mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
78d4330fd8
Start cleaning up MergeFunctions to look more like the rest of LLVM. The primary change here is to move the methods responsible for comparison into the new FunctionComparator object. Some comments added. There's more to do. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110021 91177308-0d34-0410-b5e6-96231b3b80d8
796 lines
26 KiB
C++
796 lines
26 KiB
C++
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for equivalent functions that are mergable and folds them.
|
|
//
|
|
// A hash is computed from the function, based on its type and number of
|
|
// basic blocks.
|
|
//
|
|
// Once all hashes are computed, we perform an expensive equality comparison
|
|
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
|
|
// important that the hash function be high quality. The equality comparison
|
|
// iterates through each instruction in each basic block.
|
|
//
|
|
// When a match is found the functions are folded. If both functions are
|
|
// overridable, we move the functionality into a new internal function and
|
|
// leave two overridable thunks to it.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Future work:
|
|
//
|
|
// * virtual functions.
|
|
//
|
|
// Many functions have their address taken by the virtual function table for
|
|
// the object they belong to. However, as long as it's only used for a lookup
|
|
// and call, this is irrelevant, and we'd like to fold such implementations.
|
|
//
|
|
// * switch from n^2 pair-wise comparisons to an n-way comparison for each
|
|
// bucket.
|
|
//
|
|
// * be smarter about bitcast.
|
|
//
|
|
// In order to fold functions, we will sometimes add either bitcast instructions
|
|
// or bitcast constant expressions. Unfortunately, this can confound further
|
|
// analysis since the two functions differ where one has a bitcast and the
|
|
// other doesn't. We should learn to peer through bitcasts without imposing bad
|
|
// performance properties.
|
|
//
|
|
// * emit aliases for ELF
|
|
//
|
|
// ELF supports symbol aliases which are represented with GlobalAlias in the
|
|
// Module, and we could emit them in the case that the addresses don't need to
|
|
// be distinct. The problem is that not all object formats support equivalent
|
|
// functionality. There's a few approaches to this problem;
|
|
// a) teach codegen to lower global aliases to thunks on platforms which don't
|
|
// support them.
|
|
// b) always emit thunks, and create a separate thunk-to-alias pass which
|
|
// runs on ELF systems. This has the added benefit of transforming other
|
|
// thunks such as those produced by a C++ frontend into aliases when legal
|
|
// to do so.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mergefunc"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include <map>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
|
|
|
namespace {
|
|
/// MergeFunctions finds functions which will generate identical machine code,
|
|
/// by considering all pointer types to be equivalent. Once identified,
|
|
/// MergeFunctions will fold them by replacing a call to one to a call to a
|
|
/// bitcast of the other.
|
|
///
|
|
struct MergeFunctions : public ModulePass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MergeFunctions() : ModulePass(&ID) {}
|
|
|
|
bool runOnModule(Module &M);
|
|
};
|
|
}
|
|
|
|
char MergeFunctions::ID = 0;
|
|
INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
|
|
|
|
ModulePass *llvm::createMergeFunctionsPass() {
|
|
return new MergeFunctions();
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Comparison of functions
|
|
// ===----------------------------------------------------------------------===
|
|
namespace {
|
|
class FunctionComparator {
|
|
public:
|
|
FunctionComparator(TargetData *TD, Function *F1, Function *F2)
|
|
: TD(TD), F1(F1), F2(F2) {}
|
|
|
|
// Compare - test whether the two functions have equivalent behaviour.
|
|
bool Compare();
|
|
|
|
private:
|
|
// Compare - test whether two basic blocks have equivalent behaviour.
|
|
bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
|
|
|
|
// getDomain - a value's domain is its parent function if it is specific to a
|
|
// function, or NULL otherwise.
|
|
const Function *getDomain(const Value *V) const;
|
|
|
|
// Enumerate - Assign or look up previously assigned numbers for the two
|
|
// values, and return whether the numbers are equal. Numbers are assigned in
|
|
// the order visited.
|
|
bool Enumerate(const Value *V1, const Value *V2);
|
|
|
|
// isEquivalentOperation - Compare two Instructions for equivalence, similar
|
|
// to Instruction::isSameOperationAs but with modifications to the type
|
|
// comparison.
