mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	For now these are just used to handle scalar ANDs, ORs and XORs in which all operands are memory. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190041 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3108 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3108 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the SystemZTargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "systemz-lower"
 | |
| 
 | |
| #include "SystemZISelLowering.h"
 | |
| #include "SystemZCallingConv.h"
 | |
| #include "SystemZConstantPoolValue.h"
 | |
| #include "SystemZMachineFunctionInfo.h"
 | |
| #include "SystemZTargetMachine.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Classify VT as either 32 or 64 bit.
 | |
| static bool is32Bit(EVT VT) {
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::i32:
 | |
|     return true;
 | |
|   case MVT::i64:
 | |
|     return false;
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported type");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return a version of MachineOperand that can be safely used before the
 | |
| // final use.
 | |
| static MachineOperand earlyUseOperand(MachineOperand Op) {
 | |
|   if (Op.isReg())
 | |
|     Op.setIsKill(false);
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
 | |
|   : TargetLowering(tm, new TargetLoweringObjectFileELF()),
 | |
|     Subtarget(*tm.getSubtargetImpl()), TM(tm) {
 | |
|   MVT PtrVT = getPointerTy();
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32,  &SystemZ::GR32BitRegClass);
 | |
|   addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
 | |
|   addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
 | |
|   addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
 | |
|   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
 | |
| 
 | |
|   // Compute derived properties from the register classes
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // Set up special registers.
 | |
|   setExceptionPointerRegister(SystemZ::R6D);
 | |
|   setExceptionSelectorRegister(SystemZ::R7D);
 | |
|   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
 | |
| 
 | |
|   // TODO: It may be better to default to latency-oriented scheduling, however
 | |
|   // LLVM's current latency-oriented scheduler can't handle physreg definitions
 | |
|   // such as SystemZ has with CC, so set this to the register-pressure
 | |
|   // scheduler, because it can.
 | |
|   setSchedulingPreference(Sched::RegPressure);
 | |
| 
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
 | |
| 
 | |
|   // Instructions are strings of 2-byte aligned 2-byte values.
 | |
|   setMinFunctionAlignment(2);
 | |
| 
 | |
|   // Handle operations that are handled in a similar way for all types.
 | |
|   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
 | |
|        I <= MVT::LAST_FP_VALUETYPE;
 | |
|        ++I) {
 | |
|     MVT VT = MVT::SimpleValueType(I);
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
 | |
|       setOperationAction(ISD::SETCC, VT, Expand);
 | |
| 
 | |
|       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
 | |
|       setOperationAction(ISD::SELECT, VT, Expand);
 | |
| 
 | |
|       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
 | |
|       setOperationAction(ISD::SELECT_CC, VT, Custom);
 | |
|       setOperationAction(ISD::BR_CC,     VT, Custom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Expand jump table branches as address arithmetic followed by an
 | |
|   // indirect jump.
 | |
|   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | |
| 
 | |
|   // Expand BRCOND into a BR_CC (see above).
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
| 
 | |
|   // Handle integer types.
 | |
|   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
 | |
|        I <= MVT::LAST_INTEGER_VALUETYPE;
 | |
|        ++I) {
 | |
|     MVT VT = MVT::SimpleValueType(I);
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // Expand individual DIV and REMs into DIVREMs.
 | |
|       setOperationAction(ISD::SDIV, VT, Expand);
 | |
|       setOperationAction(ISD::UDIV, VT, Expand);
 | |
|       setOperationAction(ISD::SREM, VT, Expand);
 | |
|       setOperationAction(ISD::UREM, VT, Expand);
 | |
|       setOperationAction(ISD::SDIVREM, VT, Custom);
 | |
|       setOperationAction(ISD::UDIVREM, VT, Custom);
 | |
| 
 | |
|       // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
 | |
|       // FIXME: probably much too conservative.
 | |
|       setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
 | |
|       setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
 | |
| 
 | |
|       // No special instructions for these.
 | |
|       setOperationAction(ISD::CTPOP,           VT, Expand);
 | |
|       setOperationAction(ISD::CTTZ,            VT, Expand);
 | |
|       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
 | |
|       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
 | |
|       setOperationAction(ISD::ROTR,            VT, Expand);
 | |
| 
 | |
|       // Use *MUL_LOHI where possible instead of MULH*.
 | |
|       setOperationAction(ISD::MULHS, VT, Expand);
 | |
|       setOperationAction(ISD::MULHU, VT, Expand);
 | |
|       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
 | |
|       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
 | |
| 
 | |
|       // We have instructions for signed but not unsigned FP conversion.
 | |
|       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Type legalization will convert 8- and 16-bit atomic operations into
 | |
|   // forms that operate on i32s (but still keeping the original memory VT).
 | |
|   // Lower them into full i32 operations.
 | |
|   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
 | |
| 
 | |
|   // We have instructions for signed but not unsigned FP conversion.
 | |
|   // Handle unsigned 32-bit types as signed 64-bit types.
