mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This also updates dominator related stuff. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79825 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2706 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2706 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Path-sensitive optimizer. In a branch where x == y, replace uses of
 | |
| // x with y. Permits further optimization, such as the elimination of
 | |
| // the unreachable call:
 | |
| //
 | |
| // void test(int *p, int *q)
 | |
| // {
 | |
| //   if (p != q)
 | |
| //     return;
 | |
| // 
 | |
| //   if (*p != *q)
 | |
| //     foo(); // unreachable
 | |
| // }
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The InequalityGraph focusses on four properties; equals, not equals,
 | |
| // less-than and less-than-or-equals-to. The greater-than forms are also held
 | |
| // just to allow walking from a lesser node to a greater one. These properties
 | |
| // are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
 | |
| //
 | |
| // These relationships define a graph between values of the same type. Each
 | |
| // Value is stored in a map table that retrieves the associated Node. This
 | |
| // is how EQ relationships are stored; the map contains pointers from equal
 | |
| // Value to the same node. The node contains a most canonical Value* form
 | |
| // and the list of known relationships with other nodes.
 | |
| //
 | |
| // If two nodes are known to be inequal, then they will contain pointers to
 | |
| // each other with an "NE" relationship. If node getNode(%x) is less than
 | |
| // getNode(%y), then the %x node will contain <%y, GT> and %y will contain
 | |
| // <%x, LT>. This allows us to tie nodes together into a graph like this:
 | |
| //
 | |
| //   %a < %b < %c < %d
 | |
| //
 | |
| // with four nodes representing the properties. The InequalityGraph provides
 | |
| // querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
 | |
| // To find a relationship, we start with one of the nodes any binary search
 | |
| // through its list to find where the relationships with the second node start.
 | |
| // Then we iterate through those to find the first relationship that dominates
 | |
| // our context node.
 | |
| //
 | |
| // To create these properties, we wait until a branch or switch instruction
 | |
| // implies that a particular value is true (or false). The VRPSolver is
 | |
| // responsible for analyzing the variable and seeing what new inferences
 | |
| // can be made from each property. For example:
 | |
| //
 | |
| //   %P = icmp ne i32* %ptr, null
 | |
| //   %a = and i1 %P, %Q
 | |
| //   br i1 %a label %cond_true, label %cond_false
 | |
| //
 | |
| // For the true branch, the VRPSolver will start with %a EQ true and look at
 | |
| // the definition of %a and find that it can infer that %P and %Q are both
 | |
| // true. From %P being true, it can infer that %ptr NE null. For the false
 | |
| // branch it can't infer anything from the "and" instruction.
 | |
| //
 | |
| // Besides branches, we can also infer properties from instruction that may
 | |
| // have undefined behaviour in certain cases. For example, the dividend of
 | |
| // a division may never be zero. After the division instruction, we may assume
 | |
| // that the dividend is not equal to zero.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The ValueRanges class stores the known integer bounds of a Value. When we
 | |
| // encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
 | |
| // %b = [0, 254].
 | |
| //
 | |
| // It never stores an empty range, because that means that the code is
 | |
| // unreachable. It never stores a single-element range since that's an equality
 | |
| // relationship and better stored in the InequalityGraph, nor an empty range
 | |
| // since that is better stored in UnreachableBlocks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "predsimplify"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| #include <deque>
 | |
| #include <stack>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumVarsReplaced, "Number of argument substitutions");
 | |
| STATISTIC(NumInstruction , "Number of instructions removed");
 | |
| STATISTIC(NumSimple      , "Number of simple replacements");
 | |
| STATISTIC(NumBlocks      , "Number of blocks marked unreachable");
 | |
| STATISTIC(NumSnuggle     , "Number of comparisons snuggled");
 | |
| 
 | |
| static const ConstantRange empty(1, false);
 | |
| 
 | |
| namespace {
 | |
|   class DomTreeDFS {
 | |
|   public:
 | |
|     class Node {
 | |
|       friend class DomTreeDFS;
 | |
|     public:
 | |
|       typedef std::vector<Node *>::iterator       iterator;
 | |
|       typedef std::vector<Node *>::const_iterator const_iterator;
 | |
| 
 | |
|       unsigned getDFSNumIn()  const { return DFSin;  }
 | |
|       unsigned getDFSNumOut() const { return DFSout; }
 | |
| 
 | |
|       BasicBlock *getBlock() const { return BB; }
 | |
| 
 | |
|       iterator begin() { return Children.begin(); }
 | |
|       iterator end()   { return Children.end();   }
 | |
| 
 | |
|       const_iterator begin() const { return Children.begin(); }
 | |
|       const_iterator end()   const { return Children.end();   }
 | |
| 
 | |
|       bool dominates(const Node *N) const {
 | |
|         return DFSin <= N->DFSin && DFSout >= N->DFSout;
 | |
|       }
 | |
| 
 | |
|       bool DominatedBy(const Node *N) const {
 | |
|         return N->dominates(this);
 | |
|       }
 | |
| 
 | |
|       /// Sorts by the number of descendants. With this, you can iterate
 | |
|       /// through a sorted list and the first matching entry is the most
 | |
|       /// specific match for your basic block. The order provided is stable;
 | |
|       /// DomTreeDFS::Nodes with the same number of descendants are sorted by
 | |
|       /// DFS in number.
 | |
|       bool operator<(const Node &N) const {
 | |
|         unsigned   spread =   DFSout -   DFSin;
 | |
|         unsigned N_spread = N.DFSout - N.DFSin;
 | |
|         if (spread == N_spread) return DFSin < N.DFSin;
 | |
|         return spread < N_spread;
 | |
|       }
 | |
|       bool operator>(const Node &N) const { return N < *this; }
 | |
| 
 | |
|     private:
 | |
|       unsigned DFSin, DFSout;
 | |
|       BasicBlock *BB;
 | |
| 
 | |
|       std::vector<Node *> Children;
 | |
|     };
 | |
| 
 | |
|     // XXX: this may be slow. Instead of using "new" for each node, consider
 | |
|     // putting them in a vector to keep them contiguous.
 | |
|     explicit DomTreeDFS(DominatorTree *DT) {
 | |
|       std::stack<std::pair<Node *, DomTreeNode *> > S;
 | |
| 
 | |
|       Entry = new Node;
 | |
|       Entry->BB = DT->getRootNode()->getBlock();
 | |
|       S.push(std::make_pair(Entry, DT->getRootNode()));
 | |
| 
 | |
|       NodeMap[Entry->BB] = Entry;
 | |
| 
 | |
|       while (!S.empty()) {
 | |
|         std::pair<Node *, DomTreeNode *> &Pair = S.top();
 | |
|         Node *N = Pair.first;
 | |
|         DomTreeNode *DTNode = Pair.second;
 | |
|         S.pop();
 | |
| 
 | |
|         for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end();
 | |
|              I != E; ++I) {
 | |
|           Node *NewNode = new Node;
 | |
|           NewNode->BB = (*I)->getBlock();
 | |
|           N->Children.push_back(NewNode);
 | |
|           S.push(std::make_pair(NewNode, *I));
 | |
| 
 | |
|           NodeMap[NewNode->BB] = NewNode;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       renumber();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       DEBUG(dump());
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     virtual
 | |
| #endif
 | |
|     ~DomTreeDFS() {
 | |
|       std::stack<Node *> S;
 | |
| 
 | |
|       S.push(Entry);
 | |
|       while (!S.empty()) {
 | |
|         Node *N = S.top(); S.pop();
 | |
| 
 | |
|         for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
 | |
|           S.push(*I);
 | |
| 
 | |
|         delete N;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// getRootNode - This returns the entry node for the CFG of the function.
 | |
|     Node *getRootNode() const { return Entry; }
 | |
| 
 | |
|     /// getNodeForBlock - return the node for the specified basic block.
 | |
|     Node *getNodeForBlock(BasicBlock *BB) const {
 | |
|       if (!NodeMap.count(BB)) return 0;
 | |
|       return const_cast<DomTreeDFS*>(this)->NodeMap[BB];
 | |
|     }
 | |
| 
 | |
|     /// dominates - returns true if the basic block for I1 dominates that of
 | |
|     /// the basic block for I2. If the instructions belong to the same basic
 | |
|     /// block, the instruction first instruction sequentially in the block is
 | |
|     /// considered dominating.
 | |
|     bool dominates(Instruction *I1, Instruction *I2) {
 | |
|       BasicBlock *BB1 = I1->getParent(),
 | |
|                  *BB2 = I2->getParent();
 | |
|       if (BB1 == BB2) {
 | |
|         if (isa<TerminatorInst>(I1)) return false;
 | |
|         if (isa<TerminatorInst>(I2)) return true;
 | |
|         if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
 | |
|         if (!isa<PHINode>(I1) &&  isa<PHINode>(I2)) return false;
 | |
| 
 | |
|         for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end();
 | |
|              I != E; ++I) {
 | |
|           if (&*I == I1) return true;
 | |
|           else if (&*I == I2) return false;
 | |
|         }
 | |
|         assert(!"Instructions not found in parent BasicBlock?");
 | |
|       } else {
 | |
|         Node *Node1 = getNodeForBlock(BB1),
 | |
|              *Node2 = getNodeForBlock(BB2);
 | |
|         return Node1 && Node2 && Node1->dominates(Node2);
 | |
|       }
 | |
|       return false; // Not reached
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// renumber - calculates the depth first search numberings and applies
 | |
|     /// them onto the nodes.
 | |
|     void renumber() {
 | |
|       std::stack<std::pair<Node *, Node::iterator> > S;
 | |
|       unsigned n = 0;
 | |
| 
 | |
|       Entry->DFSin = ++n;
 | |
|       S.push(std::make_pair(Entry, Entry->begin()));
 | |
| 
 | |
|       while (!S.empty()) {
 | |
|         std::pair<Node *, Node::iterator> &Pair = S.top();
 | |
|         Node *N = Pair.first;
 | |
|         Node::iterator &I = Pair.second;
 | |
| 
 | |
|         if (I == N->end()) {
 | |
|           N->DFSout = ++n;
 | |
|           S.pop();
 | |
|         } else {
 | |
|           Node *Next = *I++;
 | |
|           Next->DFSin = ++n;
 | |
|           S.push(std::make_pair(Next, Next->begin()));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     virtual void dump() const {
 | |
|       dump(*cerr.stream());
 | |
|     }
 | |
| 
 | |
|     void dump(std::ostream &os) const {
 | |
|       os << "Predicate simplifier DomTreeDFS: \n";
 | |
|       dump(Entry, 0, os);
 | |
|       os << "\n\n";
 | |
|     }
 | |
| 
 | |
|     void dump(Node *N, int depth, std::ostream &os) const {
 | |
|       ++depth;
 | |
|       for (int i = 0; i < depth; ++i) { os << " "; }
 | |
|       os << "[" << depth << "] ";
 | |
| 
 | |
|       os << N->getBlock()->getNameStr() << " (" << N->getDFSNumIn()
 | |
|          << ", " << N->getDFSNumOut() << ")\n";
 | |
| 
 | |
|       for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
 | |
|         dump(*I, depth, os);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     Node *Entry;
 | |
|     std::map<BasicBlock *, Node *> NodeMap;
 | |
|   };
 | |
| 
 | |
|   // SLT SGT ULT UGT EQ
 | |
|   //   0   1   0   1  0 -- GT                  10
 | |
|   //   0   1   0   1  1 -- GE                  11
 | |
|   //   0   1   1   0  0 -- SGTULT              12
 | |
|   //   0   1   1   0  1 -- SGEULE              13
 | |
|   //   0   1   1   1  0 -- SGT                 14
 | |
|   //   0   1   1   1  1 -- SGE                 15
 | |
|   //   1   0   0   1  0 -- SLTUGT              18
 | |
|   //   1   0   0   1  1 -- SLEUGE              19
 | |
|   //   1   0   1   0  0 -- LT                  20
 | |
|   //   1   0   1   0  1 -- LE                  21
 | |
|   //   1   0   1   1  0 -- SLT                 22
 | |
|   //   1   0   1   1  1 -- SLE                 23
 | |
|   //   1   1   0   1  0 -- UGT                 26
 | |
|   //   1   1   0   1  1 -- UGE                 27
 | |
|   //   1   1   1   0  0 -- ULT                 28
 | |
|   //   1   1   1   0  1 -- ULE                 29
 | |
|   //   1   1   1   1  0 -- NE                  30
 | |
|   enum LatticeBits {
 | |
|     EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
 | |
|   };
 | |
|   enum LatticeVal {
 | |
|     GT = SGT_BIT | UGT_BIT,
 | |
|     GE = GT | EQ_BIT,
 | |
|     LT = SLT_BIT | ULT_BIT,
 | |
|     LE = LT | EQ_BIT,
 | |
|     NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
 | |
|     SGTULT = SGT_BIT | ULT_BIT,
 | |
|     SGEULE = SGTULT | EQ_BIT,
 | |
|     SLTUGT = SLT_BIT | UGT_BIT,
 | |
|     SLEUGE = SLTUGT | EQ_BIT,
 | |
|     ULT = SLT_BIT | SGT_BIT | ULT_BIT,
 | |
|     UGT = SLT_BIT | SGT_BIT | UGT_BIT,
 | |
|     SLT = SLT_BIT | ULT_BIT | UGT_BIT,
 | |
|     SGT = SGT_BIT | ULT_BIT | UGT_BIT,
 | |
|     SLE = SLT | EQ_BIT,
 | |
|     SGE = SGT | EQ_BIT,
 | |
|     ULE = ULT | EQ_BIT,
 | |
|     UGE = UGT | EQ_BIT
 | |
|   };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   /// validPredicate - determines whether a given value is actually a lattice
 | |
|   /// value. Only used in assertions or debugging.
