mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			346 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
 | 
						|
// but for target-specific code rather than target-independent IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
 | 
						|
#define LLVM_CODEGEN_MACHINEDOMINATORS_H
 | 
						|
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/Support/GenericDomTree.h"
 | 
						|
#include "llvm/Support/GenericDomTreeConstruction.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template<>
 | 
						|
inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
 | 
						|
  this->Roots.push_back(MBB);
 | 
						|
}
 | 
						|
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<MachineBasicBlock>);
 | 
						|
 | 
						|
typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
 | 
						|
 | 
						|
//===-------------------------------------
 | 
						|
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
 | 
						|
/// compute a normal dominator tree.
 | 
						|
///
 | 
						|
class MachineDominatorTree : public MachineFunctionPass {
 | 
						|
  /// \brief Helper structure used to hold all the basic blocks
 | 
						|
  /// involved in the split of a critical edge.
 | 
						|
  struct CriticalEdge {
 | 
						|
    MachineBasicBlock *FromBB;
 | 
						|
    MachineBasicBlock *ToBB;
 | 
						|
    MachineBasicBlock *NewBB;
 | 
						|
    CriticalEdge(MachineBasicBlock *FromBB, MachineBasicBlock *ToBB,
 | 
						|
                 MachineBasicBlock *NewBB)
 | 
						|
        : FromBB(FromBB), ToBB(ToBB), NewBB(NewBB) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Pile up all the critical edges to be split.
 | 
						|
  /// The splitting of a critical edge is local and thus, it is possible
 | 
						|
  /// to apply several of those changes at the same time.
 | 
						|
  mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
 | 
						|
  /// \brief Remember all the basic blocks that are inserted during
 | 
						|
  /// edge splitting.
 | 
						|
  /// Invariant: NewBBs == all the basic blocks contained in the NewBB
 | 
						|
  /// field of all the elements of CriticalEdgesToSplit.
 | 
						|
  /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
 | 
						|
  /// such as BB == elt.NewBB.
 | 
						|
  mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
 | 
						|
 | 
						|
  /// \brief Apply all the recorded critical edges to the DT.
 | 
						|
  /// This updates the underlying DT information in a way that uses
 | 
						|
  /// the fast query path of DT as much as possible.
 | 
						|
  ///
 | 
						|
  /// \post CriticalEdgesToSplit.empty().
 | 
						|
  void applySplitCriticalEdges() const {
 | 
						|
    // Bail out early if there is nothing to do.
 | 
						|
    if (CriticalEdgesToSplit.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    // For each element in CriticalEdgesToSplit, remember whether or
 | 
						|
    // not element is the new immediate domminator of its successor.
 | 
						|
    // The mapping is done by index, i.e., the information for the ith
 | 
						|
    // element of CriticalEdgesToSplit is the ith element of IsNewIDom.
 | 
						|
    SmallVector<bool, 32> IsNewIDom;
 | 
						|
    IsNewIDom.resize(CriticalEdgesToSplit.size());
 | 
						|
    size_t Idx = 0;
 | 
						|
 | 
						|
    // Collect all the dominance properties info, before invalidating
 | 
						|
    // the underlying DT.
 | 
						|
    for (CriticalEdge &Edge : CriticalEdgesToSplit) {
 | 
						|
      // Update dominator information.
 | 
						|
      MachineBasicBlock *Succ = Edge.ToBB;
 | 
						|
      MachineDomTreeNode *SucccDTNode = DT->getNode(Succ);
 | 
						|
 | 
						|
      IsNewIDom[Idx] = true;
 | 
						|
      for (MachineBasicBlock *PredBB : Succ->predecessors()) {
 | 
						|
        if (PredBB == Edge.NewBB)
 | 
						|
          continue;
 | 
						|
        // If we are in this situation:
 | 
						|
        // FromBB1        FromBB2
 | 
						|
        //    +              +
 | 
						|
        //   + +            + +
 | 
						|
        //  +   +          +   +
 | 
						|
        // ...  Split1  Split2 ...
 | 
						|
        //           +   +
 | 
						|
        //            + +
 | 
						|
        //             +
 | 
						|
        //            Succ
 | 
						|
        // Instead of checking the domiance property with Split2, we
 | 
						|
        // check it with FromBB2 since Split2 is still unknown of the
 | 
						|
        // underlying DT structure.