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | |
| 
 | |
|   // We have native support for a 64-bit CTLZ, via FLOGR.
 | |
|   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
 | |
|   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
 | |
| 
 | |
|   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
 | |
|   setOperationAction(ISD::OR, MVT::i64, Custom);
 | |
| 
 | |
|   // FIXME: Can we support these natively?
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
 | |
| 
 | |
|   // We have native instructions for i8, i16 and i32 extensions, but not i1.
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
|   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
 | |
|   setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   // Handle the various types of symbolic address.
 | |
|   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
 | |
|   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
 | |
| 
 | |
|   // We need to handle dynamic allocations specially because of the
 | |
|   // 160-byte area at the bottom of the stack.
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
 | |
| 
 | |
|   // Use custom expanders so that we can force the function to use
 | |
|   // a frame pointer.
 | |
|   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
 | |
| 
 | |
|   // Handle prefetches with PFD or PFDRL.
 | |
|   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
 | |
| 
 | |
|   // Handle floating-point types.
 | |
|   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
 | |
|        I <= MVT::LAST_FP_VALUETYPE;
 | |
|        ++I) {
 | |
|     MVT VT = MVT::SimpleValueType(I);
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // We can use FI for FRINT.
 | |
|       setOperationAction(ISD::FRINT, VT, Legal);
 | |
| 
 | |
|       // We can use the extended form of FI for other rounding operations.
 | |
|       if (Subtarget.hasFPExtension()) {
 | |
|         setOperationAction(ISD::FNEARBYINT, VT, Legal);
 | |
|         setOperationAction(ISD::FFLOOR, VT, Legal);
 | |
|         setOperationAction(ISD::FCEIL, VT, Legal);
 | |
|         setOperationAction(ISD::FTRUNC, VT, Legal);
 | |
|         setOperationAction(ISD::FROUND, VT, Legal);
 | |
|       }
 | |
| 
 | |
|       // No special instructions for these.
 | |
|       setOperationAction(ISD::FSIN, VT, Expand);
 | |
|       setOperationAction(ISD::FCOS, VT, Expand);
 | |
|       setOperationAction(ISD::FREM, VT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have fused multiply-addition for f32 and f64 but not f128.
 | |
|   setOperationAction(ISD::FMA, MVT::f32,  Legal);
 | |
|   setOperationAction(ISD::FMA, MVT::f64,  Legal);
 | |
|   setOperationAction(ISD::FMA, MVT::f128, Expand);
 | |
| 
 | |
|   // Needed so that we don't try to implement f128 constant loads using
 | |
|   // a load-and-extend of a f80 constant (in cases where the constant
 | |
|   // would fit in an f80).
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
 | |
| 
 | |
|   // Floating-point truncation and stores need to be done separately.
 | |
|   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
 | |
| 
 | |
|   // We have 64-bit FPR<->GPR moves, but need special handling for
 | |
|   // 32-bit forms.
 | |
|   setOperationAction(ISD::BITCAST, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BITCAST, MVT::f32, Custom);
 | |
| 
 | |
|   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
 | |
|   // structure, but VAEND is a no-op.
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
 | |
| 
 | |
|   // We want to use MVC in preference to even a single load/store pair.
 | |
|   MaxStoresPerMemcpy = 0;
 | |
|   MaxStoresPerMemcpyOptSize = 0;
 | |
| 
 | |
|   // The main memset sequence is a byte store followed by an MVC.
 | |
|   // Two STC or MV..I stores win over that, but the kind of fused stores
 | |
|   // generated by target-independent code don't when the byte value is
 | |
|   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
 | |
|   // than "STC;MVC".  Handle the choice in target-specific code instead.
 | |
|   MaxStoresPerMemset = 0;
 | |
|   MaxStoresPerMemsetOptSize = 0;
 | |
| }
 | |
| 
 | |
| bool
 | |
| SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | |
|   VT = VT.getScalarType();
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     return true;
 | |
|   case MVT::f128:
 | |
|     return false;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
 | |
|   return Imm.isZero() || Imm.isNegZero();
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
 | |
|                                                           bool *Fast) const {
 | |
|   // Unaligned accesses should never be slower than the expanded version.
 | |
|   // We check specifically for aligned accesses in the few cases where
 | |
|   // they are required.
 | |
|   if (Fast)
 | |
|     *Fast = true;
 | |
|   return true;
 | |
| }
 | |
|   
 | |
| bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                                   Type *Ty) const {
 | |
|   // Punt on globals for now, although they can be used in limited
 | |
|   // RELATIVE LONG cases.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // Require a 20-bit signed offset.
 | |
|   if (!isInt<20>(AM.BaseOffs))
 | |
|     return false;
 | |
| 
 | |
|   // Indexing is OK but no scale factor can be applied.