 | |
|   static bool validPredicate(LatticeVal LV) {
 | |
|     switch (LV) {
 | |
|       case GT: case GE: case LT: case LE: case NE:
 | |
|       case SGTULT: case SGT: case SGEULE:
 | |
|       case SLTUGT: case SLT: case SLEUGE:
 | |
|       case ULT: case UGT:
 | |
|       case SLE: case SGE: case ULE: case UGE:
 | |
|         return true;
 | |
|       default:
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /// reversePredicate - reverse the direction of the inequality
 | |
|   static LatticeVal reversePredicate(LatticeVal LV) {
 | |
|     unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
 | |
| 
 | |
|     if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
 | |
|       reverse |= (SLT_BIT|SGT_BIT);
 | |
| 
 | |
|     if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
 | |
|       reverse |= (ULT_BIT|UGT_BIT);
 | |
| 
 | |
|     LatticeVal Rev = static_cast<LatticeVal>(reverse);
 | |
|     assert(validPredicate(Rev) && "Failed reversing predicate.");
 | |
|     return Rev;
 | |
|   }
 | |
| 
 | |
|   /// ValueNumbering stores the scope-specific value numbers for a given Value.
 | |
|   class VISIBILITY_HIDDEN ValueNumbering {
 | |
| 
 | |
|     /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
 | |
|     /// includes the comparison operators necessary to allow you to store it
 | |
|     /// in a sorted vector.
 | |
|     class VISIBILITY_HIDDEN VNPair {
 | |
|     public:
 | |
|       Value *V;
 | |
|       unsigned index;
 | |
|       DomTreeDFS::Node *Subtree;
 | |
| 
 | |
|       VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree)
 | |
|         : V(V), index(index), Subtree(Subtree) {}
 | |
| 
 | |
|       bool operator==(const VNPair &RHS) const {
 | |
|         return V == RHS.V && Subtree == RHS.Subtree;
 | |
|       }
 | |
| 
 | |
|       bool operator<(const VNPair &RHS) const {
 | |
|         if (V != RHS.V) return V < RHS.V;
 | |
|         return *Subtree < *RHS.Subtree;
 | |
|       }
 | |
| 
 | |
|       bool operator<(Value *RHS) const {
 | |
|         return V < RHS;
 | |
|       }
 | |
| 
 | |
|       bool operator>(Value *RHS) const {
 | |
|         return V > RHS;
 | |
|       }
 | |
| 
 | |
|       friend bool operator<(Value *RHS, const VNPair &pair) {
 | |
|         return pair.operator>(RHS);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     typedef std::vector<VNPair> VNMapType;
 | |
|     VNMapType VNMap;
 | |
| 
 | |
|     /// The canonical choice for value number at index.
 | |
|     std::vector<Value *> Values;
 | |
| 
 | |
|     DomTreeDFS *DTDFS;
 | |
| 
 | |
|   public:
 | |
| #ifndef NDEBUG
 | |
|     virtual ~ValueNumbering() {}
 | |
|     virtual void dump() {
 | |
|       print(errs());
 | |
|     }
 | |
| 
 | |
|     void print(raw_ostream &os) {
 | |
|       for (unsigned i = 1; i <= Values.size(); ++i) {
 | |
|         os << i << " = ";
 | |
|         WriteAsOperand(os, Values[i-1]);
 | |
|         os << " {";
 | |
|         for (unsigned j = 0; j < VNMap.size(); ++j) {
 | |
|           if (VNMap[j].index == i) {
 | |
|             WriteAsOperand(os, VNMap[j].V);
 | |
|             os << " (" << VNMap[j].Subtree->getDFSNumIn() << ")  ";
 | |
|           }
 | |
|         }
 | |
|         os << "}\n";
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /// compare - returns true if V1 is a better canonical value than V2.
 | |
|     bool compare(Value *V1, Value *V2) const {
 | |
|       if (isa<Constant>(V1))
 | |
|         return !isa<Constant>(V2);
 | |
|       else if (isa<Constant>(V2))
 | |
|         return false;
 | |
|       else if (isa<Argument>(V1))
 | |
|         return !isa<Argument>(V2);
 | |
|       else if (isa<Argument>(V2))
 | |
|         return false;
 | |
| 
 | |
|       Instruction *I1 = dyn_cast<Instruction>(V1);
 | |
|       Instruction *I2 = dyn_cast<Instruction>(V2);
 | |
| 
 | |
|       if (!I1 || !I2)
 | |
|         return V1->getNumUses() < V2->getNumUses();
 | |
| 
 | |
|       return DTDFS->dominates(I1, I2);
 | |
|     }
 | |
| 
 | |
|     ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {}
 | |
| 
 | |
|     /// valueNumber - finds the value number for V under the Subtree. If
 | |
|     /// there is no value number, returns zero.
 | |
|     unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
 | |
|       if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) || 
 | |
|           V->getType() == Type::getVoidTy(V->getContext())) return 0;
 | |
| 
 | |
|       VNMapType::iterator E = VNMap.end();
 | |
|       VNPair pair(V, 0, Subtree);
 | |
|       VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
 | |
|       while (I != E && I->V == V) {
 | |
|         if (I->Subtree->dominates(Subtree))
 | |
|           return I->index;
 | |
|         ++I;
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// getOrInsertVN - always returns a value number, creating it if necessary.
 | |
|     unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
 | |
|       if (unsigned n = valueNumber(V, Subtree))
 | |
|         return n;
 | |
|       else
 | |
|         return newVN(V);
 | |
|     }
 | |
| 
 | |
|     /// newVN - creates a new value number. Value V must not already have a
 | |
|     /// value number assigned.
 | |
|     unsigned newVN(Value *V) {
 | |
|       assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
 | |
|              "Bad Value for value numbering.");
 | |
|       assert(V->getType() != Type::getVoidTy(V->getContext()) &&
 | |
|              "Won't value number a void value");
 | |
| 
 | |
|       Values.push_back(V);
 | |
| 
 | |
|       VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
 | |
|       VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
 | |
|       assert((I == VNMap.end() || value(I->index) != V) &&
 | |
|              "Attempt to create a duplicate value number.");
 | |
|       VNMap.insert(I, pair);
 | |
| 
 | |
|       return Values.size();
 | |
|     }
 | |
| 
 | |
|     /// value - returns the Value associated with a value number.
 | |
|     Value *value(unsigned index) const {
 | |
|       assert(index != 0 && "Zero index is reserved for not found.");
 | |
|       assert(index <= Values.size() && "Index out of range.");
 | |
|       return Values[index-1];
 | |
|     }
 | |
| 
 | |
|     /// canonicalize - return a Value that is equal to V under Subtree.
 | |
|     Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) {
 | |
|       if (isa<Constant>(V)) return V;
 | |
| 
 | |
|       if (unsigned n = valueNumber(V, Subtree))
 | |
|         return value(n);
 | |
|       else
 | |
|         return V;
 | |
|     }
 | |
| 
 | |
|     /// addEquality - adds that value V belongs to the set of equivalent
 | |
|     /// values defined by value number n under Subtree.
 | |
|     void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) {
 | |
|       assert(canonicalize(value(n), Subtree) == value(n) &&
 | |
|              "Node's 'canonical' choice isn't best within this subtree.");
 | |
| 
 | |
|       // Suppose that we are given "%x -> node #1 (%y)". The problem is that
 | |
|       // we may already have "%z -> node #2 (%x)" somewhere above us in the
 | |
|       // graph. We need to find those edges and add "%z -> node #1 (%y)"
 | |
|       // to keep the lookups canonical.
 | |
| 
 | |
|       std::vector<Value *> ToRepoint(1, V);
 | |
| 
 | |
|       if (unsigned Conflict = valueNumber(V, Subtree)) {
 | |
|         for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end();
 | |
|              I != E; ++I) {
 | |
|           if (I->index == Conflict && I->Subtree->dominates(Subtree))
 | |
|             ToRepoint.push_back(I->V);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
 | |
|            VE = ToRepoint.end(); VI != VE; ++VI) {
 | |
|         Value *V = *VI;
 | |
| 
 | |
|         VNPair pair(V, n, Subtree);
 | |
|         VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
 | |
|         VNMapType::iterator I = std::lower_bound(B, E, pair);
 | |
|         if (I != E && I->V == V && I->Subtree == Subtree)
 | |
|           I->index = n; // Update best choice
 | |
|         else
 | |
|           VNMap.insert(I, pair); // New Value
 | |
| 
 | |
|         // XXX: we currently don't have to worry about updating values with
 | |
|         // more specific Subtrees, but we will need to for PHI node support.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         Value *V_n = value(n);
 | |
|         if (isa<Constant>(V) && isa<Constant>(V_n)) {
 | |
|           assert(V == V_n && "Constant equals different constant?");
 | |
|         }
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// remove - removes all references to value V.
 | |
|     void remove(Value *V) {
 | |
|       VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
 | |
|       VNPair pair(V, 0, DTDFS->getRootNode());
 | |
|       VNMapType::iterator J = std::upper_bound(B, E, pair);
 | |
|       VNMapType::iterator I = J;
 | |
| 
 | |
|       while (I != B && (I == E || I->V == V)) --I;
 | |
| 
 | |
|       VNMap.erase(I, J);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// The InequalityGraph stores the relationships between values.
 | |
|   /// Each Value in the graph is assigned to a Node. Nodes are pointer
 | |
|   /// comparable for equality. The caller is expected to maintain the logical
 | |
|   /// consistency of the system.
 | |
|   ///
 | |
|   /// The InequalityGraph class may invalidate Node*s after any mutator call.
 | |
|   /// @brief The InequalityGraph stores the relationships between values.
 | |
|   class VISIBILITY_HIDDEN InequalityGraph {
 | |
|     ValueNumbering &VN;
 | |
|     DomTreeDFS::Node *TreeRoot;
 | |
| 
 | |
|     InequalityGraph();                  // DO NOT IMPLEMENT
 | |
|     InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
 | |
|   public:
 | |
|     InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot)
 | |
|       : VN(VN), TreeRoot(TreeRoot) {}
 | |
| 
 | |
|     class Node;
 | |
| 
 | |
|     /// An Edge is contained inside a Node making one end of the edge implicit
 | |
|     /// and contains a pointer to the other end. The edge contains a lattice
 | |
|     /// value specifying the relationship and an DomTreeDFS::Node specifying
 | |
|     /// the root in the dominator tree to which this edge applies.
 | |
|     class VISIBILITY_HIDDEN Edge {
 | |
|     public:
 | |
|       Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST)
 | |
|         : To(T), LV(V), Subtree(ST) {}
 | |
| 
 | |
|       unsigned To;
 | |
|       LatticeVal LV;
 | |
|       DomTreeDFS::Node *Subtree;
 | |
| 
 | |
|       bool operator<(const Edge &edge) const {
 | |
|         if (To != edge.To) return To < edge.To;
 | |
|         return *Subtree < *edge.Subtree;
 | |
|       }
 | |
| 
 | |
|       bool operator<(unsigned to) const {
 | |
|         return To < to;
 | |
|       }
 | |
| 
 | |
|       bool operator>(unsigned to) const {
 | |
|         return To > to;
 | |
|       }
 | |
| 
 | |
|       friend bool operator<(unsigned to, const Edge &edge) {
 | |
|         return edge.operator>(to);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// A single node in the InequalityGraph. This stores the canonical Value
 | |
|     /// for the node, as well as the relationships with the neighbours.
 | |
|     ///
 | |
|     /// @brief A single node in the InequalityGraph.
 | |
|     class VISIBILITY_HIDDEN Node {
 | |
|       friend class InequalityGraph;
 | |
| 
 | |
|       typedef SmallVector<Edge, 4> RelationsType;
 | |
|       RelationsType Relations;
 | |
| 
 | |
|       // TODO: can this idea improve performance?