|
|
bool isEquivalentOperation(const Instruction *I1,
|
|
const Instruction *I2) const;
|
|
|
|
// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
|
|
bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
|
|
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
|
|
const GetElementPtrInst *GEP2) {
|
|
return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
|
|
}
|
|
|
|
// isEquivalentType - Compare two Types, treating all pointer types as equal.
|
|
bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
|
|
|
|
// The two functions undergoing comparison.
|
|
Function *F1, *F2;
|
|
|
|
TargetData *TD;
|
|
|
|
typedef DenseMap<const Value *, unsigned long> IDMap;
|
|
IDMap Map;
|
|
DenseMap<const Function *, IDMap> Domains;
|
|
DenseMap<const Function *, unsigned long> DomainCount;
|
|
};
|
|
}
|
|
|
|
/// Compute a number which is guaranteed to be equal for two equivalent
|
|
/// functions, but is very likely to be different for different functions. This
|
|
/// needs to be computed as efficiently as possible.
|
|
static unsigned long ProfileFunction(const Function *F) {
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(F->size());
|
|
ID.AddInteger(F->getCallingConv());
|
|
ID.AddBoolean(F->hasGC());
|
|
ID.AddBoolean(FTy->isVarArg());
|
|
ID.AddInteger(FTy->getReturnType()->getTypeID());
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
ID.AddInteger(FTy->getParamType(i)->getTypeID());
|
|
return ID.ComputeHash();
|
|
}
|
|
|
|
/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
|
|
/// type equivalence rules apply.
|
|
bool FunctionComparator::isEquivalentType(const Type *Ty1,
|
|
const Type *Ty2) const {
|
|
if (Ty1 == Ty2)
|
|
return true;
|
|
if (Ty1->getTypeID() != Ty2->getTypeID())
|
|
return false;
|
|
|
|
switch(Ty1->getTypeID()) {
|
|
default:
|
|
llvm_unreachable("Unknown type!");
|
|
// Fall through in Release mode.
|
|
case Type::IntegerTyID:
|
|
case Type::OpaqueTyID:
|
|
// Ty1 == Ty2 would have returned true earlier.
|
|
return false;
|
|
|
|
case Type::VoidTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
case Type::LabelTyID:
|
|
case Type::MetadataTyID:
|
|
return true;
|
|
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy1 = cast<PointerType>(Ty1);
|
|
const PointerType *PTy2 = cast<PointerType>(Ty2);
|
|
return PTy1->getAddressSpace() == PTy2->getAddressSpace();
|
|
}
|
|
|
|
case Type::StructTyID: {
|
|
const StructType *STy1 = cast<StructType>(Ty1);
|
|
const StructType *STy2 = cast<StructType>(Ty2);
|
|
if (STy1->getNumElements() != STy2->getNumElements())
|
|
return false;
|
|
|
|
if (STy1->isPacked() != STy2->isPacked())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
|
|
if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::UnionTyID: {
|
|
const UnionType *UTy1 = cast<UnionType>(Ty1);
|
|
const UnionType *UTy2 = cast<UnionType>(Ty2);
|
|
|
|
// TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc.
|
|
if (UTy1->getNumElements() != UTy2->getNumElements())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) {
|
|
if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
|
|
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
|
|
if (FTy1->getNumParams() != FTy2->getNumParams() ||
|
|
FTy1->isVarArg() != FTy2->isVarArg())
|
|
return false;
|
|
|
|
if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
|
|
if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy1 = cast<ArrayType>(Ty1);
|
|
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
|
|
return ATy1->getNumElements() == ATy2->getNumElements() &&
|
|
isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
|
|
}
|
|
case Type::VectorTyID: {
|
|
const VectorType *VTy1 = cast<VectorType>(Ty1);
|
|
const VectorType *VTy2 = cast<VectorType>(Ty2);
|
|
return VTy1->getNumElements() == VTy2->getNumElements() &&
|
|
isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isEquivalentOperation - determine whether the two operations are the same
|
|
/// except that pointer-to-A and pointer-to-B are equivalent. This should be
|
|
/// kept in sync with Instruction::isSameOperationAs.