 | |
|   return AM.Scale == 0 || AM.Scale == 1;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
 | |
|   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned FromBits = FromType->getPrimitiveSizeInBits();
 | |
|   unsigned ToBits = ToType->getPrimitiveSizeInBits();
 | |
|   return FromBits > ToBits;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
 | |
|   if (!FromVT.isInteger() || !ToVT.isInteger())
 | |
|     return false;
 | |
|   unsigned FromBits = FromVT.getSizeInBits();
 | |
|   unsigned ToBits = ToVT.getSizeInBits();
 | |
|   return FromBits > ToBits;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline asm support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetLowering::ConstraintType
 | |
| SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'a': // Address register
 | |
|     case 'd': // Data register (equivalent to 'r')
 | |
|     case 'f': // Floating-point register
 | |
|     case 'r': // General-purpose register
 | |
|       return C_RegisterClass;
 | |
| 
 | |
|     case 'Q': // Memory with base and unsigned 12-bit displacement
 | |
|     case 'R': // Likewise, plus an index
 | |
|     case 'S': // Memory with base and signed 20-bit displacement
 | |
|     case 'T': // Likewise, plus an index
 | |
|     case 'm': // Equivalent to 'T'.
 | |
|       return C_Memory;
 | |
| 
 | |
|     case 'I': // Unsigned 8-bit constant
 | |
|     case 'J': // Unsigned 12-bit constant
 | |
|     case 'K': // Signed 16-bit constant
 | |
|     case 'L': // Signed 20-bit displacement (on all targets we support)
 | |
|     case 'M': // 0x7fffffff
 | |
|       return C_Other;
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| TargetLowering::ConstraintWeight SystemZTargetLowering::
 | |
| getSingleConstraintMatchWeight(AsmOperandInfo &info,
 | |
|                                const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|   // If we don't have a value, we can't do a match,
 | |
|   // but allow it at the lowest weight.
 | |
|   if (CallOperandVal == NULL)
 | |
|     return CW_Default;
 | |
|   Type *type = CallOperandVal->getType();
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
| 
 | |
|   case 'a': // Address register
 | |
|   case 'd': // Data register (equivalent to 'r')
 | |
|   case 'r': // General-purpose register
 | |
|     if (CallOperandVal->getType()->isIntegerTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
| 
 | |
|   case 'f': // Floating-point register
 | |
|     if (type->isFloatingPointTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
| 
 | |
|   case 'I': // Unsigned 8-bit constant
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isUInt<8>(C->getZExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'J': // Unsigned 12-bit constant
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isUInt<12>(C->getZExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'K': // Signed 16-bit constant
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isInt<16>(C->getSExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'L': // Signed 20-bit displacement (on all targets we support)
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isInt<20>(C->getSExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'M': // 0x7fffffff
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (C->getZExtValue() == 0x7fffffff)
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| // Parse a "{tNNN}" register constraint for which the register type "t"
 | |
| // has already been verified.  MC is the class associated with "t" and
 | |
| // Map maps 0-based register numbers to LLVM register numbers.
 | |
| static std::pair<unsigned, const TargetRegisterClass *>
 | |
| parseRegisterNumber(const std::string &Constraint,
 | |
|                     const TargetRegisterClass *RC, const unsigned *Map) {
 | |
|   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
 | |
|   if (isdigit(Constraint[2])) {
 | |
|     std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
 | |
|     unsigned Index = atoi(Suffix.c_str());
 | |
|     if (Index < 16 && Map[Index])
 | |
|       return std::make_pair(Map[Index], RC);
 | |
|   }
 | |
|   return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
 | |
| getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'd': // Data register (equivalent to 'r')
 | |
|     case 'r': // General-purpose register
 | |
|       if (VT == MVT::i64)
 | |
|         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
 | |
|       else if (VT == MVT::i128)
 | |
|         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
 | |
|       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
 | |
| 
 | |
|     case 'a': // Address register
 | |
|       if (VT == MVT::i64)
 | |
|         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
 | |
|       else if (VT == MVT::i128)
 | |
|         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
 | |
|       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
 | |
| 
 | |
|     case 'f': // Floating-point register
 | |
|       if (VT == MVT::f64)
 | |
|         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
 | |
|       else if (VT == MVT::f128)
 | |
|         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
 | |
|       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
 | |
|     }
 | |
|   }
 | |
|   if (Constraint[0] == '{') {
 | |
|     // We need to override the default register parsing for GPRs and FPRs
 | |
|     // because the interpretation depends on VT.  The internal names of
 | |
|     // the registers are also different from the external names
 | |
|     // (F0D and F0S instead of F0, etc.).
 | |
|     if (Constraint[1] == 'r') {
 | |
|       if (VT == MVT::i32)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
 | |
|                                    SystemZMC::GR32Regs);
 | |
|       if (VT == MVT::i128)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
 | |
|                                    SystemZMC::GR128Regs);
 | |
|       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
 | |
|                                  SystemZMC::GR64Regs);
 | |
|     }
 | |
|     if (Constraint[1] == 'f') {
 | |
|       if (VT == MVT::f32)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
 | |
|                                    SystemZMC::FP32Regs);
 | |
|       if (VT == MVT::f128)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
 | |
|                                    SystemZMC::FP128Regs);
 | |
|       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
 | |
|                                  SystemZMC::FP64Regs);
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| }
 | |
| 
 | |
| void SystemZTargetLowering::
 | |
| LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
 | |
|                              std::vector<SDValue> &Ops,
 | |
|                              SelectionDAG &DAG) const {
 | |
|   // Only support length 1 constraints for now.