 | |
|       //friend class std::vector<Node>;
 | |
|       //Node(Node &N) { RelationsType.swap(N.RelationsType); }
 | |
| 
 | |
|     public:
 | |
|       typedef RelationsType::iterator       iterator;
 | |
|       typedef RelationsType::const_iterator const_iterator;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       virtual ~Node() {}
 | |
|       virtual void dump() const {
 | |
|         dump(*cerr.stream());
 | |
|       }
 | |
|     private:
 | |
|       void dump(std::ostream &os) const {
 | |
|         static const std::string names[32] =
 | |
|           { "000000", "000001", "000002", "000003", "000004", "000005",
 | |
|             "000006", "000007", "000008", "000009", "     >", "    >=",
 | |
|             "  s>u<", "s>=u<=", "    s>", "   s>=", "000016", "000017",
 | |
|             "  s<u>", "s<=u>=", "     <", "    <=", "    s<", "   s<=",
 | |
|             "000024", "000025", "    u>", "   u>=", "    u<", "   u<=",
 | |
|             "    !=", "000031" };
 | |
|         for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
 | |
|           os << names[NI->LV] << " " << NI->To
 | |
|              << " (" << NI->Subtree->getDFSNumIn() << "), ";
 | |
|         }
 | |
|       }
 | |
|     public:
 | |
| #endif
 | |
| 
 | |
|       iterator begin()             { return Relations.begin(); }
 | |
|       iterator end()               { return Relations.end();   }
 | |
|       const_iterator begin() const { return Relations.begin(); }
 | |
|       const_iterator end()   const { return Relations.end();   }
 | |
| 
 | |
|       iterator find(unsigned n, DomTreeDFS::Node *Subtree) {
 | |
|         iterator E = end();
 | |
|         for (iterator I = std::lower_bound(begin(), E, n);
 | |
|              I != E && I->To == n; ++I) {
 | |
|           if (Subtree->DominatedBy(I->Subtree))
 | |
|             return I;
 | |
|         }
 | |
|         return E;
 | |
|       }
 | |
| 
 | |
|       const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const {
 | |
|         const_iterator E = end();
 | |
|         for (const_iterator I = std::lower_bound(begin(), E, n);
 | |
|              I != E && I->To == n; ++I) {
 | |
|           if (Subtree->DominatedBy(I->Subtree))
 | |
|             return I;
 | |
|         }
 | |
|         return E;
 | |
|       }
 | |
| 
 | |
|       /// update - updates the lattice value for a given node, creating a new
 | |
|       /// entry if one doesn't exist. The new lattice value must not be
 | |
|       /// inconsistent with any previously existing value.
 | |
|       void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) {
 | |
|         assert(validPredicate(R) && "Invalid predicate.");
 | |
| 
 | |
|         Edge edge(n, R, Subtree);
 | |
|         iterator B = begin(), E = end();
 | |
|         iterator I = std::lower_bound(B, E, edge);
 | |
| 
 | |
|         iterator J = I;
 | |
|         while (J != E && J->To == n) {
 | |
|           if (Subtree->DominatedBy(J->Subtree))
 | |
|             break;
 | |
|           ++J;
 | |
|         }
 | |
| 
 | |
|         if (J != E && J->To == n) {
 | |
|           edge.LV = static_cast<LatticeVal>(J->LV & R);
 | |
|           assert(validPredicate(edge.LV) && "Invalid union of lattice values.");
 | |
| 
 | |
|           if (edge.LV == J->LV)
 | |
|             return; // This update adds nothing new.
 | |
|         }
 | |
| 
 | |
|         if (I != B) {
 | |
|           // We also have to tighten any edge beneath our update.
 | |
|           for (iterator K = I - 1; K->To == n; --K) {
 | |
|             if (K->Subtree->DominatedBy(Subtree)) {
 | |
|               LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV);
 | |
|               assert(validPredicate(LV) && "Invalid union of lattice values");
 | |
|               K->LV = LV;
 | |
|             }
 | |
|             if (K == B) break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Insert new edge at Subtree if it isn't already there.
 | |
|         if (I == E || I->To != n || Subtree != I->Subtree)
 | |
|           Relations.insert(I, edge);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     std::vector<Node> Nodes;
 | |
| 
 | |
|   public:
 | |
|     /// node - returns the node object at a given value number. The pointer
 | |
|     /// returned may be invalidated on the next call to node().
 | |
|     Node *node(unsigned index) {
 | |
|       assert(VN.value(index)); // This triggers the necessary checks.
 | |
|       if (Nodes.size() < index) Nodes.resize(index);
 | |
|       return &Nodes[index-1];
 | |
|     }
 | |
| 
 | |
|     /// isRelatedBy - true iff n1 op n2
 | |
|     bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
 | |
|                      LatticeVal LV) {
 | |
|       if (n1 == n2) return LV & EQ_BIT;
 | |
| 
 | |
|       Node *N1 = node(n1);
 | |
|       Node::iterator I = N1->find(n2, Subtree), E = N1->end();
 | |
|       if (I != E) return (I->LV & LV) == I->LV;
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // The add* methods assume that your input is logically valid and may 
 | |
|     // assertion-fail or infinitely loop if you attempt a contradiction.
 | |
| 
 | |
|     /// addInequality - Sets n1 op n2.
 | |
|     /// It is also an error to call this on an inequality that is already true.
 | |
|     void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
 | |
|                        LatticeVal LV1) {
 | |
|       assert(n1 != n2 && "A node can't be inequal to itself.");
 | |
| 
 | |
|       if (LV1 != NE)
 | |
|         assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
 | |
|                "Contradictory inequality.");
 | |
| 
 | |
|       // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
 | |
|       // add %a < %n2 too. This keeps the graph fully connected.
 | |
|       if (LV1 != NE) {
 | |
|         // Break up the relationship into signed and unsigned comparison parts.
 | |
|         // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
 | |
|         // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
 | |
|         // should have the EQ_BIT iff it's set for both op1 and op2.
 | |
| 
 | |
|         unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
 | |
|         unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
 | |
| 
 | |
|         for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
 | |
|           if (I->LV != NE && I->To != n2) {
 | |
| 
 | |
|             DomTreeDFS::Node *Local_Subtree = NULL;
 | |
|             if (Subtree->DominatedBy(I->Subtree))
 | |
|               Local_Subtree = Subtree;
 | |
|             else if (I->Subtree->DominatedBy(Subtree))
 | |
|               Local_Subtree = I->Subtree;
 | |
| 
 | |
|             if (Local_Subtree) {
 | |
|               unsigned new_relationship = 0;
 | |
|               LatticeVal ILV = reversePredicate(I->LV);
 | |
|               unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
 | |
|               unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
 | |
| 
 | |
|               if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
 | |
|                 new_relationship |= ILV_s;
 | |
|               if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
 | |
|                 new_relationship |= ILV_u;
 | |
| 
 | |
|               if (new_relationship) {
 | |
|                 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
 | |
|                   new_relationship |= (SLT_BIT|SGT_BIT);
 | |
|                 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
 | |
|                   new_relationship |= (ULT_BIT|UGT_BIT);
 | |
|                 if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
 | |
|                   new_relationship |= EQ_BIT;
 | |
| 
 | |
|                 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
 | |
| 
 | |
|                 node(I->To)->update(n2, NewLV, Local_Subtree);
 | |
|                 node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
 | |
|           if (I->LV != NE && I->To != n1) {
 | |
|             DomTreeDFS::Node *Local_Subtree = NULL;
 | |
|             if (Subtree->DominatedBy(I->Subtree))
 | |
|               Local_Subtree = Subtree;
 | |
|             else if (I->Subtree->DominatedBy(Subtree))
 | |
|               Local_Subtree = I->Subtree;
 | |
| 
 | |
|             if (Local_Subtree) {
 | |
|               unsigned new_relationship = 0;
 | |
|               unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
 | |
|               unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
 | |
| 
 | |
|               if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
 | |
|                 new_relationship |= ILV_s;
 | |
| 
 | |
|               if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
 | |
|                 new_relationship |= ILV_u;
 | |
| 
 | |
|               if (new_relationship) {
 | |
|                 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
 | |
|                   new_relationship |= (SLT_BIT|SGT_BIT);
 | |
|                 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
 | |
|                   new_relationship |= (ULT_BIT|UGT_BIT);
 | |
|                 if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
 | |
|                   new_relationship |= EQ_BIT;
 | |
| 
 | |
|                 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
 | |
| 
 | |
|                 node(n1)->update(I->To, NewLV, Local_Subtree);
 | |
|                 node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       node(n1)->update(n2, LV1, Subtree);
 | |
|       node(n2)->update(n1, reversePredicate(LV1), Subtree);
 | |
|     }
 | |
| 
 | |
|     /// remove - removes a node from the graph by removing all references to
 | |
|     /// and from it.
 | |
|     void remove(unsigned n) {
 | |
|       Node *N = node(n);
 | |
|       for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
 | |
|         Node::iterator Iter = node(NI->To)->find(n, TreeRoot);
 | |
|         do {
 | |
|           node(NI->To)->Relations.erase(Iter);
 | |
|           Iter = node(NI->To)->find(n, TreeRoot);
 | |
|         } while (Iter != node(NI->To)->end());
 | |
|       }
 | |
|       N->Relations.clear();
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     virtual ~InequalityGraph() {}
 | |
|     virtual void dump() {
 | |
|       dump(*cerr.stream());
 | |
|     }
 | |
| 
 | |
|     void dump(std::ostream &os) {
 | |
|       for (unsigned i = 1; i <= Nodes.size(); ++i) {
 | |
|         os << i << " = {";
 | |
|         node(i)->dump(os);
 | |
|         os << "}\n";
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|   };
 | |
| 
 | |
|   class VRPSolver;
 | |
| 
 | |
|   /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
 | |
|   /// in the InequalityGraph.
 | |
|   class VISIBILITY_HIDDEN ValueRanges {
 | |
|     ValueNumbering &VN;
 | |
|     TargetData *TD;
 | |
|     LLVMContext *Context;
 | |
| 
 | |
|     class VISIBILITY_HIDDEN ScopedRange {
 | |
|       typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
 | |
|               RangeListType;
 | |
|       RangeListType RangeList;
 | |
| 
 | |
|       static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
 | |
|                       const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
 | |
|         return *LHS.first < *RHS.first;
 | |
|       }
 | |
| 
 | |
|     public:
 | |
| #ifndef NDEBUG
 | |
|       virtual ~ScopedRange() {}
 | |
|       virtual void dump() const {
 | |
|         dump(*cerr.stream());
 | |
|       }
 | |
| 
 | |
|       void dump(std::ostream &os) const {
 | |
|         os << "{";
 | |
|         for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|           os << &I->second << " (" << I->first->getDFSNumIn() << "), ";
 | |
|         }
 | |
|         os << "}";
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       typedef RangeListType::iterator       iterator;
 | |
|       typedef RangeListType::const_iterator const_iterator;
 | |
| 
 | |
|       iterator begin() { return RangeList.begin(); }
 | |
|       iterator end()   { return RangeList.end(); }
 | |
|       const_iterator begin() const { return RangeList.begin(); }
 | |
|       const_iterator end()   const { return RangeList.end(); }
 | |
| 
 | |
|       iterator find(DomTreeDFS::Node *Subtree) {
 | |
|         iterator E = end();
 | |
|         iterator I = std::lower_bound(begin(), E,
 | |
|                                       std::make_pair(Subtree, empty), swo);
 | |
| 
 | |
|         while (I != E && !I->first->dominates(Subtree)) ++I;
 | |
|         return I;
 | |
|       }
 | |
| 
 | |
|       const_iterator find(DomTreeDFS::Node *Subtree) const {
 | |
|         const_iterator E = end();
 | |
|         const_iterator I = std::lower_bound(begin(), E,
 | |
|                                             std::make_pair(Subtree, empty), swo);
 | |
| 
 | |
|         while (I != E && !I->first->dominates(Subtree)) ++I;
 | |
|         return I;
 | |
|       }
 | |
| 
 | |
|       void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
 | |
|         assert(!CR.isEmptySet() && "Empty ConstantRange.");
 | |
|         assert(!CR.isSingleElement() && "Refusing to store single element.");
 | |
| 
 | |
|         iterator E = end();
 | |
|         iterator I =
 | |
|             std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
 | |
| 
 | |
|         if (I != end() && I->first == Subtree) {
 | |
|           ConstantRange CR2 = I->second.intersectWith(CR);
 | |
|           assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
 | |
|                  "Invalid union of ranges.");
 | |
|           I->second = CR2;
 | |
|         } else
 | |
|           RangeList.insert(I, std::make_pair(Subtree, CR));
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     std::vector<ScopedRange> Ranges;
 | |
| 
 | |
|     void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){
 | |
|       if (CR.isFullSet()) return;
 | |
|       if (Ranges.size() < n) Ranges.resize(n);
 | |
|       Ranges[n-1].update(CR, Subtree);
 | |
|     }
 | |
| 
 | |
|     /// create - Creates a ConstantRange that matches the given LatticeVal
 | |
|     /// relation with a given integer.