|
|
bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
|
|
const Instruction *I2) const {
|
|
if (I1->getOpcode() != I2->getOpcode() ||
|
|
I1->getNumOperands() != I2->getNumOperands() ||
|
|
!isEquivalentType(I1->getType(), I2->getType()) ||
|
|
!I1->hasSameSubclassOptionalData(I2))
|
|
return false;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same type
|
|
for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
|
|
if (!isEquivalentType(I1->getOperand(i)->getType(),
|
|
I2->getOperand(i)->getType()))
|
|
return false;
|
|
|
|
// Check special state that is a part of some instructions.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
|
|
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
|
|
LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
|
|
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
|
|
SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
|
|
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I1))
|
|
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
|
|
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<CallInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
|
|
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<InvokeInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
|
|
if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
|
|
if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
|
|
if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
|
|
if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isEquivalentGEP - determine whether two GEP operations perform the same
|
|
/// underlying arithmetic.
|
|
bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
|
|
const GEPOperator *GEP2) {
|
|
// When we have target data, we can reduce the GEP down to the value in bytes
|
|
// added to the address.
|
|
if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
|
|
SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
|
|
SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
|
|
uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
|
|
Indices1.data(), Indices1.size());
|
|
uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
|
|
Indices2.data(), Indices2.size());
|
|
return Offset1 == Offset2;
|
|
}
|
|
|
|
if (GEP1->getPointerOperand()->getType() !=
|
|
GEP2->getPointerOperand()->getType())
|
|
return false;
|
|
|
|
if (GEP1->getNumOperands() != GEP2->getNumOperands())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
|
|
if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// getDomain - a value's domain is its parent function if it is specific to a
|
|
/// function, or NULL otherwise.
|
|
const Function *FunctionComparator::getDomain(const Value *V) const {
|
|
if (const Argument *A = dyn_cast<Argument>(V)) {
|
|
return A->getParent();
|
|
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
|
|
return BB->getParent();
|
|
} else if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
return I->getParent()->getParent();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// Enumerate - Compare two values used by the two functions under pair-wise
|
|
/// comparison. If this is the first time the values are seen, they're added to
|
|
/// the mapping so that we will detect mismatches on next use.
|
|
bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
|
|
// Check for function @f1 referring to itself and function @f2 referring to
|
|
// itself, or referring to each other, or both referring to either of them.
|
|
// They're all equivalent if the two functions are otherwise equivalent.
|
|
if (V1 == F1 || V1 == F2)
|
|
if (V2 == F1 || V2 == F2)
|
|
return true;
|
|
|
|
// TODO: constant expressions with GEP or references to F1 or F2.
|
|
if (isa<Constant>(V1))
|
|
return V1 == V2;
|
|
|
|
if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
|
|
const InlineAsm *IA1 = cast<InlineAsm>(V1);
|
|
const InlineAsm *IA2 = cast<InlineAsm>(V2);
|
|
return IA1->getAsmString() == IA2->getAsmString() &&
|
|
IA1->getConstraintString() == IA2->getConstraintString();
|
|
}
|
|
|
|
// We enumerate constants globally and arguments, basic blocks or
|
|
// instructions within the function they belong to.
|
|
const Function *Domain1 = getDomain(V1);
|
|
const Function *Domain2 = getDomain(V2);
|
|
|
|
// The domains have to either be both NULL, or F1, F2.
|
|
if (Domain1 != Domain2)
|
|
if (Domain1 != F1 && Domain1 != F2)
|
|
return false;
|
|
|
|
IDMap &Map1 = Domains[Domain1];
|
|
unsigned long &ID1 = Map1[V1];
|
|
if (!ID1)
|
|
ID1 = ++DomainCount[Domain1];
|
|
|
|
IDMap &Map2 = Domains[Domain2];
|
|
unsigned long &ID2 = Map2[V2];
|
|
if (!ID2)
|
|
ID2 = ++DomainCount[Domain2];
|
|
|
|
return ID1 == ID2;
|
|
}
|
|
|
|
// Compare - test whether two basic blocks have equivalent behaviour.