 | |
|   if (Constraint.length() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'I': // Unsigned 8-bit constant
 | |
|       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isUInt<8>(C->getZExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'J': // Unsigned 12-bit constant
 | |
|       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isUInt<12>(C->getZExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'K': // Signed 16-bit constant
 | |
|       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isInt<16>(C->getSExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'L': // Signed 20-bit displacement (on all targets we support)
 | |
|       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isInt<20>(C->getSExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'M': // 0x7fffffff
 | |
|       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (C->getZExtValue() == 0x7fffffff)
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Calling conventions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SystemZGenCallingConv.inc"
 | |
| 
 | |
| bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
 | |
|                                                      Type *ToType) const {
 | |
|   return isTruncateFree(FromType, ToType);
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
 | |
|   if (!CI->isTailCall())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Value is a value that has been passed to us in the location described by VA
 | |
| // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
 | |
| // any loads onto Chain.
 | |
| static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
 | |
|                                    CCValAssign &VA, SDValue Chain,
 | |
|                                    SDValue Value) {
 | |
|   // If the argument has been promoted from a smaller type, insert an
 | |
|   // assertion to capture this.
 | |
|   if (VA.getLocInfo() == CCValAssign::SExt)
 | |
|     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
|   else if (VA.getLocInfo() == CCValAssign::ZExt)
 | |
|     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
| 
 | |
|   if (VA.isExtInLoc())
 | |
|     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
 | |
|   else if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|     Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
 | |
|                         MachinePointerInfo(), false, false, false, 0);
 | |
|   else
 | |
|     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| // Value is a value of type VA.getValVT() that we need to copy into
 | |
| // the location described by VA.  Return a copy of Value converted to
 | |
| // VA.getValVT().  The caller is responsible for handling indirect values.
 | |
| static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
 | |
|                                    CCValAssign &VA, SDValue Value) {
 | |
|   switch (VA.getLocInfo()) {
 | |
|   case CCValAssign::SExt:
 | |
|     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
 | |
|   case CCValAssign::ZExt:
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
 | |
|   case CCValAssign::AExt:
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
 | |
|   case CCValAssign::Full:
 | |
|     return Value;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled getLocInfo()");
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::
 | |
| LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
 | |
|                      const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                      SDLoc DL, SelectionDAG &DAG,
 | |
|                      SmallVectorImpl<SDValue> &InVals) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   SystemZMachineFunctionInfo *FuncInfo =
 | |
|     MF.getInfo<SystemZMachineFunctionInfo>();
 | |
|   const SystemZFrameLowering *TFL =
 | |
|     static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
 | |
| 
 | |
|   unsigned NumFixedGPRs = 0;
 | |
|   unsigned NumFixedFPRs = 0;
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     SDValue ArgValue;
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     EVT LocVT = VA.getLocVT();
 | |
|     if (VA.isRegLoc()) {
 | |
|       // Arguments passed in registers
 | |
|       const TargetRegisterClass *RC;
 | |
|       switch (LocVT.getSimpleVT().SimpleTy) {
 | |
|       default:
 | |
|         // Integers smaller than i64 should be promoted to i64.
 | |
|         llvm_unreachable("Unexpected argument type");
 | |
|       case MVT::i32:
 | |
|         NumFixedGPRs += 1;
 | |
|         RC = &SystemZ::GR32BitRegClass;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|         NumFixedGPRs += 1;
 | |
|         RC = &SystemZ::GR64BitRegClass;
 | |
|         break;
 | |
|       case MVT::f32:
 | |
|         NumFixedFPRs += 1;
 | |
|         RC = &SystemZ::FP32BitRegClass;
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|         NumFixedFPRs += 1;
 | |
|         RC = &SystemZ::FP64BitRegClass;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       unsigned VReg = MRI.createVirtualRegister(RC);
 | |
|       MRI.addLiveIn(VA.getLocReg(), VReg);
 | |
|       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
 | |
|     } else {
 | |
|       assert(VA.isMemLoc() && "Argument not register or memory");
 | |
| 
 | |
|       // Create the frame index object for this incoming parameter.
 | |
|       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
 | |
|                                       VA.getLocMemOffset(), true);
 | |
| 
 | |
|       // Create the SelectionDAG nodes corresponding to a load
 | |
|       // from this parameter.  Unpromoted ints and floats are
 | |
|       // passed as right-justified 8-byte values.
 | |
|       EVT PtrVT = getPointerTy();
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
 | |
|         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
 | |
|       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
 | |
|                              MachinePointerInfo::getFixedStack(FI),
 | |
|                              false, false, false, 0);
 | |
|     }
 | |
| 
 | |
|     // Convert the value of the argument register into the value that's
 | |
|     // being passed.