 | |
|     ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
 | |
|       assert(!CR.isEmptySet() && "Can't deal with empty set.");
 | |
| 
 | |
|       if (LV == NE)
 | |
|         return ConstantRange::makeICmpRegion(ICmpInst::ICMP_NE, CR);
 | |
| 
 | |
|       unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
 | |
|       unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
 | |
|       bool hasEQ = LV & EQ_BIT;
 | |
| 
 | |
|       ConstantRange Range(CR.getBitWidth());
 | |
| 
 | |
|       if (LV_s == SGT_BIT) {
 | |
|         Range = Range.intersectWith(ConstantRange::makeICmpRegion(
 | |
|                     hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
 | |
|       } else if (LV_s == SLT_BIT) {
 | |
|         Range = Range.intersectWith(ConstantRange::makeICmpRegion(
 | |
|                     hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
 | |
|       }
 | |
| 
 | |
|       if (LV_u == UGT_BIT) {
 | |
|         Range = Range.intersectWith(ConstantRange::makeICmpRegion(
 | |
|                     hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
 | |
|       } else if (LV_u == ULT_BIT) {
 | |
|         Range = Range.intersectWith(ConstantRange::makeICmpRegion(
 | |
|                     hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
 | |
|       }
 | |
| 
 | |
|       return Range;
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) {
 | |
|       return V == VN.canonicalize(V, Subtree);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     ValueRanges(ValueNumbering &VN, TargetData *TD, LLVMContext *C) :
 | |
|       VN(VN), TD(TD), Context(C) {}
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     virtual ~ValueRanges() {}
 | |
| 
 | |
|     virtual void dump() const {
 | |
|       dump(*cerr.stream());
 | |
|     }
 | |
| 
 | |
|     void dump(std::ostream &os) const {
 | |
|       for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
 | |
|         os << (i+1) << " = ";
 | |
|         Ranges[i].dump(os);
 | |
|         os << "\n";
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /// range - looks up the ConstantRange associated with a value number.
 | |
|     ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) {
 | |
|       assert(VN.value(n)); // performs range checks
 | |
| 
 | |
|       if (n <= Ranges.size()) {
 | |
|         ScopedRange::iterator I = Ranges[n-1].find(Subtree);
 | |
|         if (I != Ranges[n-1].end()) return I->second;
 | |
|       }
 | |
| 
 | |
|       Value *V = VN.value(n);
 | |
|       ConstantRange CR = range(V);
 | |
|       return CR;
 | |
|     }
 | |
| 
 | |
|     /// range - determine a range from a Value without performing any lookups.
 | |
|     ConstantRange range(Value *V) const {
 | |
|       if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|         return ConstantRange(C->getValue());
 | |
|       else if (isa<ConstantPointerNull>(V))
 | |
|         return ConstantRange(APInt::getNullValue(typeToWidth(V->getType())));
 | |
|       else
 | |
|         return ConstantRange(typeToWidth(V->getType()));
 | |
|     }
 | |
| 
 | |
|     // typeToWidth - returns the number of bits necessary to store a value of
 | |
|     // this type, or zero if unknown.
 | |
|     uint32_t typeToWidth(const Type *Ty) const {
 | |
|       if (TD)
 | |
|         return TD->getTypeSizeInBits(Ty);
 | |
|       else
 | |
|         return Ty->getPrimitiveSizeInBits();
 | |
|     }
 | |
| 
 | |
|     static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2,
 | |
|                             LatticeVal LV) {
 | |
|       switch (LV) {
 | |
|       default: assert(!"Impossible lattice value!");
 | |
|       case NE:
 | |
|         return CR1.intersectWith(CR2).isEmptySet();
 | |
|       case ULT:
 | |
|         return CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
 | |
|       case ULE:
 | |
|         return CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
 | |
|       case UGT:
 | |
|         return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
 | |
|       case UGE:
 | |
|         return CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
 | |
|       case SLT:
 | |
|         return CR1.getSignedMax().slt(CR2.getSignedMin());
 | |
|       case SLE:
 | |
|         return CR1.getSignedMax().sle(CR2.getSignedMin());
 | |
|       case SGT:
 | |
|         return CR1.getSignedMin().sgt(CR2.getSignedMax());
 | |
|       case SGE:
 | |
|         return CR1.getSignedMin().sge(CR2.getSignedMax());
 | |
|       case LT:
 | |
|         return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) &&
 | |
|                CR1.getSignedMax().slt(CR2.getUnsignedMin());
 | |
|       case LE:
 | |
|         return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) &&
 | |
|                CR1.getSignedMax().sle(CR2.getUnsignedMin());
 | |
|       case GT:
 | |
|         return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) &&
 | |
|                CR1.getSignedMin().sgt(CR2.getSignedMax());
 | |
|       case GE:
 | |
|         return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) &&
 | |
|                CR1.getSignedMin().sge(CR2.getSignedMax());
 | |
|       case SLTUGT:
 | |
|         return CR1.getSignedMax().slt(CR2.getSignedMin()) &&
 | |
|                CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
 | |
|       case SLEUGE:
 | |
|         return CR1.getSignedMax().sle(CR2.getSignedMin()) &&
 | |
|                CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
 | |
|       case SGTULT:
 | |
|         return CR1.getSignedMin().sgt(CR2.getSignedMax()) &&
 | |
|                CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
 | |
|       case SGEULE:
 | |
|         return CR1.getSignedMin().sge(CR2.getSignedMax()) &&
 | |
|                CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
 | |
|                      LatticeVal LV) {
 | |
|       ConstantRange CR1 = range(n1, Subtree);
 | |
|       ConstantRange CR2 = range(n2, Subtree);
 | |
| 
 | |
|       // True iff all values in CR1 are LV to all values in CR2.
 | |
|       return isRelatedBy(CR1, CR2, LV);
 | |
|     }
 | |
| 
 | |
|     void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
 | |
|                        VRPSolver *VRP);
 | |
|     void markBlock(VRPSolver *VRP);
 | |
| 
 | |
|     void mergeInto(Value **I, unsigned n, unsigned New,
 | |
|                    DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
 | |
|       ConstantRange CR_New = range(New, Subtree);
 | |
|       ConstantRange Merged = CR_New;
 | |
| 
 | |
|       for (; n != 0; ++I, --n) {
 | |
|         unsigned i = VN.valueNumber(*I, Subtree);
 | |
|         ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
 | |
|         if (CR_Kill.isFullSet()) continue;
 | |
|         Merged = Merged.intersectWith(CR_Kill);
 | |
|       }
 | |
| 
 | |
|       if (Merged.isFullSet() || Merged == CR_New) return;
 | |
| 
 | |
|       applyRange(New, Merged, Subtree, VRP);
 | |
|     }
 | |
| 
 | |
|     void applyRange(unsigned n, const ConstantRange &CR,
 | |
|                     DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
 | |
|       ConstantRange Merged = CR.intersectWith(range(n, Subtree));
 | |
|       if (Merged.isEmptySet()) {
 | |
|         markBlock(VRP);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (const APInt *I = Merged.getSingleElement()) {
 | |
|         Value *V = VN.value(n); // XXX: redesign worklist.
 | |
|         const Type *Ty = V->getType();
 | |
|         if (Ty->isInteger()) {
 | |
|           addToWorklist(V, ConstantInt::get(*Context, *I),
 | |
|                         ICmpInst::ICMP_EQ, VRP);
 | |
|           return;
 | |
|         } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | |
|           assert(*I == 0 && "Pointer is null but not zero?");
 | |
|           addToWorklist(V, ConstantPointerNull::get(PTy),
 | |
|                         ICmpInst::ICMP_EQ, VRP);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       update(n, Merged, Subtree);
 | |
|     }
 | |
| 
 | |
|     void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
 | |
|                       VRPSolver *VRP) {
 | |
|       ConstantRange CR1 = range(n1, Subtree);
 | |
|       ConstantRange CR2 = range(n2, Subtree);
 | |
| 
 | |
|       uint32_t W = CR1.getBitWidth();
 | |
| 
 | |
|       if (const APInt *I = CR1.getSingleElement()) {
 | |
|         if (CR2.isFullSet()) {
 | |
|           ConstantRange NewCR2(CR1.getUpper(), CR1.getLower());
 | |
|           applyRange(n2, NewCR2, Subtree, VRP);
 | |
|         } else if (*I == CR2.getLower()) {
 | |
|           APInt NewLower(CR2.getLower() + 1),
 | |
|                 NewUpper(CR2.getUpper());
 | |
|           if (NewLower == NewUpper)
 | |
|             NewLower = NewUpper = APInt::getMinValue(W);
 | |
| 
 | |
|           ConstantRange NewCR2(NewLower, NewUpper);
 | |
|           applyRange(n2, NewCR2, Subtree, VRP);
 | |
|         } else if (*I == CR2.getUpper() - 1) {
 | |
|           APInt NewLower(CR2.getLower()),
 | |
|                 NewUpper(CR2.getUpper() - 1);
 | |
|           if (NewLower == NewUpper)
 | |
|             NewLower = NewUpper = APInt::getMinValue(W);
 | |
| 
 | |
|           ConstantRange NewCR2(NewLower, NewUpper);
 | |
|           applyRange(n2, NewCR2, Subtree, VRP);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (const APInt *I = CR2.getSingleElement()) {
 | |
|         if (CR1.isFullSet()) {
 | |
|           ConstantRange NewCR1(CR2.getUpper(), CR2.getLower());
 | |
|           applyRange(n1, NewCR1, Subtree, VRP);
 | |
|         } else if (*I == CR1.getLower()) {
 | |
|           APInt NewLower(CR1.getLower() + 1),
 | |
|                 NewUpper(CR1.getUpper());
 | |
|           if (NewLower == NewUpper)
 | |
|             NewLower = NewUpper = APInt::getMinValue(W);
 | |
| 
 | |
|           ConstantRange NewCR1(NewLower, NewUpper);
 | |
|           applyRange(n1, NewCR1, Subtree, VRP);
 | |
|         } else if (*I == CR1.getUpper() - 1) {
 | |
|           APInt NewLower(CR1.getLower()),
 | |
|                 NewUpper(CR1.getUpper() - 1);
 | |
|           if (NewLower == NewUpper)
 | |
|             NewLower = NewUpper = APInt::getMinValue(W);
 | |
| 
 | |
|           ConstantRange NewCR1(NewLower, NewUpper);
 | |
|           applyRange(n1, NewCR1, Subtree, VRP);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
 | |
|                        LatticeVal LV, VRPSolver *VRP) {
 | |
|       assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work.");
 | |
| 
 | |
|       if (LV == NE) {
 | |
|         addNotEquals(n1, n2, Subtree, VRP);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       ConstantRange CR1 = range(n1, Subtree);
 | |
|       ConstantRange CR2 = range(n2, Subtree);
 | |
| 
 | |
|       if (!CR1.isSingleElement()) {
 | |
|         ConstantRange NewCR1 = CR1.intersectWith(create(LV, CR2));
 | |
|         if (NewCR1 != CR1)
 | |
|           applyRange(n1, NewCR1, Subtree, VRP);
 | |
|       }
 | |
| 
 | |
|       if (!CR2.isSingleElement()) {
 | |
|         ConstantRange NewCR2 = CR2.intersectWith(
 | |
|                                        create(reversePredicate(LV), CR1));
 | |
|         if (NewCR2 != CR2)
 | |
|           applyRange(n2, NewCR2, Subtree, VRP);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// UnreachableBlocks keeps tracks of blocks that are for one reason or
 | |
|   /// another discovered to be unreachable. This is used to cull the graph when
 | |
|   /// analyzing instructions, and to mark blocks with the "unreachable"
 | |
|   /// terminator instruction after the function has executed.
 | |
|   class VISIBILITY_HIDDEN UnreachableBlocks {
 | |
|   private:
 | |
|     std::vector<BasicBlock *> DeadBlocks;
 | |
| 
 | |
|   public:
 | |
|     /// mark - mark a block as dead
 | |
|     void mark(BasicBlock *BB) {
 | |
|       std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
 | |
|       std::vector<BasicBlock *>::iterator I =
 | |
|         std::lower_bound(DeadBlocks.begin(), E, BB);
 | |
| 
 | |
|       if (I == E || *I != BB) DeadBlocks.insert(I, BB);
 | |
|     }
 | |
| 
 | |
|     /// isDead - returns whether a block is known to be dead already
 | |
|     bool isDead(BasicBlock *BB) {
 | |
|       std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
 | |
|       std::vector<BasicBlock *>::iterator I =
 | |
|         std::lower_bound(DeadBlocks.begin(), E, BB);
 | |
| 
 | |
|       return I != E && *I == BB;
 | |
|     }
 | |
| 
 | |
|     /// kill - replace the dead blocks' terminator with an UnreachableInst.
 | |
|     bool kill() {
 | |
|       bool modified = false;
 | |
|       for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
 | |
|            E = DeadBlocks.end(); I != E; ++I) {
 | |
|         BasicBlock *BB = *I;
 | |
| 
 | |
|         DEBUG(errs() << "unreachable block: " << BB->getName() << "\n");
 | |
| 
 | |
|         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | |
|              SI != SE; ++SI) {
 | |
|           BasicBlock *Succ = *SI;
 | |
|           Succ->removePredecessor(BB);
 | |
|         }
 | |
| 
 | |
|         TerminatorInst *TI = BB->getTerminator();
 | |
|         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
 | |
|         TI->eraseFromParent();
 | |
|         new UnreachableInst(BB->getContext(), BB);
 | |
|         ++NumBlocks;
 | |
|         modified = true;
 | |
|       }
 | |
|       DeadBlocks.clear();
 | |
|       return modified;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// VRPSolver keeps track of how changes to one variable affect other
 | |
|   /// variables, and forwards changes along to the InequalityGraph. It
 | |
|   /// also maintains the correct choice for "canonical" in the IG.
 | |
|   /// @brief VRPSolver calculates inferences from a new relationship.
 | |
|   class VISIBILITY_HIDDEN VRPSolver {
 | |
|   private:
 | |
|     friend class ValueRanges;
 | |
| 
 | |
|     struct Operation {
 | |
|       Value *LHS, *RHS;
 | |
|       ICmpInst::Predicate Op;
 | |
| 
 | |
|       BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead
 | |
|       Instruction *ContextInst;
 | |
|     };
 | |
|     std::deque<Operation> WorkList;
 | |
| 
 | |
|     ValueNumbering &VN;
 | |
|     InequalityGraph &IG;
 | |
|     UnreachableBlocks &UB;
 | |
|     ValueRanges &VR;
 | |
|     DomTreeDFS *DTDFS;
 | |
|     DomTreeDFS::Node *Top;
 | |
|     BasicBlock *TopBB;
 | |
|     Instruction *TopInst;
 | |
|     bool &modified;
 | |
|     LLVMContext *Context;
 | |
| 
 | |
|     typedef InequalityGraph::Node Node;
 | |
| 
 | |
|     // below - true if the Instruction is dominated by the current context
 | |
|     // block or instruction
 | |
|     bool below(Instruction *I) {
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       if (TopInst && TopInst->getParent() == BB) {
 | |
|         if (isa<TerminatorInst>(TopInst)) return false;
 | |
|         if (isa<TerminatorInst>(I)) return true;
 | |
|         if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true;
 | |
|         if (!isa<PHINode>(TopInst) &&  isa<PHINode>(I)) return false;
 | |
| 
 | |
|         for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end();
 | |
|              Iter != E; ++Iter) {
 | |
|           if (&*Iter == TopInst) return true;
 | |
|           else if (&*Iter == I) return false;
 | |
|         }
 | |
|         assert(!"Instructions not found in parent BasicBlock?");
 | |
|       } else {
 | |
|         DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
 | |
|         if (!Node) return false;
 | |
|         return Top->dominates(Node);
 | |
|       }
 | |
|       return false; // Not reached
 | |
|     }
 | |
| 
 | |
|     // aboveOrBelow - true if the Instruction either dominates or is dominated
 | |
|     // by the current context block or instruction
 | |
|     bool aboveOrBelow(Instruction *I) {
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
 | |
|       if (!Node) return false;
 | |
| 
 | |
|       return Top == Node || Top->dominates(Node) || Node->dominates(Top);
 | |
|     }
 | |
| 
 | |
|     bool makeEqual(Value *V1, Value *V2) {
 | |
|       DEBUG(errs() << "makeEqual(" << *V1 << ", " << *V2 << ")\n");
 | |
|       DEBUG(errs() << "context is ");
 | |
|       DEBUG(if (TopInst) 
 | |
|               errs() << "I: " << *TopInst << "\n";
 | |
|             else 
 | |
|               errs() << "BB: " << TopBB->getName()
 | |
|                      << "(" << Top->getDFSNumIn() << ")\n");
 | |
| 
 | |
|       assert(V1->getType() == V2->getType() &&
 | |
|              "Can't make two values with different types equal.");
 | |
| 
 | |
|       if (V1 == V2) return true;
 | |
| 
 | |
|       if (isa<Constant>(V1) && isa<Constant>(V2))
 | |
|         return false;
 | |
| 
 | |
|       unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top);
 | |
| 
 | |
|       if (n1 && n2) {
 | |
|         if (n1 == n2) return true;
 | |
|         if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
 | |
|       }
 | |
| 
 | |
|       if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical.");
 | |
|       if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical.");
 | |
| 
 | |
|       assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual.");
 | |
| 
 | |
|       assert(!isa<Constant>(V2) && "Tried to remove a constant.");
 | |
| 
 | |
|       SetVector<unsigned> Remove;
 | |
|       if (n2) Remove.insert(n2);
 | |
| 
 | |
|       if (n1 && n2) {
 | |
|         // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
 | |
|         // We can't just merge %x and %y because the relationship with %z would
 | |
|         // be EQ and that's invalid. What we're doing is looking for any nodes
 | |
|         // %z such that %x <= %z and %y >= %z, and vice versa.
 | |
| 
 | |
|         Node::iterator end = IG.node(n2)->end();
 | |
| 
 | |
|         // Find the intersection between N1 and N2 which is dominated by
 | |
|         // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
 | |
|         // Remove.
 | |
|         for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end();
 | |
|              I != E; ++I) {
 | |
|           if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue;
 | |
| 
 | |
|           unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
 | |
|           unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
 | |
|           Node::iterator NI = IG.node(n2)->find(I->To, Top);
 | |
|           if (NI != end) {
 | |
|             LatticeVal NILV = reversePredicate(NI->LV);
 | |
|             unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT);
 | |
|             unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT);
 | |
| 
 | |
|             if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) ||
 | |
|                 (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u))
 | |
|               Remove.insert(I->To);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // See if one of the nodes about to be removed is actually a better
 | |
|         // canonical choice than n1.
 | |
|         unsigned orig_n1 = n1;
 | |
|         SetVector<unsigned>::iterator DontRemove = Remove.end();
 | |
|         for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
 | |
|              E = Remove.end(); I != E; ++I) {
 | |
|           unsigned n = *I;
 | |
|           Value *V = VN.value(n);
 | |
|           if (VN.compare(V, V1)) {
 | |
|             V1 = V;
 | |
|             n1 = n;
 | |
|             DontRemove = I;
 | |
|           }
 | |
|         }
 | |
|         if (DontRemove != Remove.end()) {
 | |
|           unsigned n = *DontRemove;
 | |
|           Remove.remove(n);
 | |
|           Remove.insert(orig_n1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We'd like to allow makeEqual on two values to perform a simple
 | |
|       // substitution without creating nodes in the IG whenever possible.
 | |
|       //
 | |
|       // The first iteration through this loop operates on V2 before going
 | |
|       // through the Remove list and operating on those too. If all of the
 | |
|       // iterations performed simple replacements then we exit early.
 | |
|       bool mergeIGNode = false;
 | |
|       unsigned i = 0;
 | |
|       for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
 | |
|         if (i) R = VN.value(Remove[i]); // skip n2.
 | |
| 
 | |
|         // Try to replace the whole instruction. If we can, we're done.
 | |
|         Instruction *I2 = dyn_cast<Instruction>(R);
 | |
|         if (I2 && below(I2)) {
 | |
|           std::vector<Instruction *> ToNotify;
 | |
|           for (Value::use_iterator UI = I2->use_begin(), UE = I2->use_end();
 | |
|                UI != UE;) {
 | |
|             Use &TheUse = UI.getUse();
 | |
|             ++UI;
 | |
|             Instruction *I = cast<Instruction>(TheUse.getUser());
 | |
|             ToNotify.push_back(I);
 | |
|           }
 | |
| 
 | |
|           DEBUG(errs() << "Simply removing " << *I2
 | |
|                        << ", replacing with " << *V1 << "\n");
 | |
|           I2->replaceAllUsesWith(V1);
 | |
|           // leave it dead; it'll get erased later.
 | |
|           ++NumInstruction;
 | |
|           modified = true;
 | |
| 
 | |
|           for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
 | |
|                IE = ToNotify.end(); II != IE; ++II) {
 | |
|             opsToDef(*II);
 | |
|           }
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Otherwise, replace all dominated uses.
 | |
|         for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
 | |
|              UI != UE;) {
 | |
|           Use &TheUse = UI.getUse();
 | |
|           ++UI;
 | |
|           if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
 | |
|             if (below(I)) {
 | |
|               TheUse.set(V1);
 | |
|               modified = true;
 | |
|               ++NumVarsReplaced;
 | |
|               opsToDef(I);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If that killed the instruction, stop here.
 | |
|         if (I2 && isInstructionTriviallyDead(I2)) {
 | |
|           DEBUG(errs() << "Killed all uses of " << *I2
 | |
|                        << ", replacing with " << *V1 << "\n");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If we make it to here, then we will need to create a node for N1.
 | |
|         // Otherwise, we can skip out early!
 | |
|         mergeIGNode = true;
 | |
|       }
 | |
| 
 | |
|       if (!isa<Constant>(V1)) {
 | |
|         if (Remove.empty()) {
 | |
|           VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this);
 | |
|         } else {
 | |
|           std::vector<Value*> RemoveVals;
 | |
|           RemoveVals.reserve(Remove.size());
 | |
| 
 | |
|           for (SetVector<unsigned>::iterator I = Remove.begin(),
 | |
|                E = Remove.end(); I != E; ++I) {
 | |
|             Value *V = VN.value(*I);
 | |
|             if (!V->use_empty())
 | |
|               RemoveVals.push_back(V);
 | |
|           }
 | |
|           VR.mergeInto(&RemoveVals[0], RemoveVals.size(), 
 | |
|                        VN.getOrInsertVN(V1, Top), Top, this);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (mergeIGNode) {
 | |
|         // Create N1.
 | |
|         if (!n1) n1 = VN.getOrInsertVN(V1, Top);
 | |
|         IG.node(n1); // Ensure that IG.Nodes won't get resized
 | |
| 
 | |
|         // Migrate relationships from removed nodes to N1.
 | |
|         for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
 | |
|              I != E; ++I) {
 | |
|           unsigned n = *I;
 | |
|           for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end();
 | |
|                NI != NE; ++NI) {
 | |
|             if (NI->Subtree->DominatedBy(Top)) {
 | |
|               if (NI->To == n1) {
 | |
|                 assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
 | |
|                 continue;
 | |
|               }
 | |
|               if (Remove.count(NI->To))
 | |
|                 continue;
 | |
| 
 | |
|               IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
 | |
|               IG.node(n1)->update(NI->To, NI->LV, Top);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Point V2 (and all items in Remove) to N1.
 | |
|         if (!n2)
 | |
|           VN.addEquality(n1, V2, Top);
 | |
|         else {
 | |
|           for (SetVector<unsigned>::iterator I = Remove.begin(),
 | |
|                E = Remove.end(); I != E; ++I) {
 | |
|             VN.addEquality(n1, VN.value(*I), Top);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If !Remove.empty() then V2 = Remove[0]->getValue().
 | |
|         // Even when Remove is empty, we still want to process V2.
 | |
|         i = 0;
 | |
|         for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
 | |
|           if (i) R = VN.value(Remove[i]); // skip n2.
 | |
| 
 | |
|           if (Instruction *I2 = dyn_cast<Instruction>(R)) {
 | |
|             if (aboveOrBelow(I2))
 | |
|             defToOps(I2);
 | |
|           }
 | |
|           for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
 | |
|                UI != UE;) {
 | |
|             Use &TheUse = UI.getUse();
 | |
|             ++UI;
 | |
|             if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
 | |
|               if (aboveOrBelow(I))
 | |
|                 opsToDef(I);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // re-opsToDef all dominated users of V1.
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V1)) {
 | |
|         for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | |
|              UI != UE;) {
 | |
|           Use &TheUse = UI.getUse();
 | |
|           ++UI;
 | |
|           Value *V = TheUse.getUser();
 | |
|           if (!V->use_empty()) {
 | |
|             Instruction *Inst = cast<Instruction>(V);
 | |
|             if (aboveOrBelow(Inst))
 | |
|               opsToDef(Inst);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
 | |
|     /// Requires that the lattice value be valid; does not accept ICMP_EQ.