 | 
						|
        if (NewBBs.count(PredBB)) {
 | 
						|
          assert(PredBB->pred_size() == 1 && "A basic block resulting from a "
 | 
						|
                                             "critical edge split has more "
 | 
						|
                                             "than one predecessor!");
 | 
						|
          PredBB = *PredBB->pred_begin();
 | 
						|
        }
 | 
						|
        if (!DT->dominates(SucccDTNode, DT->getNode(PredBB))) {
 | 
						|
          IsNewIDom[Idx] = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now, update DT with the collected dominance properties info.
 | 
						|
    Idx = 0;
 | 
						|
    for (CriticalEdge &Edge : CriticalEdgesToSplit) {
 | 
						|
      // We know FromBB dominates NewBB.
 | 
						|
      MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB);
 | 
						|
      MachineDomTreeNode *SucccDTNode = DT->getNode(Edge.ToBB);
 | 
						|
 | 
						|
      // If all the other predecessors of "Succ" are dominated by "Succ" itself
 | 
						|
      // then the new block is the new immediate dominator of "Succ". Otherwise,
 | 
						|
      // the new block doesn't dominate anything.
 | 
						|
      if (IsNewIDom[Idx])
 | 
						|
        DT->changeImmediateDominator(SucccDTNode, NewDTNode);
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
    NewBBs.clear();
 | 
						|
    CriticalEdgesToSplit.clear();
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID; // Pass ID, replacement for typeid
 | 
						|
  DominatorTreeBase<MachineBasicBlock>* DT;
 | 
						|
 | 
						|
  MachineDominatorTree();
 | 
						|
 | 
						|
  ~MachineDominatorTree();
 | 
						|
 | 
						|
  DominatorTreeBase<MachineBasicBlock> &getBase() {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return *DT;
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
 | 
						|
  /// getRoots -  Return the root blocks of the current CFG.  This may include
 | 
						|
  /// multiple blocks if we are computing post dominators.  For forward
 | 
						|
  /// dominators, this will always be a single block (the entry node).
 | 
						|
  ///
 | 
						|
  inline const std::vector<MachineBasicBlock*> &getRoots() const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->getRoots();
 | 
						|
  }
 | 
						|
 | 
						|
  inline MachineBasicBlock *getRoot() const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->getRoot();
 | 
						|
  }
 | 
						|
 | 
						|
  inline MachineDomTreeNode *getRootNode() const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->getRootNode();
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &F) override;
 | 
						|
 | 
						|
  inline bool dominates(const MachineDomTreeNode* A,
 | 
						|
                        const MachineDomTreeNode* B) const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->dominates(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool dominates(const MachineBasicBlock* A,
 | 
						|
                        const MachineBasicBlock* B) const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->dominates(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  // dominates - Return true if A dominates B. This performs the
 | 
						|
  // special checks necessary if A and B are in the same basic block.
 | 
						|
  bool dominates(const MachineInstr *A, const MachineInstr *B) const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | 
						|
    if (BBA != BBB) return DT->dominates(BBA, BBB);
 | 
						|
 | 
						|
    // Loop through the basic block until we find A or B.
 | 
						|
    MachineBasicBlock::const_iterator I = BBA->begin();
 | 
						|
    for (; &*I != A && &*I != B; ++I)
 | 
						|
      /*empty*/ ;
 | 
						|
 | 
						|
    //if(!DT.IsPostDominators) {
 | 
						|
      // A dominates B if it is found first in the basic block.
 | 
						|
      return &*I == A;
 | 
						|
    //} else {
 | 
						|
    //  // A post-dominates B if B is found first in the basic block.
 | 
						|
    //  return &*I == B;
 | 
						|
    //}
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool properlyDominates(const MachineDomTreeNode* A,
 | 
						|
                                const MachineDomTreeNode* B) const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->properlyDominates(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool properlyDominates(const MachineBasicBlock* A,
 | 
						|
                                const MachineBasicBlock* B) const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->properlyDominates(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  /// findNearestCommonDominator - Find nearest common dominator basic block
 | 
						|
  /// for basic block A and B. If there is no such block then return NULL.
 | 
						|
  inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
 | 
						|
                                                       MachineBasicBlock *B) {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->findNearestCommonDominator(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->getNode(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getNode - return the (Post)DominatorTree node for the specified basic
 | 
						|
  /// block.  This is the same as using operator[] on this class.