 | |
|     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
 | |
|   }
 | |
| 
 | |
|   if (IsVarArg) {
 | |
|     // Save the number of non-varargs registers for later use by va_start, etc.
 | |
|     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
 | |
|     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
 | |
| 
 | |
|     // Likewise the address (in the form of a frame index) of where the
 | |
|     // first stack vararg would be.  The 1-byte size here is arbitrary.
 | |
|     int64_t StackSize = CCInfo.getNextStackOffset();
 | |
|     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
 | |
| 
 | |
|     // ...and a similar frame index for the caller-allocated save area
 | |
|     // that will be used to store the incoming registers.
 | |
|     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
 | |
|     unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
 | |
|     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
 | |
| 
 | |
|     // Store the FPR varargs in the reserved frame slots.  (We store the
 | |
|     // GPRs as part of the prologue.)
 | |
|     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
 | |
|       SDValue MemOps[SystemZ::NumArgFPRs];
 | |
|       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
 | |
|         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
 | |
|         int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
 | |
|         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
 | |
|                                      &SystemZ::FP64BitRegClass);
 | |
|         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
 | |
|         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
 | |
|                                  MachinePointerInfo::getFixedStack(FI),
 | |
|                                  false, false, 0);
 | |
| 
 | |
|       }
 | |
|       // Join the stores, which are independent of one another.
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
 | |
|                           &MemOps[NumFixedFPRs],
 | |
|                           SystemZ::NumArgFPRs - NumFixedFPRs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| static bool canUseSiblingCall(CCState ArgCCInfo,
 | |
|                               SmallVectorImpl<CCValAssign> &ArgLocs) {
 | |
|   // Punt if there are any indirect or stack arguments, or if the call
 | |
|   // needs the call-saved argument register R6.
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|       return false;
 | |
|     if (!VA.isRegLoc())
 | |
|       return false;
 | |
|     unsigned Reg = VA.getLocReg();
 | |
|     if (Reg == SystemZ::R6W || Reg == SystemZ::R6D)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
 | |
|                                  SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG = CLI.DAG;
 | |
|   SDLoc &DL = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
 | |
|   SDValue Chain = CLI.Chain;
 | |
|   SDValue Callee = CLI.Callee;
 | |
|   bool &IsTailCall = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv = CLI.CallConv;
 | |
|   bool IsVarArg = CLI.IsVarArg;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   EVT PtrVT = getPointerTy();
 | |
| 
 | |
|   // Analyze the operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
 | |
|   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
 | |
| 
 | |
|   // We don't support GuaranteedTailCallOpt, only automatically-detected
 | |
|   // sibling calls.
 | |
|   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
 | |
|     IsTailCall = false;
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
 | |
| 
 | |
|   // Mark the start of the call.
 | |
|   if (!IsTailCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
 | |
|                                  DL);
 | |
| 
 | |
|   // Copy argument values to their designated locations.
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   SDValue StackPtr;
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     SDValue ArgValue = OutVals[I];
 | |
| 
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect) {
 | |
|       // Store the argument in a stack slot and pass its address.
 | |
|       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
 | |
|       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | |
|       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
 | |
|                                          MachinePointerInfo::getFixedStack(FI),
 | |
|                                          false, false, 0));
 | |
|       ArgValue = SpillSlot;
 | |
|     } else
 | |
|       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
 | |
| 
 | |
|     if (VA.isRegLoc())
 | |
|       // Queue up the argument copies and emit them at the end.
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
 | |
|     else {
 | |
|       assert(VA.isMemLoc() && "Argument not register or memory");
 | |
| 
 | |
|       // Work out the address of the stack slot.  Unpromoted ints and
 | |
|       // floats are passed as right-justified 8-byte values.
 | |
|       if (!StackPtr.getNode())
 | |
|         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
 | |
|       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
 | |
|       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
 | |
|         Offset += 4;
 | |
|       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
 | |
|                                     DAG.getIntPtrConstant(Offset));
 | |
| 
 | |
|       // Emit the store.
 | |
|       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
 | |
|                                          MachinePointerInfo(),
 | |
|                                          false, false, 0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Join the stores, which are independent of one another.
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Accept direct calls by converting symbolic call addresses to the
 | |
|   // associated Target* opcodes.  Force %r1 to be used for indirect
 | |
|   // tail calls.
 | |
|   SDValue Glue;
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
 | |
|     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
 | |
|   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
 | |
|     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
 | |
|   } else if (IsTailCall) {
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
 | |
|     Glue = Chain.getValue(1);
 | |
|     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes, chained and glued together.
 | |
|   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
 | |
|                              RegsToPass[I].second, Glue);
 | |
|     Glue = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // The first call operand is the chain and the second is the target address.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are
 | |
|   // known live into the call.
 | |
|   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
 | |
|                                   RegsToPass[I].second.getValueType()));
 | |
| 
 | |
|   // Glue the call to the argument copies, if any.
 | |
|   if (Glue.getNode())
 | |
|     Ops.push_back(Glue);
 | |
| 
 | |
|   // Emit the call.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   if (IsTailCall)
 | |
|     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
 | |
|   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // Mark the end of the call, which is glued to the call itself.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain,
 | |
|                              DAG.getConstant(NumBytes, PtrVT, true),
 | |
|                              DAG.getConstant(0, PtrVT, true),
 | |
|                              Glue, DL);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RetLocs;
 | |
|   CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
 | |
|   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = RetLocs[I];
 | |
| 
 | |
|     // Copy the value out, gluing the copy to the end of the call sequence.
 | |
|     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
 | |
|                                           VA.getLocVT(), Glue);
 | |
|     Chain = RetValue.getValue(1);
 | |
|     Glue = RetValue.getValue(2);
 | |
| 
 | |
|     // Convert the value of the return register into the value that's
 | |
|     // being returned.
 | |
|     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                    CallingConv::ID CallConv, bool IsVarArg,
 | |
|                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                    const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                    SDLoc DL, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Assign locations to each returned value.
 | |
|   SmallVector<CCValAssign, 16> RetLocs;
 | |
|   CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
 | |
|   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
 | |
| 
 | |
|   // Quick exit for void returns
 | |
|   if (RetLocs.empty())
 | |
|     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   SDValue Glue;
 | |
|   SmallVector<SDValue, 4> RetOps;
 | |
|   RetOps.push_back(Chain);
 | |
|   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = RetLocs[I];
 | |
|     SDValue RetValue = OutVals[I];
 | |
| 
 | |
|     // Make the return register live on exit.
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     // Promote the value as required.
 | |
|     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
 | |
| 
 | |
|     // Chain and glue the copies together.
 | |
|     unsigned Reg = VA.getLocReg();
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
 | |
|     Glue = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   // Update chain and glue.
 | |
|   RetOps[0] = Chain;
 | |
|   if (Glue.getNode())
 | |
|     RetOps.push_back(Glue);
 | |
| 
 | |
|   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
 | |
|                      RetOps.data(), RetOps.size());
 | |
| }
 | |
| 
 | |
| // CC is a comparison that will be implemented using an integer or
 | |
| // floating-point comparison.  Return the condition code mask for
 | |
| // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
 | |
| // unsigned comparisons and clear for signed ones.  In the floating-point
 | |
| // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
 | |
| static unsigned CCMaskForCondCode(ISD::CondCode CC) {
 | |
| #define CONV(X) \
 | |
|   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
 | |
|   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
 | |
|   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
 | |
| 
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid integer condition!");
 | |
| 
 | |
|   CONV(EQ);
 | |
|   CONV(NE);
 | |
|   CONV(GT);
 | |
|   CONV(GE);
 | |
|   CONV(LT);
 | |
|   CONV(LE);
 | |
| 
 | |
|   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
 | |
|   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
 | |
|   }
 | |
| #undef CONV
 | |
| }
 | |
| 
 | |
| // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
 | |
| // can be converted to a comparison against zero, adjust the operands
 | |
| // as necessary.
 | |
| static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
 | |
|                           SDValue &CmpOp0, SDValue &CmpOp1,
 | |
|                           unsigned &CCMask) {
 | |
|   if (IsUnsigned)
 | |
|     return;
 | |
| 
 | |
|   ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
 | |
|   if (!ConstOp1)
 | |
|     return;
 | |
| 
 | |
|   int64_t Value = ConstOp1->getSExtValue();
 | |
|   if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
 | |
|       (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
 | |
|       (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
 | |
|       (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
 | |
|     CCMask ^= SystemZ::CCMASK_CMP_EQ;
 | |
|     CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
 | |
| // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
 | |
| static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
 | |
|                              SDValue &CmpOp0, SDValue &CmpOp1,
 | |
|                              unsigned &CCMask) {
 | |
|   // For us to make any changes, it must a comparison between a single-use
 | |
|   // load and a constant.
 | |
|   if (!CmpOp0.hasOneUse() ||
 | |
|       CmpOp0.getOpcode() != ISD::LOAD ||
 | |
|       CmpOp1.getOpcode() != ISD::Constant)
 | |
|     return;
 | |
| 
 | |
|   // We must have an 8- or 16-bit load.
 | |
|   LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
 | |
|   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
 | |
|   if (NumBits != 8 && NumBits != 16)
 | |
|     return;
 | |
| 
 | |
|   // The load must be an extending one and the constant must be within the
 | |
|   // range of the unextended value.
 | |
|   ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
 | |
|   uint64_t Value = Constant->getZExtValue();
 | |
|   uint64_t Mask = (1 << NumBits) - 1;
 | |
|   if (Load->getExtensionType() == ISD::SEXTLOAD) {
 | |
|     int64_t SignedValue = Constant->getSExtValue();
 | |
|     if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
 | |
|       return;
 | |
|     // Unsigned comparison between two sign-extended values is equivalent
 | |
|     // to unsigned comparison between two zero-extended values.
 | |
|     if (IsUnsigned)
 | |
|       Value &= Mask;
 | |
|     else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
 | |
|              CCMask == SystemZ::CCMASK_CMP_NE)
 | |
|       // Any choice of IsUnsigned is OK for equality comparisons.
 | |
|       // We could use either CHHSI or CLHHSI for 16-bit comparisons,
 | |
|       // but since we use CLHHSI for zero extensions, it seems better
 | |
|       // to be consistent and do the same here.
 | |
|       Value &= Mask, IsUnsigned = true;
 | |
|     else if (NumBits == 8) {
 | |
|       // Try to treat the comparison as unsigned, so that we can use CLI.
 | |
|       // Adjust CCMask and Value as necessary.
 | |
|       if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|         // Test whether the high bit of the byte is set.
 | |
|         Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
 | |
|       else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|         // Test whether the high bit of the byte is clear.
 | |
|         Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
 | |
|       else
 | |
|         // No instruction exists for this combination.
 | |
|         return;
 | |
|     }
 | |
|   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
 | |
|     if (Value > Mask)
 | |
|       return;
 | |
|     // Signed comparison between two zero-extended values is equivalent
 | |
|     // to unsigned comparison.
 | |
|     IsUnsigned = true;
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   // Make sure that the first operand is an i32 of the right extension type.
 | |
|   ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
 | |
|   if (CmpOp0.getValueType() != MVT::i32 ||
 | |
|       Load->getExtensionType() != ExtType)
 | |
|     CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
 | |
|                             Load->getChain(), Load->getBasePtr(),
 | |
|                             Load->getPointerInfo(), Load->getMemoryVT(),
 | |
|                             Load->isVolatile(), Load->isNonTemporal(),
 | |
|                             Load->getAlignment());
 | |
| 
 | |
|   // Make sure that the second operand is an i32 with the right value.
 | |
|   if (CmpOp1.getValueType() != MVT::i32 ||
 | |
|       Value != Constant->getZExtValue())
 | |
|     CmpOp1 = DAG.getConstant(Value, MVT::i32);
 | |
| }
 | |
| 
 | |
| // Return true if a comparison described by CCMask, CmpOp0 and CmpOp1
 | |
| // is an equality comparison that is better implemented using unsigned
 | |
| // rather than signed comparison instructions.
 | |
| static bool preferUnsignedComparison(SDValue CmpOp0, SDValue CmpOp1,
 | |
|                                      unsigned CCMask) {
 | |
|   // The test must be for equality or inequality.
 | |
|   if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE)
 | |
|     return false;
 | |
| 
 | |
|   if (CmpOp1.getOpcode() == ISD::Constant) {
 | |
|     uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue();
 | |
| 
 | |
|     // If we're comparing with memory, prefer unsigned comparisons for
 | |
|     // values that are in the unsigned 16-bit range but not the signed
 | |
|     // 16-bit range.  We want to use CLFHSI and CLGHSI.
 | |
|     if (CmpOp0.hasOneUse() &&
 | |
|         ISD::isNormalLoad(CmpOp0.getNode()) &&
 | |
|         (Value >= 32768 && Value < 65536))
 | |
|       return true;
 | |
| 
 | |
|     // Use unsigned comparisons for values that are in the CLGFI range
 | |
|     // but not in the CGFI range.
 | |
|     if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Prefer CL for zero-extended loads.
 | |
|   if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND ||
 | |
|       ISD::isZEXTLoad(CmpOp1.getNode()))
 | |
|     return true;
 | |
| 
 | |
|   // ...and for "in-register" zero extensions.
 | |
|   if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) {
 | |
|     SDValue Mask = CmpOp1.getOperand(1);
 | |
|     if (Mask.getOpcode() == ISD::Constant &&
 | |
|         cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if Op is either an unextended load, or a load with the
 | |
| // extension type given by IsUnsigned.
 | |
| static bool isNaturalMemoryOperand(SDValue Op, bool IsUnsigned) {
 | |
|   LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
 | |
|   if (Load)
 | |
|     switch (Load->getExtensionType()) {
 | |
|     case ISD::NON_EXTLOAD:
 | |
|     case ISD::EXTLOAD:
 | |
|       return true;
 | |
|     case ISD::SEXTLOAD:
 | |
|       return !IsUnsigned;
 | |
|     case ISD::ZEXTLOAD:
 | |
|       return IsUnsigned;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if it is better to swap comparison operands Op0 and Op1.
 | |
| // IsUnsigned says whether an integer comparison is signed or unsigned.
 | |
| static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1,
 | |
|                                   bool IsUnsigned) {
 | |
|   // Leave f128 comparisons alone, since they have no memory forms.
 | |
|   if (Op0.getValueType() == MVT::f128)
 | |
|     return false;
 | |
| 
 | |
|   // Always keep a floating-point constant second, since comparisons with
 | |
|   // zero can use LOAD TEST and comparisons with other constants make a
 | |
|   // natural memory operand.
 | |
|   if (isa<ConstantFPSDNode>(Op1))
 | |
|     return false;
 | |
| 
 | |
|   // Never swap comparisons with zero since there are many ways to optimize
 | |
|   // those later.