|
|
bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
|
|
BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
|
|
BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
|
|
|
|
do {
|
|
if (!Enumerate(F1I, F2I))
|
|
return false;
|
|
|
|
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
|
|
const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
|
|
if (!GEP2)
|
|
return false;
|
|
|
|
if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
|
|
return false;
|
|
|
|
if (!isEquivalentGEP(GEP1, GEP2))
|
|
return false;
|
|
} else {
|
|
if (!isEquivalentOperation(F1I, F2I))
|
|
return false;
|
|
|
|
assert(F1I->getNumOperands() == F2I->getNumOperands());
|
|
for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
|
|
Value *OpF1 = F1I->getOperand(i);
|
|
Value *OpF2 = F2I->getOperand(i);
|
|
|
|
if (!Enumerate(OpF1, OpF2))
|
|
return false;
|
|
|
|
if (OpF1->getValueID() != OpF2->getValueID() ||
|
|
!isEquivalentType(OpF1->getType(), OpF2->getType()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
++F1I, ++F2I;
|
|
} while (F1I != F1E && F2I != F2E);
|
|
|
|
return F1I == F1E && F2I == F2E;
|
|
}
|
|
|
|
bool FunctionComparator::Compare() {
|
|
// We need to recheck everything, but check the things that weren't included
|
|
// in the hash first.
|
|
|
|
if (F1->getAttributes() != F2->getAttributes())
|
|
return false;
|
|
|
|
if (F1->hasGC() != F2->hasGC())
|
|
return false;
|
|
|
|
if (F1->hasGC() && F1->getGC() != F2->getGC())
|
|
return false;
|
|
|
|
if (F1->hasSection() != F2->hasSection())
|
|
return false;
|
|
|
|
if (F1->hasSection() && F1->getSection() != F2->getSection())
|
|
return false;
|
|
|
|
if (F1->isVarArg() != F2->isVarArg())
|
|
return false;
|
|
|
|
// TODO: if it's internal and only used in direct calls, we could handle this
|
|
// case too.
|
|
if (F1->getCallingConv() != F2->getCallingConv())
|
|
return false;
|
|
|
|
if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
|
|
return false;
|
|
|
|
assert(F1->arg_size() == F2->arg_size() &&
|
|
"Identical functions have a different number of args.");
|
|
|
|
// Visit the arguments so that they get enumerated in the order they're
|
|
// passed in.
|
|
for (Function::const_arg_iterator f1i = F1->arg_begin(),
|
|
f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
|
|
if (!Enumerate(f1i, f2i))
|
|
llvm_unreachable("Arguments repeat");
|
|
}
|
|
|
|
// We need to do an ordered walk since the actual ordering of the blocks in
|
|
// the linked list is immaterial. Our walk starts at the entry block for both
|
|
// functions, then takes each block from each terminator in order. As an
|
|
// artifact, this also means that unreachable blocks are ignored.
|
|
SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
|
|
SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
|
|
F1BBs.push_back(&F1->getEntryBlock());
|
|
F2BBs.push_back(&F2->getEntryBlock());
|
|
VisitedBBs.insert(F1BBs[0]);
|
|
while (!F1BBs.empty()) {
|
|
const BasicBlock *F1BB = F1BBs.pop_back_val();
|
|
const BasicBlock *F2BB = F2BBs.pop_back_val();
|
|
if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
|
|
return false;
|
|
const TerminatorInst *F1TI = F1BB->getTerminator();
|
|
const TerminatorInst *F2TI = F2BB->getTerminator();
|
|
assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
|
|
for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
|
|
if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
|
|
continue;
|
|
F1BBs.push_back(F1TI->getSuccessor(i));
|
|
F2BBs.push_back(F2TI->getSuccessor(i));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Folding of functions
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
// Cases:
|
|
// * F is external strong, G is external strong:
|
|
// turn G into a thunk to F (1)
|
|
// * F is external strong, G is external weak:
|
|
// turn G into a thunk to F (1)
|
|
// * F is external weak, G is external weak:
|
|
// unfoldable
|
|
// * F is external strong, G is internal:
|
|
// address of G taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of G not taken:
|
|
// make G an alias to F (2)
|
|
// * F is internal, G is external weak
|
|
// address of F is taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of F is not taken:
|
|
// make G an alias of F (2)
|
|
// * F is internal, G is internal:
|
|
// address of F and G are taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of G is not taken:
|
|
// make G an alias to F (2)
|
|
//
|
|
// alias requires linkage == (external,local,weak) fallback to creating a thunk
|
|
// external means 'externally visible' linkage != (internal,private)
|
|
// internal means linkage == (internal,private)
|
|
// weak means linkage mayBeOverridable
|
|
// being external implies that the address is taken
|
|
//
|
|
// 1. turn G into a thunk to F
|
|
// 2. make G an alias to F
|
|
|
|
enum LinkageCategory {
|
|
ExternalStrong,
|
|
ExternalWeak,
|
|
Internal
|
|
};
|
|
|
|
static LinkageCategory categorize(const Function *F) {
|
|
switch (F->getLinkage()) {
|
|
case GlobalValue::InternalLinkage:
|
|
case GlobalValue::PrivateLinkage:
|
|
case GlobalValue::LinkerPrivateLinkage:
|
|
return Internal;
|
|
|
|
case GlobalValue::WeakAnyLinkage:
|
|
case GlobalValue::WeakODRLinkage:
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
case GlobalValue::LinkerPrivateWeakLinkage:
|
|
return ExternalWeak;
|
|
|
|
case GlobalValue::ExternalLinkage:
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
case GlobalValue::AppendingLinkage:
|
|
case GlobalValue::DLLImportLinkage:
|
|
case GlobalValue::DLLExportLinkage:
|
|
case GlobalValue::CommonLinkage:
|
|
return ExternalStrong;
|
|
}
|
|
|
|
llvm_unreachable("Unknown LinkageType.");
|
|
return ExternalWeak;
|
|
}
|
|
|
|
static void ThunkGToF(Function *F, Function *G) {
|
|
if (!G->mayBeOverridden()) {
|
|
// Redirect direct callers of G to F.
|
|
Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
|
|
for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
|
|
UI != UE;) {
|
|
Value::use_iterator TheIter = UI;
|
|
++UI;
|
|
CallSite CS(*TheIter);
|
|
if (CS && CS.isCallee(TheIter))
|
|
TheIter.getUse().set(BitcastF);
|
|
}
|
|
}
|
|
|
|
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
|
|
G->getParent());
|
|
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
|
|
|
|
SmallVector<Value *, 16> Args;
|
|
unsigned i = 0;
|
|
const FunctionType *FFTy = F->getFunctionType();
|
|
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
|
|
AI != AE; ++AI) {
|
|
if (FFTy->getParamType(i) == AI->getType()) {
|
|
Args.push_back(AI);
|
|
} else {
|
|
Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB));
|
|
}
|
|
++i;
|
|
}
|
|
|
|
CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
|
|
CI->setTailCall();
|
|
CI->setCallingConv(F->getCallingConv());
|
|
if (NewG->getReturnType()->isVoidTy()) {
|
|
ReturnInst::Create(F->getContext(), BB);
|
|
} else if (CI->getType() != NewG->getReturnType()) {
|
|
Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
|
|
ReturnInst::Create(F->getContext(), BCI, BB);
|
|
} else {
|
|
ReturnInst::Create(F->getContext(), CI, BB);
|
|
}
|
|
|
|
NewG->copyAttributesFrom(G);
|
|
NewG->takeName(G);
|
|
G->replaceAllUsesWith(NewG);
|
|
G->eraseFromParent();
|
|
}
|
|
|
|
static void AliasGToF(Function *F, Function *G) {
|
|
// Darwin will trigger llvm_unreachable if asked to codegen an alias.