 | 
						|
  ///
 | 
						|
  inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->getNode(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// addNewBlock - Add a new node to the dominator tree information.  This
 | 
						|
  /// creates a new node as a child of DomBB dominator node,linking it into
 | 
						|
  /// the children list of the immediate dominator.
 | 
						|
  inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
 | 
						|
                                         MachineBasicBlock *DomBB) {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->addNewBlock(BB, DomBB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// changeImmediateDominator - This method is used to update the dominator
 | 
						|
  /// tree information when a node's immediate dominator changes.
 | 
						|
  ///
 | 
						|
  inline void changeImmediateDominator(MachineBasicBlock *N,
 | 
						|
                                       MachineBasicBlock* NewIDom) {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    DT->changeImmediateDominator(N, NewIDom);
 | 
						|
  }
 | 
						|
 | 
						|
  inline void changeImmediateDominator(MachineDomTreeNode *N,
 | 
						|
                                       MachineDomTreeNode* NewIDom) {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    DT->changeImmediateDominator(N, NewIDom);
 | 
						|
  }
 | 
						|
 | 
						|
  /// eraseNode - Removes a node from  the dominator tree. Block must not
 | 
						|
  /// dominate any other blocks. Removes node from its immediate dominator's
 | 
						|
  /// children list. Deletes dominator node associated with basic block BB.
 | 
						|
  inline void eraseNode(MachineBasicBlock *BB) {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    DT->eraseNode(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// splitBlock - BB is split and now it has one successor. Update dominator
 | 
						|
  /// tree to reflect this change.
 | 
						|
  inline void splitBlock(MachineBasicBlock* NewBB) {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    DT->splitBlock(NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// isReachableFromEntry - Return true if A is dominated by the entry
 | 
						|
  /// block of the function containing it.
 | 
						|
  bool isReachableFromEntry(const MachineBasicBlock *A) {
 | 
						|
    applySplitCriticalEdges();
 | 
						|
    return DT->isReachableFromEntry(A);
 | 
						|
  }
 | 
						|
 | 
						|
  void releaseMemory() override;
 | 
						|
 | 
						|
  void print(raw_ostream &OS, const Module*) const override;
 | 
						|
 | 
						|
  /// \brief Record that the critical edge (FromBB, ToBB) has been
 | 
						|
  /// split with NewBB.
 | 
						|
  /// This is best to use this method instead of directly update the
 | 
						|
  /// underlying information, because this helps mitigating the
 | 
						|
  /// number of time the DT information is invalidated.
 | 
						|
  ///
 | 
						|
  /// \note Do not use this method with regular edges.
 | 
						|
  ///
 | 
						|
  /// \note To benefit from the compile time improvement incurred by this
 | 
						|
  /// method, the users of this method have to limit the queries to the DT
 | 
						|
  /// interface between two edges splitting. In other words, they have to
 | 
						|
  /// pack the splitting of critical edges as much as possible.
 | 
						|
  void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
 | 
						|
                              MachineBasicBlock *ToBB,
 | 
						|
                              MachineBasicBlock *NewBB) {
 | 
						|
    bool Inserted = NewBBs.insert(NewBB).second;
 | 
						|
    (void)Inserted;
 | 
						|
    assert(Inserted &&
 | 
						|
           "A basic block inserted via edge splitting cannot appear twice");
 | 
						|
    CriticalEdgesToSplit.push_back(CriticalEdge(FromBB, ToBB, NewBB));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//===-------------------------------------
 | 
						|
/// DominatorTree GraphTraits specialization so the DominatorTree can be
 | 
						|
/// iterable by generic graph iterators.
 | 
						|
///
 | 
						|
 | 
						|
template<class T> struct GraphTraits;
 | 
						|
 | 
						|
template <> struct GraphTraits<MachineDomTreeNode *> {
 | 
						|
  typedef MachineDomTreeNode NodeType;
 | 
						|
  typedef NodeType::iterator  ChildIteratorType;
 | 
						|
 | 
						|
  static NodeType *getEntryNode(NodeType *N) {
 | 
						|
    return N;
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType* N) {
 | 
						|
    return N->begin();
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType* N) {
 | 
						|
    return N->end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<MachineDominatorTree*>
 | 
						|
  : public GraphTraits<MachineDomTreeNode *> {
 | 
						|
  static NodeType *getEntryNode(MachineDominatorTree *DT) {
 | 
						|
    return DT->getRootNode();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |