mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	that make up the strings to the slotcalculator. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10862 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			466 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a useful analysis step to figure out what numbered 
 | 
						|
// slots values in a program will land in (keeping track of per plane
 | 
						|
// information as required.
 | 
						|
//
 | 
						|
// This is used primarily for when writing a file to disk, either in bytecode
 | 
						|
// or source format.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/SlotCalculator.h"
 | 
						|
#include "llvm/Analysis/ConstantsScanner.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "Support/PostOrderIterator.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#if 0
 | 
						|
#define SC_DEBUG(X) std::cerr << X
 | 
						|
#else
 | 
						|
#define SC_DEBUG(X)
 | 
						|
#endif
 | 
						|
 | 
						|
SlotCalculator::SlotCalculator(const Module *M, bool buildBytecodeInfo) {
 | 
						|
  BuildBytecodeInfo = buildBytecodeInfo;
 | 
						|
  TheModule = M;
 | 
						|
 | 
						|
  // Preload table... Make sure that all of the primitive types are in the table
 | 
						|
  // and that their Primitive ID is equal to their slot #
 | 
						|
  //
 | 
						|
  SC_DEBUG("Inserting primitive types:\n");
 | 
						|
  for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
 | 
						|
    assert(Type::getPrimitiveType((Type::PrimitiveID)i));
 | 
						|
    insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (M == 0) return;   // Empty table...
 | 
						|
  processModule();
 | 
						|
}
 | 
						|
 | 
						|
SlotCalculator::SlotCalculator(const Function *M, bool buildBytecodeInfo) {
 | 
						|
  BuildBytecodeInfo = buildBytecodeInfo;
 | 
						|
  TheModule = M ? M->getParent() : 0;
 | 
						|
 | 
						|
  // Preload table... Make sure that all of the primitive types are in the table
 | 
						|
  // and that their Primitive ID is equal to their slot #
 | 
						|
  //
 | 
						|
  SC_DEBUG("Inserting primitive types:\n");
 | 
						|
  for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
 | 
						|
    assert(Type::getPrimitiveType((Type::PrimitiveID)i));
 | 
						|
    insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TheModule == 0) return;   // Empty table...
 | 
						|
 | 
						|
  processModule();              // Process module level stuff
 | 
						|
  incorporateFunction(M);         // Start out in incorporated state
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// processModule - Process all of the module level function declarations and
 | 
						|
// types that are available.
 | 
						|
//
 | 
						|
void SlotCalculator::processModule() {
 | 
						|
  SC_DEBUG("begin processModule!\n");
 | 
						|
 | 
						|
  // Add all of the global variables to the value table...
 | 
						|
  //
 | 
						|
  for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
 | 
						|
       I != E; ++I)
 | 
						|
    getOrCreateSlot(I);
 | 
						|
 | 
						|
  // Scavenge the types out of the functions, then add the functions themselves
 | 
						|
  // to the value table...
 | 
						|
  //
 | 
						|
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | 
						|
       I != E; ++I)
 | 
						|
    getOrCreateSlot(I);
 | 
						|
 | 
						|
  // Add all of the module level constants used as initializers
 | 
						|
  //
 | 
						|
  for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
 | 
						|
       I != E; ++I)
 | 
						|
    if (I->hasInitializer())
 | 
						|
      getOrCreateSlot(I->getInitializer());
 | 
						|
 | 
						|
  // Now that all global constants have been added, rearrange constant planes
 | 
						|
  // that contain constant strings so that the strings occur at the start of the
 | 
						|
  // plane, not somewhere in the middle.
 | 
						|
  //
 | 
						|
  if (BuildBytecodeInfo) {
 | 
						|
    TypePlane &Types = Table[Type::TypeTyID];
 | 
						|
    for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
 | 
						|
      if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
 | 
						|
        if (AT->getElementType() == Type::SByteTy ||
 | 
						|
            AT->getElementType() == Type::UByteTy) {
 | 
						|
          TypePlane &Plane = Table[plane];
 | 
						|
          unsigned FirstNonStringID = 0;
 | 
						|
          for (unsigned i = 0, e = Plane.size(); i != e; ++i)
 | 
						|
            if (cast<ConstantArray>(Plane[i])->isString()) {
 | 
						|
              // Check to see if we have to shuffle this string around.  If not,
 | 
						|
              // don't do anything.
