @brief Internal constant writer.
 | |
| static void WriteConstantInt(std::ostream &Out, const Constant *CV,
 | |
|                              std::map<const Type *, std::string> &TypeTable,
 | |
|                              SlotMachine *Machine) {
 | |
|   const int IndentSize = 4;
 | |
|   static std::string Indent = "\n";
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | |
|     if (CI->getType() == Type::Int1Ty) 
 | |
|       Out << (CI->getZExtValue() ? "true" : "false");
 | |
|     else 
 | |
|       Out << CI->getValue().toStringSigned(10);
 | |
|   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | |
|     // We would like to output the FP constant value in exponential notation,
 | |
|     // but we cannot do this if doing so will lose precision.  Check here to
 | |
|     // make sure that we only output it in exponential format if we can parse
 | |
|     // the value back and get the same value.
 | |
|     //
 | |
|     std::string StrVal = ftostr(CFP->getValue());
 | |
| 
 | |
|     // Check to make sure that the stringized number is not some string like
 | |
|     // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
 | |
|     // the string matches the "[-+]?[0-9]" regex.
 | |
|     //
 | |
|     if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | |
|         ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | |
|          (StrVal[1] >= '0' && StrVal[1] <= '9')))
 | |
|       // Reparse stringized version!
 | |
|       if (atof(StrVal.c_str()) == CFP->getValue()) {
 | |
|         Out << StrVal;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     // Otherwise we could not reparse it to exactly the same value, so we must
 | |
|     // output the string in hexadecimal format!
 | |
|     assert(sizeof(double) == sizeof(uint64_t) &&
 | |
|            "assuming that double is 64 bits!");
 | |
|     Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
 | |
| 
 | |
|   } else if (isa<ConstantAggregateZero>(CV)) {
 | |
|     Out << "zeroinitializer";
 | |
|   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
 | |
|     // As a special case, print the array as a string if it is an array of
 | |
|     // ubytes or an array of sbytes with positive values.
 | |
|     //
 | |
|     const Type *ETy = CA->getType()->getElementType();
 | |
|     if (CA->isString()) {
 | |
|       Out << "c\"";
 | |
|       PrintEscapedString(CA->getAsString(), Out);
 | |
|       Out << "\"";
 | |
| 
 | |
|     } else {                // Cannot output in string format...
 | |
|       Out << '[';
 | |
|       if (CA->getNumOperands()) {
 | |
|         Out << ' ';
 | |
|         printTypeInt(Out, ETy, TypeTable);
 | |
|         WriteAsOperandInternal(Out, CA->getOperand(0),
 | |
|                                TypeTable, Machine);
 | |
|         for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
 | |
|           Out << ", ";
 | |
|           printTypeInt(Out, ETy, TypeTable);
 | |
|           WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
 | |
|         }
 | |
|       }
 | |
|       Out << " ]";
 | |
|     }
 | |
|   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
 | |
|     if (CS->getType()->isPacked())
 | |
|       Out << '<';
 | |
|     Out << '{';
 | |
|     unsigned N = CS->getNumOperands();
 | |
|     if (N) {
 | |
|       if (N > 2) {
 | |
|         Indent += std::string(IndentSize, ' ');
 | |
|         Out << Indent;
 | |
|       } else {
 | |
|         Out << ' ';
 | |
|       }
 | |
|       printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
 | |
| 
 | |
|       WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
 | |
| 
 | |
|       for (unsigned i = 1; i < N; i++) {
 | |
|         Out << ", ";
 | |
|         if (N > 2) Out << Indent;
 | |
|         printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
 | |
| 
 | |
|         WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
 | |
|       }
 | |
|       if (N > 2) Indent.resize(Indent.size() - IndentSize);
 | |
|     }
 | |
|  
 | |
|     Out << " }";
 | |
|     if (CS->getType()->isPacked())
 | |
|       Out << '>';
 | |
|   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
 | |
|       const Type *ETy = CP->getType()->getElementType();
 | |
|       assert(CP->getNumOperands() > 0 &&
 | |
|              "Number of operands for a PackedConst must be > 0");
 | |
|       Out << '<';
 | |
|       Out << ' ';
 | |
|       printTypeInt(Out, ETy, TypeTable);
 | |
|       WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
 | |
|       for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
 | |
|           Out << ", ";
 | |
|           printTypeInt(Out, ETy, TypeTable);
 | |
|           WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
 | |
|       }
 | |
|       Out << " >";
 | |
|   } else if (isa<ConstantPointerNull>(CV)) {
 | |
|     Out << "null";
 | |
| 
 | |
|   } else if (isa<UndefValue>(CV)) {
 | |
|     Out << "undef";
 | |
| 
 | |
|   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | |
|     Out << CE->getOpcodeName();
 | |
|     if (CE->isCompare())
 | |
|       Out << " " << getPredicateText(CE->getPredicate());
 | |
|     Out << " (";
 | |
| 
 | |
|     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
 | |
|       printTypeInt(Out, (*OI)->getType(), TypeTable);
 | |
|       WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
 | |
|       if (OI+1 != CE->op_end())
 | |
|         Out << ", ";
 | |
|     }
 | |
| 
 | |
|     if (CE->isCast()) {
 | |
|       Out << " to ";
 | |
|       printTypeInt(Out, CE->getType(), TypeTable);
 | |
|     }
 | |
| 
 | |
|     Out << ')';
 | |
| 
 | |
|   } else {
 | |
|     Out << "<placeholder or erroneous Constant>";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WriteAsOperand - Write the name of the specified value out to the specified
 | |
| /// ostream.  This can be useful when you just want to print int %reg126, not
 | |
| /// the whole instruction that generated it.
 | |
| ///
 | |
| static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
 | |
|                                   std::map<const Type*, std::string> &TypeTable,
 | |
|                                    SlotMachine *Machine) {
 | |
|   Out << ' ';
 | |
|   if (V->hasName())
 | |
|     Out << getLLVMName(V->getName(),
 | |
|                        isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
 | |
|   else {
 | |
|     const Constant *CV = dyn_cast<Constant>(V);
 | |
|     if (CV && !isa<GlobalValue>(CV)) {
 | |
|       WriteConstantInt(Out, CV, TypeTable, Machine);
 | |
|     } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
 | |
|       Out << "asm ";
 | |
|       if (IA->hasSideEffects())
 | |
|         Out << "sideeffect ";
 | |
|       Out << '"';
 | |
|       PrintEscapedString(IA->getAsmString(), Out);
 | |
|       Out << "\", \"";
 | |
|       PrintEscapedString(IA->getConstraintString(), Out);
 | |
|       Out << '"';
 | |
|     } else {
 | |
|       char Prefix = '%';
 | |
|       int Slot;
 | |
|       if (Machine) {
 | |
|         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|           Slot = Machine->getGlobalSlot(GV);
 | |
|           Prefix = '@';
 | |
|         } else {
 | |
|           Slot = Machine->getLocalSlot(V);
 | |
|         }
 | |
|       } else {
 | |
|         Machine = createSlotMachine(V);
 | |
|         if (Machine) {
 | |
|           if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|             Slot = Machine->getGlobalSlot(GV);
 | |
|             Prefix = '@';
 | |
|           } else {
 | |
|             Slot = Machine->getLocalSlot(V);
 | |
|           }
 | |
|         } else {
 | |
|           Slot = -1;
 | |
|         }
 | |
|         delete Machine;
 | |
|       }
 | |
|       if (Slot != -1)
 | |
|         Out << Prefix << Slot;
 | |
|       else
 | |
|         Out << "<badref>";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// WriteAsOperand - Write the name of the specified value out to the specified
 | |
| /// ostream.  This can be useful when you just want to print int %reg126, not
 | |
| /// the whole instruction that generated it.
 | |
| ///
 | |
| std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
 | |
|                                    bool PrintType, const Module *Context) {
 | |
|   std::map<const Type *, std::string> TypeNames;
 | |
|   if (Context == 0) Context = getModuleFromVal(V);
 | |
| 
 | |
|   if (Context)
 | |
|     fillTypeNameTable(Context, TypeNames);
 | |
| 
 | |
|   if (PrintType)
 | |
|     printTypeInt(Out, V->getType(), TypeNames);
 | |
| 
 | |
|   WriteAsOperandInternal(Out, V, TypeNames, 0);
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class AssemblyWriter {
 | |
|   std::ostream &Out;
 | |
|   SlotMachine &Machine;
 | |
|   const Module *TheModule;
 | |
|   std::map<const Type *, std::string> TypeNames;
 | |
|   AssemblyAnnotationWriter *AnnotationWriter;
 | |
| public:
 | |
|   inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
 | |
|                         AssemblyAnnotationWriter *AAW)
 | |
|     : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
 | |
| 
 | |
|     // If the module has a symbol table, take all global types and stuff their
 | |
|     // names into the TypeNames map.
 | |
|     //
 | |
|     fillTypeNameTable(M, TypeNames);
 | |
|   }
 | |
| 
 | |
|   inline void write(const Module *M)         { printModule(M);       }
 | |
|   inline void write(const GlobalVariable *G) { printGlobal(G);       }
 | |
|   inline void write(const GlobalAlias *G)    { printAlias(G);        }
 | |
|   inline void write(const Function *F)       { printFunction(F);     }
 | |
|   inline void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
 | |
|   inline void write(const Instruction *I)    { printInstruction(*I); }
 | |
|   inline void write(const Type *Ty)          { printType(Ty);        }
 | |
| 
 | |
|   void writeOperand(const Value *Op, bool PrintType);
 | |
| 
 | |
|   const Module* getModule() { return TheModule; }
 | |
| 
 | |
| private:
 | |
|   void printModule(const Module *M);
 | |
|   void printTypeSymbolTable(const TypeSymbolTable &ST);
 | |
|   void printGlobal(const GlobalVariable *GV);
 | |
|   void printAlias(const GlobalAlias *GV);
 | |
|   void printFunction(const Function *F);
 | |
|   void printArgument(const Argument *FA, uint16_t ParamAttrs);
 | |
|   void printBasicBlock(const BasicBlock *BB);
 | |
|   void printInstruction(const Instruction &I);
 | |
| 
 | |
|   // printType - Go to extreme measures to attempt to print out a short,
 | |
|   // symbolic version of a type name.
 | |
|   //
 | |
|   std::ostream &printType(const Type *Ty) {
 | |
|     return printTypeInt(Out, Ty, TypeNames);
 | |
|   }
 | |
| 
 | |
|   // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | |
|   // without considering any symbolic types that we may have equal to it.
 | |
|   //
 | |
|   std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
 | |
| 
 | |
|   // printInfoComment - Print a little comment after the instruction indicating
 | |
|   // which slot it occupies.
 | |
|   void printInfoComment(const Value &V);
 | |
| };
 | |
| }  // end of llvm namespace
 | |
| 
 | |
| /// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | |
| /// without considering any symbolic types that we may have equal to it.
 | |
| ///
 | |
| std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
 | |
|   if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
 | |
|     Out << "i" << utostr(ITy->getBitWidth());
 | |
|   else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
 | |
|     printType(FTy->getReturnType());
 | |
|     Out << " (";
 | |
|     unsigned Idx = 1;
 | |
|     const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | |
|     for (FunctionType::param_iterator I = FTy->param_begin(),
 | |
|            E = FTy->param_end(); I != E; ++I) {
 | |
|       if (I != FTy->param_begin())
 | |
|         Out << ", ";
 | |
|       printType(*I);
 | |
|       if (Attrs && Attrs->getParamAttrs(Idx) != ParamAttr::None) {
 | |
|         Out << " " << Attrs->getParamAttrsTextByIndex(Idx);
 | |
|       }
 | |
|       Idx++;
 | |
|     }
 | |
|     if (FTy->isVarArg()) {
 | |
|       if (FTy->getNumParams()) Out << ", ";
 | |
|       Out << "...";
 | |
|     }
 | |
|     Out << ')';
 | |
|     if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None)
 | |
|       Out << ' ' << Attrs->getParamAttrsTextByIndex(0);
 | |
|   } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     if (STy->isPacked())
 | |
|       Out << '<';
 | |
|     Out << "{ ";
 | |
|     for (StructType::element_iterator I = STy->element_begin(),
 | |
|            E = STy->element_end(); I != E; ++I) {
 | |
|       if (I != STy->element_begin())
 | |
|         Out << ", ";
 | |
|       printType(*I);
 | |
|     }
 | |
|     Out << " }";
 | |
|     if (STy->isPacked())
 | |
|       Out << '>';
 | |
|   } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | |
|     printType(PTy->getElementType()) << '*';
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Out << '[' << ATy->getNumElements() << " x ";
 | |
|     printType(ATy->getElementType()) << ']';
 | |
|   } else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
 | |
|     Out << '<' << PTy->getNumElements() << " x ";
 | |
|     printType(PTy->getElementType()) << '>';
 | |
|   }
 | |
|   else if (isa<OpaqueType>(Ty)) {
 | |
|     Out << "opaque";
 | |
|   } else {
 | |
|     if (!Ty->isPrimitiveType())
 | |
|       Out << "<unknown derived type>";
 | |
|     printType(Ty);
 | |
|   }
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| 
 | |
| void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
 | |
|   if (Operand == 0) {
 | |
|     Out << "<null operand!>";
 | |
|   } else {
 | |
|     if (PrintType) { Out << ' '; printType(Operand->getType()); }
 | |
|     WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void AssemblyWriter::printModule(const Module *M) {
 | |
|   if (!M->getModuleIdentifier().empty() &&
 | |
|       // Don't print the ID if it will start a new line (which would
 | |
|       // require a comment char before it).
 | |
|       M->getModuleIdentifier().find('\n') == std::string::npos)
 | |
|     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
 | |
| 
 | |
|   if (!M->getDataLayout().empty())
 | |
|     Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
 | |
|   if (!M->getTargetTriple().empty())
 | |
|     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
 | |
| 
 | |
|   if (!M->getModuleInlineAsm().empty()) {
 | |
|     // Split the string into lines, to make it easier to read the .ll file.
 | |
|     std::string Asm = M->getModuleInlineAsm();
 | |
|     size_t CurPos = 0;
 | |
|     size_t NewLine = Asm.find_first_of('\n', CurPos);
 | |
|     while (NewLine != std::string::npos) {
 | |
|       // We found a newline, print the portion of the asm string from the
 | |
|       // last newline up to this newline.
 | |
|       Out << "module asm \"";
 | |
|       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
 | |
|                          Out);
 | |
|       Out << "\"\n";
 | |
|       CurPos = NewLine+1;
 | |
|       NewLine = Asm.find_first_of('\n', CurPos);
 | |
|     }
 | |
|     Out << "module asm \"";
 | |
|     PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
 | |
|     Out << "\"\n";
 | |
|   }
 | |
|   
 | |
|   // Loop over the dependent libraries and emit them.
 | |
|   Module::lib_iterator LI = M->lib_begin();
 | |
|   Module::lib_iterator LE = M->lib_end();
 | |
|   if (LI != LE) {
 | |
|     Out << "deplibs = [ ";
 | |
|     while (LI != LE) {
 | |
|       Out << '"' << *LI << '"';
 | |
|       ++LI;
 | |
|       if (LI != LE)
 | |
|         Out << ", ";
 | |
|     }
 | |
|     Out << " ]\n";
 | |
|   }
 | |
| 
 | |
|   // Loop over the symbol table, emitting all named constants.
 | |
|   printTypeSymbolTable(M->getTypeSymbolTable());
 | |
| 
 | |
|   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
 | |
|        I != E; ++I)
 | |
|     printGlobal(I);
 | |
| 
 | |
|   // Output all of the functions.