|
|
return ThunkGToF(F, G);
|
|
|
|
#if 0
|
|
if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
|
|
return ThunkGToF(F, G);
|
|
|
|
GlobalAlias *GA = new GlobalAlias(
|
|
G->getType(), G->getLinkage(), "",
|
|
ConstantExpr::getBitCast(F, G->getType()), G->getParent());
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
GA->takeName(G);
|
|
GA->setVisibility(G->getVisibility());
|
|
G->replaceAllUsesWith(GA);
|
|
G->eraseFromParent();
|
|
#endif
|
|
}
|
|
|
|
static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
|
|
Function *F = FnVec[i];
|
|
Function *G = FnVec[j];
|
|
|
|
LinkageCategory catF = categorize(F);
|
|
LinkageCategory catG = categorize(G);
|
|
|
|
if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
|
|
std::swap(FnVec[i], FnVec[j]);
|
|
std::swap(F, G);
|
|
std::swap(catF, catG);
|
|
}
|
|
|
|
switch (catF) {
|
|
case ExternalStrong:
|
|
switch (catG) {
|
|
case ExternalStrong:
|
|
case ExternalWeak:
|
|
ThunkGToF(F, G);
|
|
break;
|
|
case Internal:
|
|
if (G->hasAddressTaken())
|
|
ThunkGToF(F, G);
|
|
else
|
|
AliasGToF(F, G);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case ExternalWeak: {
|
|
assert(catG == ExternalWeak);
|
|
|
|
// Make them both thunks to the same internal function.
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
|
|
F->getParent());
|
|
H->copyAttributesFrom(F);
|
|
H->takeName(F);
|
|
F->replaceAllUsesWith(H);
|
|
|
|
ThunkGToF(F, G);
|
|
ThunkGToF(F, H);
|
|
|
|
F->setLinkage(GlobalValue::InternalLinkage);
|
|
} break;
|
|
|
|
case Internal:
|
|
switch (catG) {
|
|
case ExternalStrong:
|
|
llvm_unreachable(0);
|
|
// fall-through
|
|
case ExternalWeak:
|
|
if (F->hasAddressTaken())
|
|
ThunkGToF(F, G);
|
|
else
|
|
AliasGToF(F, G);
|
|
break;
|
|
case Internal: {
|
|
bool addrTakenF = F->hasAddressTaken();
|
|
bool addrTakenG = G->hasAddressTaken();
|
|
if (!addrTakenF && addrTakenG) {
|
|
std::swap(FnVec[i], FnVec[j]);
|
|
std::swap(F, G);
|
|
std::swap(addrTakenF, addrTakenG);
|
|
}
|
|
|
|
if (addrTakenF && addrTakenG) {
|
|
ThunkGToF(F, G);
|
|
} else {
|
|
assert(!addrTakenG);
|
|
AliasGToF(F, G);
|
|
}
|
|
} break;
|
|
} break;
|
|
}
|
|
|
|
++NumFunctionsMerged;
|
|
return true;
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Pass definition
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
bool MergeFunctions::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
|
|
std::map<unsigned long, std::vector<Function *> > FnMap;
|
|
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if (F->isDeclaration())
|
|
continue;
|
|
|
|
FnMap[ProfileFunction(F)].push_back(F);
|
|
}
|
|
|
|
TargetData *TD = getAnalysisIfAvailable<TargetData>();
|
|
|
|
bool LocalChanged;
|
|
do {
|
|
LocalChanged = false;
|
|
DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
|
|
for (std::map<unsigned long, std::vector<Function *> >::iterator
|
|
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
|
|
std::vector<Function *> &FnVec = I->second;
|
|
DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
|
|
|
|
for (int i = 0, e = FnVec.size(); i != e; ++i) {
|
|
for (int j = i + 1; j != e; ++j) {
|
|
bool isEqual = FunctionComparator(TD, FnVec[i], FnVec[j]).Compare();
|
|
|
|
DEBUG(dbgs() << " " << FnVec[i]->getName()
|
|
<< (isEqual ? " == " : " != ")
|
|
<< FnVec[j]->getName() << "\n");
|
|
|
|
if (isEqual) {
|
|
if (fold(FnVec, i, j)) {
|
|
LocalChanged = true;
|
|
FnVec.erase(FnVec.begin() + j);
|
|
--j, --e;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
Changed |= LocalChanged;
|
|
} while (LocalChanged);
|
|
|
|
return Changed;
|
|
}
|