 | 
						|
              if (i != FirstNonStringID) {
 | 
						|
                // Swap the plane entries....
 | 
						|
                std::swap(Plane[i], Plane[FirstNonStringID]);
 | 
						|
                
 | 
						|
                // Keep the NodeMap up to date.
 | 
						|
                NodeMap[Plane[i]] = i;
 | 
						|
                NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
 | 
						|
              }
 | 
						|
              ++FirstNonStringID;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
#if 0
 | 
						|
  // FIXME: Empirically, this causes the bytecode files to get BIGGER, because
 | 
						|
  // it explodes the operand size numbers to be bigger than can be handled
 | 
						|
  // compactly, which offsets the ~40% savings in constant sizes.  Whoops.
 | 
						|
 | 
						|
  // If we are emitting a bytecode file, scan all of the functions for their
 | 
						|
  // constants, which allows us to emit more compact modules.  This is optional,
 | 
						|
  // and is just used to compactify the constants used by different functions
 | 
						|
  // together.
 | 
						|
  if (BuildBytecodeInfo) {
 | 
						|
    SC_DEBUG("Inserting function constants:\n");
 | 
						|
    for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
 | 
						|
         F != E; ++F)
 | 
						|
      for_each(constant_begin(F), constant_end(F),
 | 
						|
               bind_obj(this, &SlotCalculator::getOrCreateSlot));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Insert constants that are named at module level into the slot pool so that
 | 
						|
  // the module symbol table can refer to them...
 | 
						|
  //
 | 
						|
  if (BuildBytecodeInfo) {
 | 
						|
    SC_DEBUG("Inserting SymbolTable values:\n");
 | 
						|
    processSymbolTable(&TheModule->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have collected together all of the information relevant to the
 | 
						|
  // module, compactify the type table if it is particularly big and outputting
 | 
						|
  // a bytecode file.  The basic problem we run into is that some programs have
 | 
						|
  // a large number of types, which causes the type field to overflow its size,
 | 
						|
  // which causes instructions to explode in size (particularly call
 | 
						|
  // instructions).  To avoid this behavior, we "sort" the type table so that
 | 
						|
  // all non-value types are pushed to the end of the type table, giving nice
 | 
						|
  // low numbers to the types that can be used by instructions, thus reducing
 | 
						|
  // the amount of explodage we suffer.
 | 
						|
  if (BuildBytecodeInfo && Table[Type::TypeTyID].size() >= 64) {
 | 
						|
    // Scan through the type table moving value types to the start of the table.
 | 
						|
    TypePlane *Types = &Table[Type::TypeTyID];
 | 
						|
    unsigned FirstNonValueTypeID = 0;
 | 
						|
    for (unsigned i = 0, e = Types->size(); i != e; ++i)
 | 
						|
      if (cast<Type>((*Types)[i])->isFirstClassType() ||
 | 
						|
          cast<Type>((*Types)[i])->isPrimitiveType()) {
 | 
						|
        // Check to see if we have to shuffle this type around.  If not, don't
 | 
						|
        // do anything.
 | 
						|
        if (i != FirstNonValueTypeID) {
 | 
						|
          assert(i != Type::TypeTyID && FirstNonValueTypeID != Type::TypeTyID &&
 | 
						|
                 "Cannot move around the type plane!");
 | 
						|
 | 
						|
          // Swap the type ID's.
 | 
						|
          std::swap((*Types)[i], (*Types)[FirstNonValueTypeID]);
 | 
						|
 | 
						|
          // Keep the NodeMap up to date.
 | 
						|
          NodeMap[(*Types)[i]] = i;
 | 
						|
          NodeMap[(*Types)[FirstNonValueTypeID]] = FirstNonValueTypeID;
 | 
						|
 | 
						|
          // When we move a type, make sure to move its value plane as needed.
 | 
						|
          if (Table.size() > FirstNonValueTypeID) {
 | 
						|
            if (Table.size() <= i) Table.resize(i+1);
 | 
						|
            std::swap(Table[i], Table[FirstNonValueTypeID]);
 | 
						|
            Types = &Table[Type::TypeTyID];
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ++FirstNonValueTypeID;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end processModule!\n");
 | 
						|
}
 | 
						|
 | 
						|
// processSymbolTable - Insert all of the values in the specified symbol table
 | 
						|
// into the values table...