 | |
|   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | |
|     printFunction(I);
 | |
| 
 | |
|   // Output all aliases
 | |
|   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | |
|        I != E; ++I)
 | |
|     printAlias(I);
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
 | |
|   if (GV->hasName()) Out << getLLVMName(GV->getName(), GlobalPrefix) << " = ";
 | |
| 
 | |
|   if (!GV->hasInitializer())
 | |
|     switch (GV->getLinkage()) {
 | |
|      case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
 | |
|      case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
 | |
|      default: Out << "external "; break;
 | |
|     } else {
 | |
|     switch (GV->getLinkage()) {
 | |
|     case GlobalValue::InternalLinkage:     Out << "internal "; break;
 | |
|     case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
 | |
|     case GlobalValue::WeakLinkage:         Out << "weak "; break;
 | |
|     case GlobalValue::AppendingLinkage:    Out << "appending "; break;
 | |
|     case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
 | |
|     case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;     
 | |
|     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
 | |
|     case GlobalValue::ExternalLinkage:     break;
 | |
|     case GlobalValue::GhostLinkage:
 | |
|       cerr << "GhostLinkage not allowed in AsmWriter!\n";
 | |
|       abort();
 | |
|     }
 | |
|     switch (GV->getVisibility()) {
 | |
|     default: assert(0 && "Invalid visibility style!");
 | |
|     case GlobalValue::DefaultVisibility: break;
 | |
|     case GlobalValue::HiddenVisibility: Out << "hidden "; break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GV->isThreadLocal()) Out << "thread_local ";
 | |
|   Out << (GV->isConstant() ? "constant " : "global ");
 | |
|   printType(GV->getType()->getElementType());
 | |
| 
 | |
|   if (GV->hasInitializer()) {
 | |
|     Constant* C = cast<Constant>(GV->getInitializer());
 | |
|     assert(C &&  "GlobalVar initializer isn't constant?");
 | |
|     writeOperand(GV->getInitializer(), false);
 | |
|   }
 | |
| 
 | |
|   if (GV->hasSection())
 | |
|     Out << ", section \"" << GV->getSection() << '"';
 | |
|   if (GV->getAlignment())
 | |
|     Out << ", align " << GV->getAlignment();
 | |
| 
 | |
|   printInfoComment(*GV);
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printAlias(const GlobalAlias *GA) {
 | |
|   Out << getLLVMName(GA->getName(), GlobalPrefix) << " = ";
 | |
|   switch (GA->getVisibility()) {
 | |
|   default: assert(0 && "Invalid visibility style!");
 | |
|   case GlobalValue::DefaultVisibility: break;
 | |
|   case GlobalValue::HiddenVisibility: Out << "hidden "; break;
 | |
|   }
 | |
| 
 | |
|   Out << "alias ";
 | |
| 
 | |
|   switch (GA->getLinkage()) {
 | |
|   case GlobalValue::WeakLinkage: Out << "weak "; break;
 | |
|   case GlobalValue::InternalLinkage: Out << "internal "; break;
 | |
|   case GlobalValue::ExternalLinkage: break;
 | |
|   default:
 | |
|    assert(0 && "Invalid alias linkage");
 | |
|   }
 | |
|   
 | |
|   const GlobalValue *Aliasee = GA->getAliasee();
 | |
|   assert(Aliasee && "Aliasee cannot be null");
 | |
|     
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
 | |
|     printType(GV->getType());
 | |
|     Out << " " << getLLVMName(GV->getName(), GlobalPrefix);
 | |
|   } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
 | |
|     printType(F->getFunctionType());
 | |
|     Out << "* ";
 | |
| 
 | |
|     if (!F->getName().empty())
 | |
|       Out << getLLVMName(F->getName(), GlobalPrefix);
 | |
|     else
 | |
|       Out << "@\"\"";
 | |
|   } else
 | |
|     assert(0 && "Unsupported aliasee");
 | |
| 
 | |
|   printInfoComment(*GA);
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
 | |
|   // Print the types.
 | |
|   for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
 | |
|        TI != TE; ++TI) {
 | |
|     Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type ";
 | |
| 
 | |
|     // Make sure we print out at least one level of the type structure, so
 | |
|     // that we do not get %FILE = type %FILE
 | |
|     //
 | |
|     printTypeAtLeastOneLevel(TI->second) << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// printFunction - Print all aspects of a function.
 | |
| ///
 | |
| void AssemblyWriter::printFunction(const Function *F) {
 | |
|   // Print out the return type and name...
 | |
|   Out << "\n";
 | |
| 
 | |
|   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
 | |
| 
 | |
|   if (F->isDeclaration())
 | |
|     switch (F->getLinkage()) {
 | |
|     case GlobalValue::DLLImportLinkage:    Out << "declare dllimport "; break;
 | |
|     case GlobalValue::ExternalWeakLinkage: Out << "declare extern_weak "; break;
 | |
|     default: Out << "declare ";
 | |
|     }
 | |
|   else {
 | |
|     Out << "define ";
 | |
|     switch (F->getLinkage()) {
 | |
|     case GlobalValue::InternalLinkage:     Out << "internal "; break;
 | |
|     case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
 | |
|     case GlobalValue::WeakLinkage:         Out << "weak "; break;
 | |
|     case GlobalValue::AppendingLinkage:    Out << "appending "; break;
 | |
|     case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
 | |
|     case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
 | |
|     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;      
 | |
|     case GlobalValue::ExternalLinkage: break;
 | |
|     case GlobalValue::GhostLinkage:
 | |
|       cerr << "GhostLinkage not allowed in AsmWriter!\n";
 | |
|       abort();
 | |
|     }
 | |
|     switch (F->getVisibility()) {
 | |
|     default: assert(0 && "Invalid visibility style!");
 | |
|     case GlobalValue::DefaultVisibility: break;
 | |
|     case GlobalValue::HiddenVisibility: Out << "hidden "; break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Print the calling convention.
 | |
|   switch (F->getCallingConv()) {
 | |
|   case CallingConv::C: break;   // default
 | |
|   case CallingConv::Fast:         Out << "fastcc "; break;
 | |
|   case CallingConv::Cold:         Out << "coldcc "; break;
 | |
|   case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
 | |
|   case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; 
 | |
|   default: Out << "cc" << F->getCallingConv() << " "; break;
 | |
|   }
 | |
| 
 | |
|   const FunctionType *FT = F->getFunctionType();
 | |
|   const ParamAttrsList *Attrs = FT->getParamAttrs();
 | |
|   printType(F->getReturnType()) << ' ';
 | |
|   if (!F->getName().empty())
 | |
|     Out << getLLVMName(F->getName(), GlobalPrefix);
 | |
|   else
 | |
|     Out << "@\"\"";
 | |
|   Out << '(';
 | |
|   Machine.incorporateFunction(F);
 | |
| 
 | |
|   // Loop over the arguments, printing them...