 | |
|     static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
 | |
|       switch (Pred) {
 | |
|         case ICmpInst::ICMP_EQ:
 | |
|           assert(!"No matching lattice value.");
 | |
|           return static_cast<LatticeVal>(EQ_BIT);
 | |
|         default:
 | |
|           assert(!"Invalid 'icmp' predicate.");
 | |
|         case ICmpInst::ICMP_NE:
 | |
|           return NE;
 | |
|         case ICmpInst::ICMP_UGT:
 | |
|           return UGT;
 | |
|         case ICmpInst::ICMP_UGE:
 | |
|           return UGE;
 | |
|         case ICmpInst::ICMP_ULT:
 | |
|           return ULT;
 | |
|         case ICmpInst::ICMP_ULE:
 | |
|           return ULE;
 | |
|         case ICmpInst::ICMP_SGT:
 | |
|           return SGT;
 | |
|         case ICmpInst::ICMP_SGE:
 | |
|           return SGE;
 | |
|         case ICmpInst::ICMP_SLT:
 | |
|           return SLT;
 | |
|         case ICmpInst::ICMP_SLE:
 | |
|           return SLE;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
 | |
|               ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
 | |
|               BasicBlock *TopBB)
 | |
|       : VN(VN),
 | |
|         IG(IG),
 | |
|         UB(UB),
 | |
|         VR(VR),
 | |
|         DTDFS(DTDFS),
 | |
|         Top(DTDFS->getNodeForBlock(TopBB)),
 | |
|         TopBB(TopBB),
 | |
|         TopInst(NULL),
 | |
|         modified(modified),
 | |
|         Context(&TopBB->getContext())
 | |
|     {
 | |
|       assert(Top && "VRPSolver created for unreachable basic block.");
 | |
|     }
 | |
| 
 | |
|     VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
 | |
|               ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
 | |
|               Instruction *TopInst)
 | |
|       : VN(VN),
 | |
|         IG(IG),
 | |
|         UB(UB),
 | |
|         VR(VR),
 | |
|         DTDFS(DTDFS),
 | |
|         Top(DTDFS->getNodeForBlock(TopInst->getParent())),
 | |
|         TopBB(TopInst->getParent()),
 | |
|         TopInst(TopInst),
 | |
|         modified(modified),
 | |
|         Context(&TopInst->getContext())
 | |
|     {
 | |
|       assert(Top && "VRPSolver created for unreachable basic block.");
 | |
|       assert(Top->getBlock() == TopInst->getParent() && "Context mismatch.");
 | |
|     }
 | |
| 
 | |
|     bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
 | |
|       if (Constant *C1 = dyn_cast<Constant>(V1))
 | |
|         if (Constant *C2 = dyn_cast<Constant>(V2))
 | |
|           return ConstantExpr::getCompare(Pred, C1, C2) ==
 | |
|                  ConstantInt::getTrue(*Context);
 | |
| 
 | |
|       unsigned n1 = VN.valueNumber(V1, Top);
 | |
|       unsigned n2 = VN.valueNumber(V2, Top);
 | |
| 
 | |
|       if (n1 && n2) {
 | |
|         if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
 | |
|                              Pred == ICmpInst::ICMP_ULE ||
 | |
|                              Pred == ICmpInst::ICMP_UGE ||
 | |
|                              Pred == ICmpInst::ICMP_SLE ||
 | |
|                              Pred == ICmpInst::ICMP_SGE;
 | |
|         if (Pred == ICmpInst::ICMP_EQ) return false;
 | |
|         if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
 | |
|         if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
 | |
|       }
 | |
| 
 | |
|       if ((n1 && !n2 && isa<Constant>(V2)) ||
 | |
|           (n2 && !n1 && isa<Constant>(V1))) {
 | |
|         ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1);
 | |
|         ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2);
 | |
| 
 | |
|         if (Pred == ICmpInst::ICMP_EQ)
 | |
|           return CR1.isSingleElement() &&
 | |
|                  CR1.getSingleElement() == CR2.getSingleElement();
 | |
| 
 | |
|         return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred));
 | |
|       }
 | |
|       if (Pred == ICmpInst::ICMP_EQ) return V1 == V2;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// add - adds a new property to the work queue
 | |
|     void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
 | |
|              Instruction *I = NULL) {
 | |
|       DEBUG(errs() << "adding " << *V1 << " " << Pred << " " << *V2);
 | |
|       if (I)
 | |
|         DEBUG(errs() << " context: " << *I);
 | |
|       else 
 | |
|         DEBUG(errs() << " default context (" << Top->getDFSNumIn() << ")");
 | |
|       DEBUG(errs() << "\n");
 | |
| 
 | |
|       assert(V1->getType() == V2->getType() &&
 | |
|              "Can't relate two values with different types.");
 | |
| 
 | |
|       WorkList.push_back(Operation());
 | |
|       Operation &O = WorkList.back();
 | |
|       O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I;
 | |
|       O.ContextBB = I ? I->getParent() : TopBB;
 | |
|     }
 | |
| 
 | |
|     /// defToOps - Given an instruction definition that we've learned something
 | |
|     /// new about, find any new relationships between its operands.
 | |
|     void defToOps(Instruction *I) {
 | |
|       Instruction *NewContext = below(I) ? I : TopInst;
 | |
|       Value *Canonical = VN.canonicalize(I, Top);
 | |
| 
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|         const Type *Ty = BO->getType();
 | |
|         assert(!Ty->isFPOrFPVector() && "Float in work queue!");
 | |
| 
 | |
|         Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
 | |
|         Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
 | |
| 
 | |
|         // TODO: "and i32 -1, %x" EQ %y then %x EQ %y.
 | |
| 
 | |
|         switch (BO->getOpcode()) {
 | |
|           case Instruction::And: {
 | |
|             // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
 | |
|             ConstantInt *CI = cast<ConstantInt>(Constant::getAllOnesValue(Ty));
 | |
|             if (Canonical == CI) {
 | |
|               add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
 | |
|             }
 | |
|           } break;
 | |
|           case Instruction::Or: {
 | |
|             // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
 | |
|             Constant *Zero = Constant::getNullValue(Ty);
 | |
|             if (Canonical == Zero) {
 | |
|               add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
 | |
|             }
 | |
|           } break;
 | |
|           case Instruction::Xor: {
 | |
|             // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b
 | |
|             // "xor i32 %c, %a" EQ %c then %a EQ 0
 | |
|             // "xor i32 %c, %a" NE %c then %a NE 0
 | |
|             // Repeat the above, with order of operands reversed.
 | |
|             Value *LHS = Op0;
 | |
|             Value *RHS = Op1;
 | |
|             if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
 | |
| 
 | |
|             if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) {
 | |
|               if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) {
 | |
|                 add(RHS,
 | |
|                   ConstantInt::get(*Context, CI->getValue() ^ Arg->getValue()),
 | |
|                     ICmpInst::ICMP_EQ, NewContext);
 | |
|               }
 | |
|             }
 | |
|             if (Canonical == LHS) {
 | |
|               if (isa<ConstantInt>(Canonical))
 | |
|                 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ,
 | |
|                     NewContext);
 | |
|             } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
 | |
|               add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE,
 | |
|                   NewContext);
 | |
|             }
 | |
|           } break;
 | |
|           default:
 | |
|             break;
 | |
|         }
 | |
|       } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
 | |
|         // "icmp ult i32 %a, %y" EQ true then %a u< y
 | |
|         // etc.
 | |
| 
 | |
|         if (Canonical == ConstantInt::getTrue(*Context)) {
 | |
|           add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
 | |
|               NewContext);
 | |
|         } else if (Canonical == ConstantInt::getFalse(*Context)) {
 | |
|           add(IC->getOperand(0), IC->getOperand(1),
 | |
|               ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
 | |
|         }
 | |
|       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | |
|         if (I->getType()->isFPOrFPVector()) return;
 | |
| 
 | |
|         // Given: "%a = select i1 %x, i32 %b, i32 %c"
 | |
|         // %a EQ %b and %b NE %c then %x EQ true
 | |
|         // %a EQ %c and %b NE %c then %x EQ false
 | |
| 
 | |
|         Value *True  = SI->getTrueValue();
 | |
|         Value *False = SI->getFalseValue();
 | |
|         if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
 | |
|           if (Canonical == VN.canonicalize(True, Top) ||
 | |
|               isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
 | |
|             add(SI->getCondition(), ConstantInt::getTrue(*Context),
 | |
|                 ICmpInst::ICMP_EQ, NewContext);
 | |
|           else if (Canonical == VN.canonicalize(False, Top) ||
 | |
|                    isRelatedBy(Canonical, True, ICmpInst::ICMP_NE))
 | |
|             add(SI->getCondition(), ConstantInt::getFalse(*Context),
 | |
|                 ICmpInst::ICMP_EQ, NewContext);
 | |
|         }
 | |
|       } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|         for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
 | |
|              OE = GEPI->idx_end(); OI != OE; ++OI) {
 | |
|           ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
 | |
|           if (!Op || !Op->isZero()) return;
 | |
|         }
 | |
|         // TODO: The GEPI indices are all zero. Copy from definition to operand,
 | |
|         // jumping the type plane as needed.
 | |
|         if (isRelatedBy(GEPI, Constant::getNullValue(GEPI->getType()),
 | |
|                         ICmpInst::ICMP_NE)) {
 | |
|           Value *Ptr = GEPI->getPointerOperand();
 | |
|           add(Ptr, Constant::getNullValue(Ptr->getType()), ICmpInst::ICMP_NE,
 | |
|               NewContext);
 | |
|         }
 | |
|       } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|         const Type *SrcTy = CI->getSrcTy();
 | |
| 
 | |
|         unsigned ci = VN.getOrInsertVN(CI, Top);
 | |
|         uint32_t W = VR.typeToWidth(SrcTy);
 | |
|         if (!W) return;
 | |
|         ConstantRange CR = VR.range(ci, Top);
 | |
| 
 | |
|         if (CR.isFullSet()) return;
 | |
| 
 | |
|         switch (CI->getOpcode()) {
 | |
|           default: break;
 | |
|           case Instruction::ZExt:
 | |
|           case Instruction::SExt:
 | |
|             VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
 | |
|                           CR.truncate(W), Top, this);
 | |
|             break;
 | |
|           case Instruction::BitCast:
 | |
|             VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
 | |
|                           CR, Top, this);
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// opsToDef - A new relationship was discovered involving one of this
 | |
|     /// instruction's operands. Find any new relationship involving the
 | |
|     /// definition, or another operand.
 | |
|     void opsToDef(Instruction *I) {
 | |
|       Instruction *NewContext = below(I) ? I : TopInst;
 | |
| 
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|         Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
 | |
|         Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
 | |
| 
 | |
|         if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0))
 | |
|           if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
 | |
|             add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
 | |
|                 ICmpInst::ICMP_EQ, NewContext);
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|         // "%y = and i1 true, %x" then %x EQ %y
 | |
|         // "%y = or i1 false, %x" then %x EQ %y
 | |
|         // "%x = add i32 %y, 0" then %x EQ %y
 | |
|         // "%x = mul i32 %y, 0" then %x EQ 0
 | |
| 
 | |
|         Instruction::BinaryOps Opcode = BO->getOpcode();
 | |
|         const Type *Ty = BO->getType();
 | |
|         assert(!Ty->isFPOrFPVector() && "Float in work queue!");
 | |
| 
 | |
|         Constant *Zero = Constant::getNullValue(Ty);
 | |
|         Constant *One = ConstantInt::get(Ty, 1);
 | |
|         ConstantInt *AllOnes = cast<ConstantInt>(Constant::getAllOnesValue(Ty));
 | |
| 
 | |
|         switch (Opcode) {
 | |
|           default: break;
 | |
|           case Instruction::LShr:
 | |
|           case Instruction::AShr:
 | |
|           case Instruction::Shl:
 | |
|             if (Op1 == Zero) {
 | |
|               add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::Sub:
 | |
|             if (Op1 == Zero) {
 | |
|               add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
 | |
|               unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
 | |
|               ConstantRange CR = VR.range(n_ci0, Top);
 | |
|               if (!CR.isFullSet()) {
 | |
|                 CR.subtract(CI0->getValue());
 | |
|                 unsigned n_bo = VN.getOrInsertVN(BO, Top);
 | |
|                 VR.applyRange(n_bo, CR, Top, this);
 | |
|                 return;
 | |
|               }
 | |
|             }
 | |
|             if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
 | |
|               unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
 | |
|               ConstantRange CR = VR.range(n_ci1, Top);
 | |
|               if (!CR.isFullSet()) {
 | |
|                 CR.subtract(CI1->getValue());
 | |
|                 unsigned n_bo = VN.getOrInsertVN(BO, Top);
 | |
|                 VR.applyRange(n_bo, CR, Top, this);
 | |
|                 return;
 | |
|               }
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::Or:
 | |
|             if (Op0 == AllOnes || Op1 == AllOnes) {
 | |
|               add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             if (Op0 == Zero) {
 | |
|               add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             } else if (Op1 == Zero) {
 | |
|               add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::Add:
 | |
|             if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
 | |
|               unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
 | |
|               ConstantRange CR = VR.range(n_ci0, Top);
 | |
|               if (!CR.isFullSet()) {
 | |
|                 CR.subtract(-CI0->getValue());
 | |
|                 unsigned n_bo = VN.getOrInsertVN(BO, Top);
 | |
|                 VR.applyRange(n_bo, CR, Top, this);
 | |
|                 return;
 | |
|               }
 | |
|             }
 | |
|             if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
 | |
|               unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
 | |
|               ConstantRange CR = VR.range(n_ci1, Top);
 | |
|               if (!CR.isFullSet()) {
 | |
|                 CR.subtract(-CI1->getValue());
 | |
|                 unsigned n_bo = VN.getOrInsertVN(BO, Top);
 | |
|                 VR.applyRange(n_bo, CR, Top, this);
 | |
|                 return;
 | |
|               }
 | |
|             }
 | |
|             // fall-through
 | |
|           case Instruction::Xor:
 | |
|             if (Op0 == Zero) {
 | |
|               add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             } else if (Op1 == Zero) {
 | |
|               add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::And:
 | |
|             if (Op0 == AllOnes) {
 | |
|               add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             } else if (Op1 == AllOnes) {
 | |
|               add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             if (Op0 == Zero || Op1 == Zero) {
 | |
|               add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             break;
 | |
|           case Instruction::Mul:
 | |
|             if (Op0 == Zero || Op1 == Zero) {
 | |
|               add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             if (Op0 == One) {
 | |
|               add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             } else if (Op1 == One) {
 | |
|               add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
 | |
|               return;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0
 | |
|         // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0
 | |
|         // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0
 | |
|         // "%x = udiv i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 1
 | |
| 
 | |
|         Value *Known = Op0, *Unknown = Op1,
 | |
|               *TheBO = VN.canonicalize(BO, Top);
 | |
|         if (Known != TheBO) std::swap(Known, Unknown);
 | |
|         if (Known == TheBO) {
 | |
|           switch (Opcode) {
 | |
|             default: break;
 | |
|             case Instruction::LShr:
 | |
|             case Instruction::AShr:
 | |
|             case Instruction::Shl:
 | |
|               if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break;
 | |
|               // otherwise, fall-through.
 | |
|             case Instruction::Sub:
 | |
|               if (Unknown == Op0) break;
 | |
|               // otherwise, fall-through.
 | |
|             case Instruction::Xor:
 | |
|             case Instruction::Add:
 | |
|               add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext);
 | |
|               break;
 | |
|             case Instruction::UDiv:
 | |
|             case Instruction::SDiv:
 | |
|               if (Unknown == Op1) break;
 | |
|               if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE))
 | |
|                 add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
 | |
|               break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z.
 | |
| 
 | |
|       } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
 | |
|         // "%a = icmp ult i32 %b, %c" and %b u<  %c then %a EQ true
 | |
|         // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false
 | |
|         // etc.
 | |
| 
 | |
|         Value *Op0 = VN.canonicalize(IC->getOperand(0), Top);
 | |
|         Value *Op1 = VN.canonicalize(IC->getOperand(1), Top);
 | |
| 
 | |
|         ICmpInst::Predicate Pred = IC->getPredicate();
 | |
|         if (isRelatedBy(Op0, Op1, Pred))
 | |
|           add(IC, ConstantInt::getTrue(*Context), ICmpInst::ICMP_EQ, NewContext);
 | |
|         else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred)))
 | |
|           add(IC, ConstantInt::getFalse(*Context),
 | |
|               ICmpInst::ICMP_EQ, NewContext);
 | |
| 
 | |
|       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | |
|         if (I->getType()->isFPOrFPVector()) return;
 | |
| 
 | |
|         // Given: "%a = select i1 %x, i32 %b, i32 %c"
 | |
|         // %x EQ true  then %a EQ %b
 | |
|         // %x EQ false then %a EQ %c
 | |
|         // %b EQ %c then %a EQ %b
 | |
| 
 | |
|         Value *Canonical = VN.canonicalize(SI->getCondition(), Top);
 | |
|         if (Canonical == ConstantInt::getTrue(*Context)) {
 | |
|           add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
 | |
|         } else if (Canonical == ConstantInt::getFalse(*Context)) {
 | |
|           add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
 | |
|         } else if (VN.canonicalize(SI->getTrueValue(), Top) ==
 | |
|                    VN.canonicalize(SI->getFalseValue(), Top)) {
 | |
|           add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
 | |
|         }
 | |
|       } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|         const Type *DestTy = CI->getDestTy();
 | |
|         if (DestTy->isFPOrFPVector()) return;
 | |
| 
 | |
|         Value *Op = VN.canonicalize(CI->getOperand(0), Top);
 | |
|         Instruction::CastOps Opcode = CI->getOpcode();
 | |
| 
 | |
|         if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|           add(CI, ConstantExpr::getCast(Opcode, C, DestTy),
 | |
|               ICmpInst::ICMP_EQ, NewContext);
 | |
|         }
 | |
| 
 | |
|         uint32_t W = VR.typeToWidth(DestTy);
 | |
|         unsigned ci = VN.getOrInsertVN(CI, Top);
 | |
|         ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top);
 | |
| 
 | |
|         if (!CR.isFullSet()) {
 | |
|           switch (Opcode) {
 | |
|             default: break;
 | |
|             case Instruction::ZExt:
 | |
|               VR.applyRange(ci, CR.zeroExtend(W), Top, this);
 | |
|               break;
 | |
|             case Instruction::SExt:
 | |
|               VR.applyRange(ci, CR.signExtend(W), Top, this);
 | |
|               break;
 | |
|             case Instruction::Trunc: {
 | |
|               ConstantRange Result = CR.truncate(W);
 | |
|               if (!Result.isFullSet())
 | |
|                 VR.applyRange(ci, Result, Top, this);
 | |
|             } break;
 | |
|             case Instruction::BitCast:
 | |
|               VR.applyRange(ci, CR, Top, this);
 | |
|               break;
 | |
|             // TODO: other casts?
 | |
|           }
 | |
|         }
 | |
|       } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|         for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
 | |
|              OE = GEPI->idx_end(); OI != OE; ++OI) {
 | |
|           ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
 | |
|           if (!Op || !Op->isZero()) return;
 | |
|         }
 | |
|         // TODO: The GEPI indices are all zero. Copy from operand to definition,
 | |
|         // jumping the type plane as needed.
 | |
|         Value *Ptr = GEPI->getPointerOperand();
 | |
|         if (isRelatedBy(Ptr, Constant::getNullValue(Ptr->getType()),
 | |
|                         ICmpInst::ICMP_NE)) {
 | |
|           add(GEPI, Constant::getNullValue(GEPI->getType()), ICmpInst::ICMP_NE,
 | |
|               NewContext);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// solve - process the work queue
 | |
|     void solve() {
 | |
|       //DEBUG(errs() << "WorkList entry, size: " << WorkList.size() << "\n");
 | |
|       while (!WorkList.empty()) {
 | |
|         //DEBUG(errs() << "WorkList size: " << WorkList.size() << "\n");
 | |
| 
 | |
|         Operation &O = WorkList.front();
 | |
|         TopInst = O.ContextInst;
 | |
|         TopBB = O.ContextBB;
 | |
|         Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context
 | |
| 
 | |
|         O.LHS = VN.canonicalize(O.LHS, Top);
 | |
|         O.RHS = VN.canonicalize(O.RHS, Top);
 | |
| 
 | |
|         assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
 | |
|         assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't.");
 | |
| 
 | |
|         DEBUG(errs() << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
 | |
|               if (O.ContextInst) 
 | |
|                 errs() << " context inst: " << *O.ContextInst;
 | |
|               else
 | |
|                 errs() << " context block: " << O.ContextBB->getName();
 | |
|               errs() << "\n";
 | |
| 
 | |
|               VN.dump();
 | |
|               IG.dump();
 | |
|               VR.dump(););
 | |
| 
 | |
|         // If they're both Constant, skip it. Check for contradiction and mark
 | |
|         // the BB as unreachable if so.
 | |
|         if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) {
 | |
|           if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) {
 | |
|             if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) ==
 | |
|                 ConstantInt::getFalse(*Context))
 | |
|               UB.mark(TopBB);
 | |
| 
 | |
|             WorkList.pop_front();
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (VN.compare(O.LHS, O.RHS)) {
 | |
|           std::swap(O.LHS, O.RHS);
 | |
|           O.Op = ICmpInst::getSwappedPredicate(O.Op);
 | |
|         }
 | |
| 
 | |
|         if (O.Op == ICmpInst::ICMP_EQ) {
 | |
|           if (!makeEqual(O.RHS, O.LHS))
 | |
|             UB.mark(TopBB);
 | |
|         } else {
 | |
|           LatticeVal LV = cmpInstToLattice(O.Op);
 | |
| 
 | |
|           if ((LV & EQ_BIT) &&
 | |
|               isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
 | |
|             if (!makeEqual(O.RHS, O.LHS))
 | |
|               UB.mark(TopBB);
 | |
|           } else {
 | |
|             if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
 | |
|               UB.mark(TopBB);
 | |
|               WorkList.pop_front();
 | |
|               continue;
 | |
|             }
 | |
| 
 | |
|             unsigned n1 = VN.getOrInsertVN(O.LHS, Top);
 | |
|             unsigned n2 = VN.getOrInsertVN(O.RHS, Top);
 | |
| 
 | |
|             if (n1 == n2) {
 | |
|               if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
 | |
|                   O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
 | |
|                 UB.mark(TopBB);
 | |
| 
 | |
|               WorkList.pop_front();
 | |
|               continue;
 | |
|             }
 | |
| 
 | |
|             if (VR.isRelatedBy(n1, n2, Top, LV) ||
 | |
|                 IG.isRelatedBy(n1, n2, Top, LV)) {
 | |
|               WorkList.pop_front();
 | |
|               continue;
 | |
|             }
 | |
| 
 | |
|             VR.addInequality(n1, n2, Top, LV, this);
 | |
|             if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) ||
 | |
|                 LV == NE)
 | |
|               IG.addInequality(n1, n2, Top, LV);
 | |
| 
 | |
|             if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) {
 | |
|               if (aboveOrBelow(I1))
 | |
|                 defToOps(I1);
 | |
|             }
 | |
|             if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
 | |
|               for (Value::use_iterator UI = O.LHS->use_begin(),
 | |
|                    UE = O.LHS->use_end(); UI != UE;) {
 | |
|                 Use &TheUse = UI.getUse();
 | |
|                 ++UI;
 | |
|                 Instruction *I = cast<Instruction>(TheUse.getUser());
 | |
|                 if (aboveOrBelow(I))
 | |
|                   opsToDef(I);
 | |
|               }
 | |
|             }
 | |
|             if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) {
 | |
|               if (aboveOrBelow(I2))
 | |
|               defToOps(I2);
 | |
|             }
 | |
|             if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
 | |
|               for (Value::use_iterator UI = O.RHS->use_begin(),
 | |
|                    UE = O.RHS->use_end(); UI != UE;) {
 | |
|                 Use &TheUse = UI.getUse();
 | |
|                 ++UI;
 | |
|                 Instruction *I = cast<Instruction>(TheUse.getUser());
 | |
|                 if (aboveOrBelow(I))
 | |
|                   opsToDef(I);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         WorkList.pop_front();
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   void ValueRanges::addToWorklist(Value *V, Constant *C,
 | |
|                                   ICmpInst::Predicate Pred, VRPSolver *VRP) {
 | |
|     VRP->add(V, C, Pred, VRP->TopInst);
 | |
|   }
 | |
| 
 | |
|   void ValueRanges::markBlock(VRPSolver *VRP) {
 | |
|     VRP->UB.mark(VRP->TopBB);
 | |
|   }
 | |
| 
 | |
|   /// PredicateSimplifier - This class is a simplifier that replaces
 | |
|   /// one equivalent variable with another. It also tracks what
 | |
|   /// can't be equal and will solve setcc instructions when possible.
 | |
|   /// @brief Root of the predicate simplifier optimization.
 | |
|   class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass {
 | |
|     DomTreeDFS *DTDFS;
 | |
|     bool modified;
 | |
|     ValueNumbering *VN;
 | |
|     InequalityGraph *IG;
 | |
|     UnreachableBlocks UB;
 | |
|     ValueRanges *VR;
 | |
| 
 | |
|     std::vector<DomTreeDFS::Node *> WorkList;
 | |
| 
 | |
|     LLVMContext *Context;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     PredicateSimplifier() : FunctionPass(&ID) {}
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequiredID(BreakCriticalEdgesID);
 | |
|       AU.addRequired<DominatorTree>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// Forwards - Adds new properties to VRPSolver and uses them to
 | |
|     /// simplify instructions. Because new properties sometimes apply to
 | |
|     /// a transition from one BasicBlock to another, this will use the
 | |
|     /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
 | |
|     /// basic block.
 | |
|     /// @brief Performs abstract execution of the program.
 | |
|     class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
 | |
|       friend class InstVisitor<Forwards>;
 | |
|       PredicateSimplifier *PS;
 | |
|       DomTreeDFS::Node *DTNode;
 | |
| 
 | |
|     public:
 | |
|       ValueNumbering &VN;
 | |
|       InequalityGraph &IG;
 | |
|       UnreachableBlocks &UB;
 | |
|       ValueRanges &VR;
 | |
| 
 | |
|       Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode)
 | |
|         : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB),
 | |
|           VR(*PS->VR) {}
 | |
| 
 | |
|       void visitTerminatorInst(TerminatorInst &TI);
 | |
|       void visitBranchInst(BranchInst &BI);
 | |
|       void visitSwitchInst(SwitchInst &SI);
 | |
| 
 | |
|       void visitAllocaInst(AllocaInst &AI);
 | |
|       void visitLoadInst(LoadInst &LI);
 | |
|       void visitStoreInst(StoreInst &SI);
 | |
| 
 | |
|       void visitSExtInst(SExtInst &SI);
 | |
|       void visitZExtInst(ZExtInst &ZI);
 | |
| 
 | |
|       void visitBinaryOperator(BinaryOperator &BO);
 | |
|       void visitICmpInst(ICmpInst &IC);
 | |
|     };
 | |
|   
 | |
|     // Used by terminator instructions to proceed from the current basic
 | |
|     // block to the next. Verifies that "current" dominates "next",
 | |
|     // then calls visitBasicBlock.
 | |
|     void proceedToSuccessors(DomTreeDFS::Node *Current) {
 | |
|       for (DomTreeDFS::Node::iterator I = Current->begin(),
 | |
|            E = Current->end(); I != E; ++I) {
 | |
|         WorkList.push_back(*I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void proceedToSuccessor(DomTreeDFS::Node *Next) {
 | |
|       WorkList.push_back(Next);
 | |
|     }
 | |
| 
 | |
|     // Visits each instruction in the basic block.
 | |
|     void visitBasicBlock(DomTreeDFS::Node *Node) {
 | |
|       BasicBlock *BB = Node->getBlock();
 | |
|       DEBUG(errs() << "Entering Basic Block: " << BB->getName()
 | |
|             << " (" << Node->getDFSNumIn() << ")\n");
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|         visitInstruction(I++, Node);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Tries to simplify each Instruction and add new properties.
 | |
|     void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) {
 | |
|       DEBUG(errs() << "Considering instruction " << *I << "\n");
 | |
|       DEBUG(VN->dump());
 | |
|       DEBUG(IG->dump());
 | |
|       DEBUG(VR->dump());
 | |
| 
 | |
|       // Sometimes instructions are killed in earlier analysis.
 | |
|       if (isInstructionTriviallyDead(I)) {
 | |
|         ++NumSimple;
 | |
|         modified = true;
 | |
|         if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
 | |
|           if (VN->value(n) == I) IG->remove(n);
 | |
|         VN->remove(I);
 | |
|         I->eraseFromParent();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       // Try to replace the whole instruction.
 | |
|       Value *V = VN->canonicalize(I, DT);
 | |
|       assert(V == I && "Late instruction canonicalization.");
 | |
|       if (V != I) {
 | |
|         modified = true;
 | |
|         ++NumInstruction;
 | |
|         DEBUG(errs() << "Removing " << *I << ", replacing with " << *V << "\n");
 | |
|         if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
 | |
|           if (VN->value(n) == I) IG->remove(n);
 | |
|         VN->remove(I);
 | |
|         I->replaceAllUsesWith(V);
 | |
|         I->eraseFromParent();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Try to substitute operands.
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|         Value *Oper = I->getOperand(i);
 | |
|         Value *V = VN->canonicalize(Oper, DT);
 | |
|         assert(V == Oper && "Late operand canonicalization.");
 | |
|         if (V != Oper) {
 | |
|           modified = true;
 | |
|           ++NumVarsReplaced;
 | |
|           DEBUG(errs() << "Resolving " << *I);
 | |
|           I->setOperand(i, V);
 | |
|           DEBUG(errs() << " into " << *I);
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       std::string name = I->getParent()->getName();
 | |
|       DEBUG(errs() << "push (%" << name << ")\n");
 | |
|       Forwards visit(this, DT);
 | |
|       visit.visit(*I);
 | |
|       DEBUG(errs() << "pop (%" << name << ")\n");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   bool PredicateSimplifier::runOnFunction(Function &F) {
 | |
|     DominatorTree *DT = &getAnalysis<DominatorTree>();
 | |
|     DTDFS = new DomTreeDFS(DT);
 | |
|     TargetData *TD = getAnalysisIfAvailable<TargetData>();
 | |
| 
 | |
|     // FIXME: PredicateSimplifier should still be able to do basic
 | |
|     // optimizations without TargetData. But for now, just exit if
 | |
|     // it's not available.
 | |
|     if (!TD) return false;
 | |
| 
 | |
|     Context = &F.getContext();
 | |
| 
 | |
|     DEBUG(errs() << "Entering Function: " << F.getName() << "\n");
 | |
| 
 | |
|     modified = false;
 | |
|     DomTreeDFS::Node *Root = DTDFS->getRootNode();
 | |
|     VN = new ValueNumbering(DTDFS);
 | |
|     IG = new InequalityGraph(*VN, Root);
 | |
|     VR = new ValueRanges(*VN, TD, Context);
 | |
|     WorkList.push_back(Root);
 | |
| 
 | |
|     do {
 | |
|       DomTreeDFS::Node *DTNode = WorkList.back();
 | |
|       WorkList.pop_back();
 | |
|       if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
 | |
|     } while (!WorkList.empty());
 | |
| 
 | |
|     delete DTDFS;
 | |
|     delete VR;
 | |
|     delete IG;
 | |
|     delete VN;
 | |
| 
 | |
|     modified |= UB.kill();
 | |
| 
 | |
|     return modified;
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
 | |
|     PS->proceedToSuccessors(DTNode);
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
 | |
|     if (BI.isUnconditional()) {
 | |
|       PS->proceedToSuccessors(DTNode);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Value *Condition = BI.getCondition();
 | |
|     BasicBlock *TrueDest  = BI.getSuccessor(0);
 | |
|     BasicBlock *FalseDest = BI.getSuccessor(1);
 | |
| 
 | |
|     if (isa<Constant>(Condition) || TrueDest == FalseDest) {
 | |
|       PS->proceedToSuccessors(DTNode);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     LLVMContext *Context = &BI.getContext();
 | |
| 
 | |
|     for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
 | |
|          I != E; ++I) {
 | |
|       BasicBlock *Dest = (*I)->getBlock();
 | |
|       DEBUG(errs() << "Branch thinking about %" << Dest->getName()
 | |
|             << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n");
 | |
| 
 | |
|       if (Dest == TrueDest) {
 | |
|         DEBUG(errs() << "(" << DTNode->getBlock()->getName() 
 | |
|               << ") true set:\n");
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
 | |
|         VRP.add(ConstantInt::getTrue(*Context), Condition, ICmpInst::ICMP_EQ);
 | |
|         VRP.solve();
 | |
|         DEBUG(VN.dump());
 | |
|         DEBUG(IG.dump());
 | |
|         DEBUG(VR.dump());
 | |
|       } else if (Dest == FalseDest) {
 | |
|         DEBUG(errs() << "(" << DTNode->getBlock()->getName() 
 | |
|               << ") false set:\n");
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
 | |
|         VRP.add(ConstantInt::getFalse(*Context), Condition, ICmpInst::ICMP_EQ);
 | |
|         VRP.solve();
 | |
|         DEBUG(VN.dump());
 | |
|         DEBUG(IG.dump());
 | |
|         DEBUG(VR.dump());
 | |
|       }
 | |
| 
 | |
|       PS->proceedToSuccessor(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
 | |
|     Value *Condition = SI.getCondition();
 | |
| 
 | |
|     // Set the EQProperty in each of the cases BBs, and the NEProperties
 | |
|     // in the default BB.
 | |
| 
 | |
|     for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
 | |
|          I != E; ++I) {
 | |
|       BasicBlock *BB = (*I)->getBlock();
 | |
|       DEBUG(errs() << "Switch thinking about BB %" << BB->getName()
 | |
|             << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n");
 | |
| 
 | |
|       VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB);
 | |
|       if (BB == SI.getDefaultDest()) {
 | |
|         for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
 | |
|           if (SI.getSuccessor(i) != BB)
 | |
|             VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
 | |
|         VRP.solve();
 | |
|       } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
 | |
|         VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
 | |
|         VRP.solve();
 | |
|       }
 | |
|       PS->proceedToSuccessor(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
 | |
|     VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI);
 | |
|     VRP.add(Constant::getNullValue(AI.getType()),
 | |
|             &AI, ICmpInst::ICMP_NE);
 | |
|     VRP.solve();
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
 | |
|     Value *Ptr = LI.getPointerOperand();
 | |
|     // avoid "load i8* null" -> null NE null.
 | |
|     if (isa<Constant>(Ptr)) return;
 | |
| 
 | |
|     VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI);
 | |
|     VRP.add(Constant::getNullValue(Ptr->getType()),
 | |
|             Ptr, ICmpInst::ICMP_NE);
 | |
|     VRP.solve();
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
 | |
|     Value *Ptr = SI.getPointerOperand();
 | |
|     if (isa<Constant>(Ptr)) return;
 | |
| 
 | |
|     VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
 | |
|     VRP.add(Constant::getNullValue(Ptr->getType()),
 | |
|             Ptr, ICmpInst::ICMP_NE);
 | |
|     VRP.solve();
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) {
 | |
|     VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
 | |
|     LLVMContext &Context = SI.getContext();
 | |
|     uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth();
 | |
|     uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth();
 | |
|     APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1));
 | |
|     APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1));
 | |
|     VRP.add(ConstantInt::get(Context, Min), &SI, ICmpInst::ICMP_SLE);
 | |
|     VRP.add(ConstantInt::get(Context, Max), &SI, ICmpInst::ICMP_SGE);
 | |
|     VRP.solve();
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) {
 | |
|     VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI);
 | |
|     LLVMContext &Context = ZI.getContext();
 | |
|     uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth();
 | |
|     uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth();
 | |
|     APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth));
 | |
|     VRP.add(ConstantInt::get(Context, Max), &ZI, ICmpInst::ICMP_UGE);
 | |
|     VRP.solve();
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
 | |
|     Instruction::BinaryOps ops = BO.getOpcode();
 | |
| 
 | |
|     switch (ops) {
 | |
|     default: break;
 | |
|       case Instruction::URem:
 | |
|       case Instruction::SRem:
 | |
|       case Instruction::UDiv:
 | |
|       case Instruction::SDiv: {
 | |
|         Value *Divisor = BO.getOperand(1);
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
 | |
|         VRP.add(Constant::getNullValue(Divisor->getType()), 
 | |
|                 Divisor, ICmpInst::ICMP_NE);
 | |
|         VRP.solve();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (ops) {
 | |
|       default: break;
 | |
|       case Instruction::Shl: {
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
 | |
|         VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
 | |
|         VRP.solve();
 | |
|       } break;
 | |
|       case Instruction::AShr: {
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
 | |
|         VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE);
 | |
|         VRP.solve();
 | |
|       } break;
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::UDiv: {
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
 | |
|         VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
 | |
|         VRP.solve();
 | |
|       } break;
 | |
|       case Instruction::URem: {
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
 | |
|         VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
 | |
|         VRP.solve();
 | |
|       } break;
 | |
|       case Instruction::And: {
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
 | |
|         VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
 | |
|         VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
 | |
|         VRP.solve();
 | |
|       } break;
 | |
|       case Instruction::Or: {
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
 | |
|         VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
 | |
|         VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE);
 | |
|         VRP.solve();
 | |
|       } break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) {
 | |
|     // If possible, squeeze the ICmp predicate into something simpler.
 | |
|     // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change
 | |
|     // the predicate to eq.
 | |
| 
 | |
|     // XXX: once we do full PHI handling, modifying the instruction in the
 | |
|     // Forwards visitor will cause missed optimizations.
 | |
| 
 | |
|     ICmpInst::Predicate Pred = IC.getPredicate();
 | |
| 
 | |
|     switch (Pred) {
 | |
|       default: break;
 | |
|       case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break;
 | |
|       case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break;
 | |
|       case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break;
 | |
|       case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break;
 | |
|     }
 | |
|     if (Pred != IC.getPredicate()) {
 | |
|       VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
 | |
|       if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0),
 | |
|                           ICmpInst::ICMP_NE)) {
 | |
|         ++NumSnuggle;
 | |
|         PS->modified = true;
 | |
|         IC.setPredicate(Pred);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Pred = IC.getPredicate();
 | |
| 
 | |
|     LLVMContext &Context = IC.getContext();
 | |
| 
 | |
|     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) {
 | |
|       ConstantInt *NextVal = 0;
 | |
|       switch (Pred) {
 | |
|         default: break;
 | |
|         case ICmpInst::ICMP_SLT:
 | |
|         case ICmpInst::ICMP_ULT:
 | |
|           if (Op1->getValue() != 0)
 | |
|             NextVal = ConstantInt::get(Context, Op1->getValue()-1);
 | |
|          break;
 | |
|         case ICmpInst::ICMP_SGT:
 | |
|         case ICmpInst::ICMP_UGT:
 | |
|           if (!Op1->getValue().isAllOnesValue())
 | |
|             NextVal = ConstantInt::get(Context, Op1->getValue()+1);
 | |
|          break;
 | |
|       }
 | |
| 
 | |
|       if (NextVal) {
 | |
|         VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
 | |
|         if (VRP.isRelatedBy(IC.getOperand(0), NextVal,
 | |
|                             ICmpInst::getInversePredicate(Pred))) {
 | |
|           ICmpInst *NewIC = new ICmpInst(&IC, ICmpInst::ICMP_EQ, 
 | |
|                                          IC.getOperand(0), NextVal, "");
 | |
|           NewIC->takeName(&IC);
 | |
|           IC.replaceAllUsesWith(NewIC);
 | |
| 
 | |
|           // XXX: prove this isn't necessary
 | |
|           if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode()))
 | |
|             if (VN.value(n) == &IC) IG.remove(n);
 | |
|           VN.remove(&IC);
 | |
| 
 | |
|           IC.eraseFromParent();
 | |
|           ++NumSnuggle;
 | |
|           PS->modified = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| char PredicateSimplifier::ID = 0;
 | |
| static RegisterPass<PredicateSimplifier>
 | |
| X("predsimplify", "Predicate Simplifier");
 | |
| 
 | |
| FunctionPass *llvm::createPredicateSimplifierPass() {
 | |
|   return new PredicateSimplifier();
 | |
| }
 |