 | 
						|
//
 | 
						|
void SlotCalculator::processSymbolTable(const SymbolTable *ST) {
 | 
						|
  for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I)
 | 
						|
    for (SymbolTable::type_const_iterator TI = I->second.begin(), 
 | 
						|
	   TE = I->second.end(); TI != TE; ++TI)
 | 
						|
      getOrCreateSlot(TI->second);
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) {
 | 
						|
  for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I)
 | 
						|
    for (SymbolTable::type_const_iterator TI = I->second.begin(), 
 | 
						|
	   TE = I->second.end(); TI != TE; ++TI)
 | 
						|
      if (isa<Constant>(TI->second))
 | 
						|
	getOrCreateSlot(TI->second);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SlotCalculator::incorporateFunction(const Function *F) {
 | 
						|
  assert(ModuleLevel.size() == 0 && "Module already incorporated!");
 | 
						|
 | 
						|
  SC_DEBUG("begin processFunction!\n");
 | 
						|
 | 
						|
  // Save the Table state before we process the function...
 | 
						|
  for (unsigned i = 0; i < Table.size(); ++i)
 | 
						|
    ModuleLevel.push_back(Table[i].size());
 | 
						|
 | 
						|
  SC_DEBUG("Inserting function arguments\n");
 | 
						|
 | 
						|
  // Iterate over function arguments, adding them to the value table...
 | 
						|
  for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | 
						|
    getOrCreateSlot(I);
 | 
						|
 | 
						|
  // Iterate over all of the instructions in the function, looking for constant
 | 
						|
  // values that are referenced.  Add these to the value pools before any
 | 
						|
  // nonconstant values.  This will be turned into the constant pool for the
 | 
						|
  // bytecode writer.
 | 
						|
  //
 | 
						|
  if (BuildBytecodeInfo) {                // Assembly writer does not need this!
 | 
						|
    SC_DEBUG("Inserting function constants:\n";
 | 
						|
	     for (constant_iterator I = constant_begin(F), E = constant_end(F);
 | 
						|
		  I != E; ++I) {
 | 
						|
	       std::cerr << "  " << *I->getType() << " " << *I << "\n";
 | 
						|
	     });
 | 
						|
 | 
						|
    // Emit all of the constants that are being used by the instructions in the
 | 
						|
    // function...
 | 
						|
    for_each(constant_begin(F), constant_end(F),
 | 
						|
	     bind_obj(this, &SlotCalculator::getOrCreateSlot));
 | 
						|
 | 
						|
    // If there is a symbol table, it is possible that the user has names for
 | 
						|
    // constants that are not being used.  In this case, we will have problems
 | 
						|
    // if we don't emit the constants now, because otherwise we will get 
 | 
						|
    // symbol table references to constants not in the output.  Scan for these
 | 
						|
    // constants now.
 | 
						|
    //
 | 
						|
    processSymbolTableConstants(&F->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("Inserting Labels:\n");
 | 
						|
 | 
						|
  // Iterate over basic blocks, adding them to the value table...
 | 
						|
  for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | 
						|
    getOrCreateSlot(I);
 | 
						|
 | 
						|
  SC_DEBUG("Inserting Instructions:\n");
 | 
						|
 | 
						|
  // Add all of the instructions to the type planes...
 | 
						|
  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | 
						|
      getOrCreateSlot(I);
 | 
						|
      if (const VANextInst *VAN = dyn_cast<VANextInst>(I))
 | 
						|
        getOrCreateSlot(VAN->getArgType());
 | 
						|
    }
 | 
						|
 | 
						|
  if (BuildBytecodeInfo) {
 | 
						|
    SC_DEBUG("Inserting SymbolTable values:\n");
 | 
						|
    processSymbolTable(&F->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end processFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::purgeFunction() {
 | 
						|
  assert(ModuleLevel.size() != 0 && "Module not incorporated!");
 | 
						|
  unsigned NumModuleTypes = ModuleLevel.size();
 | 
						|
 | 
						|
  SC_DEBUG("begin purgeFunction!\n");
 | 
						|
 | 
						|
  // First, remove values from existing type planes
 | 
						|
  for (unsigned i = 0; i < NumModuleTypes; ++i) {
 | 
						|
    unsigned ModuleSize = ModuleLevel[i];  // Size of plane before function came
 | 
						|
    TypePlane &CurPlane = Table[i];
 | 
						|
    //SC_DEBUG("Processing Plane " <<i<< " of size " << CurPlane.size() <<"\n");
 | 
						|
	     
 | 
						|
    while (CurPlane.size() != ModuleSize) {
 | 
						|
      //SC_DEBUG("  Removing [" << i << "] Value=" << CurPlane.back() << "\n");
 | 
						|
      std::map<const Value *, unsigned>::iterator NI =
 | 
						|
        NodeMap.find(CurPlane.back());
 | 
						|
      assert(NI != NodeMap.end() && "Node not in nodemap?");
 | 
						|
      NodeMap.erase(NI);   // Erase from nodemap
 | 
						|
      CurPlane.pop_back();                            // Shrink plane
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't need this state anymore, free it up.
 | 
						|
  ModuleLevel.clear();
 | 
						|
 | 
						|
  // Next, remove any type planes defined by the function...
 | 
						|
  while (NumModuleTypes != Table.size()) {
 | 
						|
    TypePlane &Plane = Table.back();
 | 
						|
    SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
 | 
						|
	     << Plane.size() << "\n");
 | 
						|
    while (Plane.size()) {
 | 
						|
      NodeMap.erase(NodeMap.find(Plane.back()));   // Erase from nodemap
 | 
						|
      Plane.pop_back();                            // Shrink plane
 | 
						|
    }
 | 
						|
 | 
						|
    Table.pop_back();                      // Nuke the plane, we don't like it.
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end purgeFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::getSlot(const Value *D) const {
 | 
						|
  std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(D);
 | 
						|
  if (I == NodeMap.end()) return -1;
 | 
						|
 
 | 
						|
  return (int)I->second;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int SlotCalculator::getOrCreateSlot(const Value *V) {
 | 
						|
  int SlotNo = getSlot(V);        // Check to see if it's already in!
 | 
						|
  if (SlotNo != -1) return SlotNo;
 | 
						|
 | 
						|
  if (!isa<GlobalValue>(V))
 | 
						|
    if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
      // If we are emitting a bytecode file, do not index the characters that
 | 
						|
      // make up constant strings.  We emit constant strings as special
 | 
						|
      // entities that don't require their individual characters to be emitted.
 | 
						|
      if (!BuildBytecodeInfo || !isa<ConstantArray>(C) ||
 | 
						|
          !cast<ConstantArray>(C)->isString()) {
 | 
						|
        // This makes sure that if a constant has uses (for example an array of
 | 
						|
        // const ints), that they are inserted also.
 | 
						|
        //
 | 
						|
        for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | 
						|
             I != E; ++I)
 | 
						|
          getOrCreateSlot(*I);
 | 
						|
      } else {
 | 
						|
        assert(ModuleLevel.empty() &&
 | 
						|
               "How can a constant string be directly accessed in a function?");
 | 
						|
        // Otherwise, if we are emitting a bytecode file and this IS a string,
 | 
						|
        // remember it.
 | 
						|
        if (!C->isNullValue())
 | 
						|
          ConstantStrings.push_back(cast<ConstantArray>(C));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return insertValue(V);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int SlotCalculator::insertValue(const Value *D, bool dontIgnore) {
 | 
						|
  assert(D && "Can't insert a null value!");
 | 
						|
  assert(getSlot(D) == -1 && "Value is already in the table!");
 | 
						|
 | 
						|
  // If this node does not contribute to a plane, or if the node has a 
 | 
						|
  // name and we don't want names, then ignore the silly node... Note that types
 | 
						|
  // do need slot numbers so that we can keep track of where other values land.
 | 
						|
  //
 | 
						|
  if (!dontIgnore)                               // Don't ignore nonignorables!
 | 
						|
    if (D->getType() == Type::VoidTy ||          // Ignore void type nodes
 | 
						|
	(!BuildBytecodeInfo &&                   // Ignore named and constants
 | 
						|
	 (D->hasName() || isa<Constant>(D)) && !isa<Type>(D))) {
 | 
						|
      SC_DEBUG("ignored value " << *D << "\n");
 | 
						|
      return -1;                  // We do need types unconditionally though
 | 
						|
    }
 | 
						|
 | 
						|
  // If it's a type, make sure that all subtypes of the type are included...
 | 
						|
  if (const Type *TheTy = dyn_cast<Type>(D)) {
 | 
						|
 | 
						|
    // Insert the current type before any subtypes.  This is important because
 | 
						|
    // recursive types elements are inserted in a bottom up order.  Changing
 | 
						|
    // this here can break things.  For example:
 | 
						|
    //
 | 
						|
    //    global { \2 * } { { \2 }* null }
 | 
						|
    //
 | 
						|
    int ResultSlot = doInsertValue(TheTy);
 | 
						|
    SC_DEBUG("  Inserted type: " << TheTy->getDescription() << " slot=" <<
 | 
						|
             ResultSlot << "\n");
 | 
						|
 | 
						|
    // Loop over any contained types in the definition... in post
 | 
						|
    // order.
 | 
						|
    //
 | 
						|
    for (po_iterator<const Type*> I = po_begin(TheTy), E = po_end(TheTy);
 | 
						|
         I != E; ++I) {
 | 
						|
      if (*I != TheTy) {
 | 
						|
        const Type *SubTy = *I;
 | 
						|
	// If we haven't seen this sub type before, add it to our type table!
 | 
						|
        if (getSlot(SubTy) == -1) {
 | 
						|
          SC_DEBUG("  Inserting subtype: " << SubTy->getDescription() << "\n");
 | 
						|
          int Slot = doInsertValue(SubTy);
 | 
						|
          SC_DEBUG("  Inserted subtype: " << SubTy->getDescription() << 
 | 
						|
                   " slot=" << Slot << "\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return ResultSlot;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, everything is happy, actually insert the silly value now...
 | 
						|
  return doInsertValue(D);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// doInsertValue - This is a small helper function to be called only
 | 
						|
// be insertValue.
 | 
						|
//
 | 
						|
int SlotCalculator::doInsertValue(const Value *D) {
 | 
						|
  const Type *Typ = D->getType();
 | 
						|
  unsigned Ty;
 | 
						|
 | 
						|
  // Used for debugging DefSlot=-1 assertion...
 | 
						|
  //if (Typ == Type::TypeTy)
 | 
						|
  //  cerr << "Inserting type '" << cast<Type>(D)->getDescription() << "'!\n";
 | 
						|
 | 
						|
  if (Typ->isDerivedType()) {
 | 
						|
    int ValSlot = getSlot(Typ);
 | 
						|
    if (ValSlot == -1) {                // Have we already entered this type?
 | 
						|
      // Nope, this is the first we have seen the type, process it.
 | 
						|
      ValSlot = insertValue(Typ, true);
 | 
						|
      assert(ValSlot != -1 && "ProcessType returned -1 for a type?");
 | 
						|
    }
 | 
						|
    Ty = (unsigned)ValSlot;
 | 
						|
  } else {
 | 
						|
    Ty = Typ->getPrimitiveID();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Table.size() <= Ty)    // Make sure we have the type plane allocated...
 | 
						|
    Table.resize(Ty+1, TypePlane());
 | 
						|
 | 
						|
  // If this is the first value to get inserted into the type plane, make sure
 | 
						|
  // to insert the implicit null value...
 | 
						|
  if (Table[Ty].empty() && Ty >= Type::FirstDerivedTyID && BuildBytecodeInfo) {
 | 
						|
    Value *ZeroInitializer = Constant::getNullValue(Typ);
 | 
						|
 | 
						|
    // If we are pushing zeroinit, it will be handled below.
 | 
						|
    if (D != ZeroInitializer) {
 | 
						|
      Table[Ty].push_back(ZeroInitializer);
 | 
						|
      NodeMap[ZeroInitializer] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert node into table and NodeMap...
 | 
						|
  unsigned DestSlot = NodeMap[D] = Table[Ty].size();
 | 
						|
  Table[Ty].push_back(D);
 | 
						|
 | 
						|
  SC_DEBUG("  Inserting value [" << Ty << "] = " << D << " slot=" << 
 | 
						|
	   DestSlot << " [");
 | 
						|
  // G = Global, C = Constant, T = Type, F = Function, o = other
 | 
						|
  SC_DEBUG((isa<GlobalVariable>(D) ? "G" : (isa<Constant>(D) ? "C" : 
 | 
						|
           (isa<Type>(D) ? "T" : (isa<Function>(D) ? "F" : "o")))));
 | 
						|
  SC_DEBUG("]\n");
 | 
						|
  return (int)DestSlot;
 | 
						|
}
 |