 | |
| 
 | |
|   unsigned Idx = 1;
 | |
|   if (!F->isDeclaration()) {
 | |
|     // If this isn't a declaration, print the argument names as well.
 | |
|     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I) {
 | |
|       // Insert commas as we go... the first arg doesn't get a comma
 | |
|       if (I != F->arg_begin()) Out << ", ";
 | |
|       printArgument(I, (Attrs ? Attrs->getParamAttrs(Idx)
 | |
|                               : uint16_t(ParamAttr::None)));
 | |
|       Idx++;
 | |
|     }
 | |
|   } else {
 | |
|     // Otherwise, print the types from the function type.
 | |
|     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
 | |
|       // Insert commas as we go... the first arg doesn't get a comma
 | |
|       if (i) Out << ", ";
 | |
|       
 | |
|       // Output type...
 | |
|       printType(FT->getParamType(i));
 | |
|       
 | |
|       unsigned ArgAttrs = ParamAttr::None;
 | |
|       if (Attrs) ArgAttrs = Attrs->getParamAttrs(i+1);
 | |
|       if (ArgAttrs != ParamAttr::None)
 | |
|         Out << ' ' << ParamAttrsList::getParamAttrsText(ArgAttrs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish printing arguments...
 | |
|   if (FT->isVarArg()) {
 | |
|     if (FT->getNumParams()) Out << ", ";
 | |
|     Out << "...";  // Output varargs portion of signature!
 | |
|   }
 | |
|   Out << ')';
 | |
|   if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None)
 | |
|     Out << ' ' << Attrs->getParamAttrsTextByIndex(0);
 | |
|   if (F->hasSection())
 | |
|     Out << " section \"" << F->getSection() << '"';
 | |
|   if (F->getAlignment())
 | |
|     Out << " align " << F->getAlignment();
 | |
| 
 | |
|   if (F->isDeclaration()) {
 | |
|     Out << "\n";
 | |
|   } else {
 | |
|     Out << " {";
 | |
| 
 | |
|     // Output all of its basic blocks... for the function
 | |
|     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|       printBasicBlock(I);
 | |
| 
 | |
|     Out << "}\n";
 | |
|   }
 | |
| 
 | |
|   Machine.purgeFunction();
 | |
| }
 | |
| 
 | |
| /// printArgument - This member is called for every argument that is passed into
 | |
| /// the function.  Simply print it out
 | |
| ///
 | |
| void AssemblyWriter::printArgument(const Argument *Arg, uint16_t Attrs) {
 | |
|   // Output type...
 | |
|   printType(Arg->getType());
 | |
| 
 | |
|   if (Attrs != ParamAttr::None)
 | |
|     Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
 | |
| 
 | |
|   // Output name, if available...
 | |
|   if (Arg->hasName())
 | |
|     Out << ' ' << getLLVMName(Arg->getName(), LocalPrefix);
 | |
| }
 | |
| 
 | |
| /// printBasicBlock - This member is called for each basic block in a method.
 | |
| ///
 | |
| void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
 | |
|   if (BB->hasName()) {              // Print out the label if it exists...
 | |
|     Out << "\n" << getLLVMName(BB->getName(), LabelPrefix) << ':';
 | |
|   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
 | |
|     Out << "\n; <label>:";
 | |
|     int Slot = Machine.getLocalSlot(BB);
 | |
|     if (Slot != -1)
 | |
|       Out << Slot;
 | |
|     else
 | |
|       Out << "<badref>";
 | |
|   }
 | |
| 
 | |
|   if (BB->getParent() == 0)
 | |
|     Out << "\t\t; Error: Block without parent!";
 | |
|   else {
 | |
|     if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
 | |
|       // Output predecessors for the block...
 | |
|       Out << "\t\t;";
 | |
|       pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
| 
 | |
|       if (PI == PE) {
 | |
|         Out << " No predecessors!";
 | |
|       } else {
 | |
|         Out << " preds =";
 | |
|         writeOperand(*PI, false);
 | |
|         for (++PI; PI != PE; ++PI) {
 | |
|           Out << ',';
 | |
|           writeOperand(*PI, false);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Out << "\n";
 | |
| 
 | |
|   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
 | |
| 
 | |
|   // Output all of the instructions in the basic block...
 | |
|   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     printInstruction(*I);
 | |
| 
 | |
|   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// printInfoComment - Print a little comment after the instruction indicating
 | |
| /// which slot it occupies.
 | |
| ///
 | |
| void AssemblyWriter::printInfoComment(const Value &V) {
 | |
|   if (V.getType() != Type::VoidTy) {
 | |
|     Out << "\t\t; <";
 | |
|     printType(V.getType()) << '>';
 | |
| 
 | |
|     if (!V.hasName()) {
 | |
|       int SlotNum;
 | |
|       if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
 | |
|         SlotNum = Machine.getGlobalSlot(GV);
 | |
|       else
 | |
|         SlotNum = Machine.getLocalSlot(&V);
 | |
|       if (SlotNum == -1)
 | |
|         Out << ":<badref>";
 | |
|       else
 | |
|         Out << ':' << SlotNum; // Print out the def slot taken.
 | |
|     }
 | |
|     Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This member is called for each Instruction in a function..
 | |
| void AssemblyWriter::printInstruction(const Instruction &I) {
 | |
|   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
 | |
| 
 | |
|   Out << "\t";
 | |
| 
 | |
|   // Print out name if it exists...
 | |
|   if (I.hasName())
 | |
|     Out << getLLVMName(I.getName(), LocalPrefix) << " = ";
 | |
| 
 | |
|   // If this is a volatile load or store, print out the volatile marker.
 | |
|   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
 | |
|       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
 | |
|       Out << "volatile ";
 | |
|   } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
 | |
|     // If this is a call, check if it's a tail call.
 | |
|     Out << "tail ";
 | |
|   }
 | |
| 
 | |
|   // Print out the opcode...
 | |
|   Out << I.getOpcodeName();
 | |
| 
 | |
|   // Print out the compare instruction predicates
 | |
|   if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
 | |
|     Out << " " << getPredicateText(FCI->getPredicate());
 | |
|   } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
 | |
|     Out << " " << getPredicateText(ICI->getPredicate());
 | |
|   }
 | |
| 
 | |
|   // Print out the type of the operands...
 | |
|   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
 | |
| 
 | |
|   // Special case conditional branches to swizzle the condition out to the front
 | |
|   if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
 | |
|     writeOperand(I.getOperand(2), true);
 | |
|     Out << ',';
 | |
|     writeOperand(Operand, true);
 | |
|     Out << ',';
 | |
|     writeOperand(I.getOperand(1), true);
 | |
| 
 | |
|   } else if (isa<SwitchInst>(I)) {
 | |
|     // Special case switch statement to get formatting nice and correct...
 | |
|     writeOperand(Operand        , true); Out << ',';
 | |
|     writeOperand(I.getOperand(1), true); Out << " [";
 | |
| 
 | |
|     for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | |
|       Out << "\n\t\t";
 | |
|       writeOperand(I.getOperand(op  ), true); Out << ',';
 | |
|       writeOperand(I.getOperand(op+1), true);
 | |
|     }
 | |
|     Out << "\n\t]";
 | |
|   } else if (isa<PHINode>(I)) {
 | |
|     Out << ' ';
 | |
|     printType(I.getType());
 | |
|     Out << ' ';
 | |
| 
 | |
|     for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | |
|       if (op) Out << ", ";
 | |
|       Out << '[';
 | |
|       writeOperand(I.getOperand(op  ), false); Out << ',';
 | |
|       writeOperand(I.getOperand(op+1), false); Out << " ]";
 | |
|     }
 | |
|   } else if (isa<ReturnInst>(I) && !Operand) {
 | |
|     Out << " void";
 | |
|   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|     // Print the calling convention being used.
 | |
|     switch (CI->getCallingConv()) {
 | |
|     case CallingConv::C: break;   // default
 | |
|     case CallingConv::Fast:  Out << " fastcc"; break;
 | |
|     case CallingConv::Cold:  Out << " coldcc"; break;
 | |
|     case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
 | |
|     case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; 
 | |
|     default: Out << " cc" << CI->getCallingConv(); break;
 | |
|     }
 | |
| 
 | |
|     const PointerType    *PTy = cast<PointerType>(Operand->getType());
 | |
|     const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|     const Type         *RetTy = FTy->getReturnType();
 | |
|     const ParamAttrsList *PAL = FTy->getParamAttrs();
 | |
| 
 | |
|     // If possible, print out the short form of the call instruction.  We can
 | |
|     // only do this if the first argument is a pointer to a nonvararg function,
 | |
|     // and if the return type is not a pointer to a function.
 | |
|     //
 | |
|     if (!FTy->isVarArg() &&
 | |
|         (!isa<PointerType>(RetTy) ||
 | |
|          !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | |
|       Out << ' '; printType(RetTy);
 | |
|       writeOperand(Operand, false);
 | |
|     } else {
 | |
|       writeOperand(Operand, true);
 | |
|     }
 | |
|     Out << '(';
 | |
|     for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
 | |
|       if (op > 1)
 | |
|         Out << ',';
 | |
|       writeOperand(I.getOperand(op), true);
 | |
|       if (PAL && PAL->getParamAttrs(op) != ParamAttr::None)
 | |
|         Out << " " << PAL->getParamAttrsTextByIndex(op);
 | |
|     }
 | |
|     Out << " )";
 | |
|     if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
 | |
|       Out << ' ' << PAL->getParamAttrsTextByIndex(0);
 | |
|   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | |
|     const PointerType    *PTy = cast<PointerType>(Operand->getType());
 | |
|     const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|     const Type         *RetTy = FTy->getReturnType();
 | |
|     const ParamAttrsList *PAL = FTy->getParamAttrs();
 | |
| 
 | |
|     // Print the calling convention being used.
 | |
|     switch (II->getCallingConv()) {
 | |
|     case CallingConv::C: break;   // default
 | |
|     case CallingConv::Fast:  Out << " fastcc"; break;
 | |
|     case CallingConv::Cold:  Out << " coldcc"; break;
 | |
|     case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
 | |
|     case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
 | |
|     default: Out << " cc" << II->getCallingConv(); break;
 | |
|     }
 | |
| 
 | |
|     // If possible, print out the short form of the invoke instruction. We can
 | |
|     // only do this if the first argument is a pointer to a nonvararg function,
 | |
|     // and if the return type is not a pointer to a function.
 | |
|     //
 | |
|     if (!FTy->isVarArg() &&
 | |
|         (!isa<PointerType>(RetTy) ||
 | |
|          !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | |
|       Out << ' '; printType(RetTy);
 | |
|       writeOperand(Operand, false);
 | |
|     } else {
 | |
|       writeOperand(Operand, true);
 | |
|     }
 | |
| 
 | |
|     Out << '(';
 | |
|     for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
 | |
|       if (op > 3)
 | |
|         Out << ',';
 | |
|       writeOperand(I.getOperand(op), true);
 | |
|       if (PAL && PAL->getParamAttrs(op-2) != ParamAttr::None)
 | |
|         Out << " " << PAL->getParamAttrsTextByIndex(op-2);
 | |
|     }
 | |
| 
 | |
|     Out << " )";
 | |
|     if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
 | |
|       Out << " " << PAL->getParamAttrsTextByIndex(0);
 | |
|     Out << "\n\t\t\tto";
 | |
|     writeOperand(II->getNormalDest(), true);
 | |
|     Out << " unwind";
 | |
|     writeOperand(II->getUnwindDest(), true);
 | |
| 
 | |
|   } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
 | |
|     Out << ' ';
 | |
|     printType(AI->getType()->getElementType());
 | |
|     if (AI->isArrayAllocation()) {
 | |
|       Out << ',';
 | |
|       writeOperand(AI->getArraySize(), true);
 | |
|     }
 | |
|     if (AI->getAlignment()) {
 | |
|       Out << ", align " << AI->getAlignment();
 | |
|     }
 | |
|   } else if (isa<CastInst>(I)) {
 | |
|     if (Operand) writeOperand(Operand, true);   // Work with broken code
 | |
|     Out << " to ";
 | |
|     printType(I.getType());
 | |
|   } else if (isa<VAArgInst>(I)) {
 | |
|     if (Operand) writeOperand(Operand, true);   // Work with broken code
 | |
|     Out << ", ";
 | |
|     printType(I.getType());
 | |
|   } else if (Operand) {   // Print the normal way...
 | |
| 
 | |
|     // PrintAllTypes - Instructions who have operands of all the same type
 | |
|     // omit the type from all but the first operand.  If the instruction has
 | |
|     // different type operands (for example br), then they are all printed.
 | |
|     bool PrintAllTypes = false;
 | |
|     const Type *TheType = Operand->getType();
 | |
| 
 | |
|     // Select, Store and ShuffleVector always print all types.
 | |
|     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)) {
 | |
|       PrintAllTypes = true;
 | |
|     } else {
 | |
|       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
 | |
|         Operand = I.getOperand(i);
 | |
|         if (Operand->getType() != TheType) {
 | |
|           PrintAllTypes = true;    // We have differing types!  Print them all!
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!PrintAllTypes) {
 | |
|       Out << ' ';
 | |
|       printType(TheType);
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
 | |
|       if (i) Out << ',';
 | |
|       writeOperand(I.getOperand(i), PrintAllTypes);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Print post operand alignment for load/store
 | |
|   if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
 | |
|     Out << ", align " << cast<LoadInst>(I).getAlignment();
 | |
|   } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
 | |
|     Out << ", align " << cast<StoreInst>(I).getAlignment();
 | |
|   }
 | |
| 
 | |
|   printInfoComment(I);
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       External Interface declarations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | |
|   SlotMachine SlotTable(this);
 | |
|   AssemblyWriter W(o, SlotTable, this, AAW);
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void GlobalVariable::print(std::ostream &o) const {
 | |
|   SlotMachine SlotTable(getParent());
 | |
|   AssemblyWriter W(o, SlotTable, getParent(), 0);
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void GlobalAlias::print(std::ostream &o) const {
 | |
|   SlotMachine SlotTable(getParent());
 | |
|   AssemblyWriter W(o, SlotTable, getParent(), 0);
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | |
|   SlotMachine SlotTable(getParent());
 | |
|   AssemblyWriter W(o, SlotTable, getParent(), AAW);
 | |
| 
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | |
|   WriteAsOperand(o, this, true, 0);
 | |
| }
 | |
| 
 | |
| void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | |
|   SlotMachine SlotTable(getParent());
 | |
|   AssemblyWriter W(o, SlotTable,
 | |
|                    getParent() ? getParent()->getParent() : 0, AAW);
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | |
|   const Function *F = getParent() ? getParent()->getParent() : 0;
 | |
|   SlotMachine SlotTable(F);
 | |
|   AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
 | |
| 
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void Constant::print(std::ostream &o) const {
 | |
|   if (this == 0) { o << "<null> constant value\n"; return; }
 | |
| 
 | |
|   o << ' ' << getType()->getDescription() << ' ';
 | |
| 
 | |
|   std::map<const Type *, std::string> TypeTable;
 | |
|   WriteConstantInt(o, this, TypeTable, 0);
 | |
| }
 | |
| 
 | |
| void Type::print(std::ostream &o) const {
 | |
|   if (this == 0)
 | |
|     o << "<null Type>";
 | |
|   else
 | |
|     o << getDescription();
 | |
| }
 | |
| 
 | |
| void Argument::print(std::ostream &o) const {
 | |
|   WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
 | |
| }
 | |
| 
 | |
| // Value::dump - allow easy printing of  Values from the debugger.
 | |
| // Located here because so much of the needed functionality is here.
 | |
| void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
 | |
| 
 | |
| // Type::dump - allow easy printing of  Values from the debugger.
 | |
| // Located here because so much of the needed functionality is here.
 | |
| void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
 | |
| 
 | |
| void
 | |
| ParamAttrsList::dump() const {
 | |
|   cerr << "PAL[ ";
 | |
|   for (unsigned i = 0; i < attrs.size(); ++i) {
 | |
|     uint16_t index = getParamIndex(i);
 | |
|     uint16_t attrs = getParamAttrs(index);
 | |
|     cerr << "{" << index << "," << attrs << "} ";
 | |
|   }
 | |
|   cerr << "]\n";
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         SlotMachine Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #if 0
 | |
| #define SC_DEBUG(X) cerr << X
 | |
| #else
 | |
| #define SC_DEBUG(X)
 | |
| #endif
 | |
| 
 | |
| // Module level constructor. Causes the contents of the Module (sans functions)
 | |
| // to be added to the slot table.
 | |
| SlotMachine::SlotMachine(const Module *M)
 | |
|   : TheModule(M)    ///< Saved for lazy initialization.
 | |
|   , TheFunction(0)
 | |
|   , FunctionProcessed(false)
 | |
|   , mMap(), mNext(0), fMap(), fNext(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| // Function level constructor. Causes the contents of the Module and the one
 | |
| // function provided to be added to the slot table.
 | |
| SlotMachine::SlotMachine(const Function *F)
 | |
|   : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
 | |
|   , TheFunction(F) ///< Saved for lazy initialization
 | |
|   , FunctionProcessed(false)
 | |
|   , mMap(), mNext(0), fMap(), fNext(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| inline void SlotMachine::initialize() {
 | |
|   if (TheModule) {
 | |
|     processModule();
 | |
|     TheModule = 0; ///< Prevent re-processing next time we're called.
 | |
|   }
 | |
|   if (TheFunction && !FunctionProcessed)
 | |
|     processFunction();
 | |
| }
 | |
| 
 | |
| // Iterate through all the global variables, functions, and global
 | |
| // variable initializers and create slots for them.
 | |
| void SlotMachine::processModule() {
 | |
|   SC_DEBUG("begin processModule!\n");
 | |
| 
 | |
|   // Add all of the unnamed global variables to the value table.
 | |
|   for (Module::const_global_iterator I = TheModule->global_begin(),
 | |
|        E = TheModule->global_end(); I != E; ++I)
 | |
|     if (!I->hasName()) 
 | |
|       CreateModuleSlot(I);
 | |
| 
 | |
|   // Add all the unnamed functions to the table.
 | |
|   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | |
|        I != E; ++I)
 | |
|     if (!I->hasName())
 | |
|       CreateModuleSlot(I);
 | |
| 
 | |
|   SC_DEBUG("end processModule!\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| // Process the arguments, basic blocks, and instructions  of a function.
 | |
| void SlotMachine::processFunction() {
 | |
|   SC_DEBUG("begin processFunction!\n");
 | |
|   fNext = 0;
 | |
| 
 | |
|   // Add all the function arguments with no names.
 | |
|   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
 | |
|       AE = TheFunction->arg_end(); AI != AE; ++AI)
 | |
|     if (!AI->hasName())
 | |
|       CreateFunctionSlot(AI);
 | |
| 
 | |
|   SC_DEBUG("Inserting Instructions:\n");
 | |
| 
 | |
|   // Add all of the basic blocks and instructions with no names.
 | |
|   for (Function::const_iterator BB = TheFunction->begin(),
 | |
|        E = TheFunction->end(); BB != E; ++BB) {
 | |
|     if (!BB->hasName())
 | |
|       CreateFunctionSlot(BB);
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (I->getType() != Type::VoidTy && !I->hasName())
 | |
|         CreateFunctionSlot(I);
 | |
|   }
 | |
| 
 | |
|   FunctionProcessed = true;
 | |
| 
 | |
|   SC_DEBUG("end processFunction!\n");
 | |
| }
 | |
| 
 | |
| /// Clean up after incorporating a function. This is the only way to get out of
 | |
| /// the function incorporation state that affects get*Slot/Create*Slot. Function
 | |
| /// incorporation state is indicated by TheFunction != 0.
 | |
| void SlotMachine::purgeFunction() {
 | |
|   SC_DEBUG("begin purgeFunction!\n");
 | |
|   fMap.clear(); // Simply discard the function level map
 | |
|   TheFunction = 0;
 | |
|   FunctionProcessed = false;
 | |
|   SC_DEBUG("end purgeFunction!\n");
 | |
| }
 | |
| 
 | |
| /// getGlobalSlot - Get the slot number of a global value.
 | |
| int SlotMachine::getGlobalSlot(const GlobalValue *V) {
 | |
|   // Check for uninitialized state and do lazy initialization.
 | |
|   initialize();
 | |
|   
 | |
|   // Find the type plane in the module map
 | |
|   ValueMap::const_iterator MI = mMap.find(V);
 | |
|   if (MI == mMap.end()) return -1;
 | |
| 
 | |
|   return MI->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getLocalSlot - Get the slot number for a value that is local to a function.
 | |
| int SlotMachine::getLocalSlot(const Value *V) {
 | |
|   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
 | |
| 
 | |
|   // Check for uninitialized state and do lazy initialization.
 | |
|   initialize();
 | |
| 
 | |
|   ValueMap::const_iterator FI = fMap.find(V);
 | |
|   if (FI == fMap.end()) return -1;
 | |
|   
 | |
|   return FI->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | |
| void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
 | |
|   assert(V && "Can't insert a null Value into SlotMachine!");
 | |
|   assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
 | |
|   assert(!V->hasName() && "Doesn't need a slot!");
 | |
|   
 | |
|   unsigned DestSlot = mNext++;
 | |
|   mMap[V] = DestSlot;
 | |
|   
 | |
|   SC_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
 | |
|            DestSlot << " [");
 | |
|   // G = Global, F = Function, A = Alias, o = other
 | |
|   SC_DEBUG((isa<GlobalVariable>(V) ? 'G' :
 | |
|             (isa<Function> ? 'F' :
 | |
|              (isa<GlobalAlias> ? 'A' : 'o'))) << "]\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CreateSlot - Create a new slot for the specified value if it has no name.
 | |
| void SlotMachine::CreateFunctionSlot(const Value *V) {
 | |
|   const Type *VTy = V->getType();
 | |
|   assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
 | |
|   
 | |
|   unsigned DestSlot = fNext++;
 | |
|   fMap[V] = DestSlot;
 | |
|   
 | |
|   // G = Global, F = Function, o = other
 | |
|   SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
 | |
|            DestSlot << " [o]\n");
 | |
| }  
 |