 | |
|   ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
 | |
|   if (COp1 && COp1->getZExtValue() == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
 | |
|   // In that case we generally prefer the memory to be second.
 | |
|   if ((isNaturalMemoryOperand(Op0, IsUnsigned) && Op0.hasOneUse()) &&
 | |
|       !(isNaturalMemoryOperand(Op1, IsUnsigned) && Op1.hasOneUse())) {
 | |
|     // The only exceptions are when the second operand is a constant and
 | |
|     // we can use things like CHHSI.
 | |
|     if (!COp1)
 | |
|       return true;
 | |
|     if (IsUnsigned) {
 | |
|       // The memory-immediate instructions require 16-bit unsigned integers.
 | |
|       if (isUInt<16>(COp1->getZExtValue()))
 | |
|         return false;
 | |
|     } else {
 | |
|       // There are no comparisons between integers and signed memory bytes.
 | |
|       // The others require 16-bit signed integers.
 | |
|       if (cast<LoadSDNode>(Op0.getNode())->getMemoryVT() == MVT::i8 ||
 | |
|           isInt<16>(COp1->getSExtValue()))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check whether the CC value produced by TEST UNDER MASK is descriptive
 | |
| // enough to handle an AND with Mask followed by a comparison of type Opcode
 | |
| // with CmpVal.  CCMask says which comparison result is being tested and
 | |
| // BitSize is the number of bits in the operands.  Return the CC mask that
 | |
| // should be used for the TEST UNDER MASK result, or 0 if the condition is
 | |
| // too complex.
 | |
| static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned Opcode,
 | |
|                                      unsigned CCMask, uint64_t Mask,
 | |
|                                      uint64_t CmpVal) {
 | |
|   assert(Mask != 0 && "ANDs with zero should have been removed by now");
 | |
| 
 | |
|   // Work out the masks for the lowest and highest bits.
 | |
|   unsigned HighShift = 63 - countLeadingZeros(Mask);
 | |
|   uint64_t High = uint64_t(1) << HighShift;
 | |
|   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
 | |
| 
 | |
|   // Signed ordered comparisons are effectively unsigned if the sign
 | |
|   // bit is dropped.
 | |
|   bool EffectivelyUnsigned = (Opcode == SystemZISD::UCMP
 | |
|                               || HighShift < BitSize - 1);
 | |
| 
 | |
|   // Check for equality comparisons with 0, or the equivalent.
 | |
|   if (CmpVal == 0) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ)
 | |
|       return SystemZ::CCMASK_TM_ALL_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE)
 | |
|       return SystemZ::CCMASK_TM_SOME_1;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal <= Low) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|       return SystemZ::CCMASK_TM_ALL_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|       return SystemZ::CCMASK_TM_SOME_1;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal < Low) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LE)
 | |
|       return SystemZ::CCMASK_TM_ALL_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GT)
 | |
|       return SystemZ::CCMASK_TM_SOME_1;
 | |
|   }
 | |
| 
 | |
|   // Check for equality comparisons with the mask, or the equivalent.
 | |
|   if (CmpVal == Mask) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ)
 | |
|       return SystemZ::CCMASK_TM_ALL_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE)
 | |
|       return SystemZ::CCMASK_TM_SOME_0;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GT)
 | |
|       return SystemZ::CCMASK_TM_ALL_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LE)
 | |
|       return SystemZ::CCMASK_TM_SOME_0;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|       return SystemZ::CCMASK_TM_ALL_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|       return SystemZ::CCMASK_TM_SOME_0;
 | |
|   }
 | |
| 
 | |
|   // Check for ordered comparisons with the top bit.
 | |
|   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LE)
 | |
|       return SystemZ::CCMASK_TM_MSB_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GT)
 | |
|       return SystemZ::CCMASK_TM_MSB_1;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|       return SystemZ::CCMASK_TM_MSB_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|       return SystemZ::CCMASK_TM_MSB_1;
 | |
|   }
 | |
| 
 | |
|   // If there are just two bits, we can do equality checks for Low and High
 | |
|   // as well.
 | |
|   if (Mask == Low + High) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
 | |
|   }
 | |
| 
 | |
|   // Looks like we've exhausted our options.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // See whether the comparison (Opcode CmpOp0, CmpOp1) can be implemented
 | |
| // as a TEST UNDER MASK instruction when the condition being tested is
 | |
| // as described by CCValid and CCMask.  Update the arguments with the
 | |
| // TM version if so.
 | |
| static void adjustForTestUnderMask(unsigned &Opcode, SDValue &CmpOp0,
 | |
|                                    SDValue &CmpOp1, unsigned &CCValid,
 | |
|                                    unsigned &CCMask) {
 | |
|   // Check that we have a comparison with a constant.
 | |
|   ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1);
 | |
|   if (!ConstCmpOp1)
 | |
|     return;
 | |
| 
 | |
|   // Check whether the nonconstant input is an AND with a constant mask.
 | |
|   if (CmpOp0.getOpcode() != ISD::AND)
 | |
|     return;
 | |
|   SDValue AndOp0 = CmpOp0.getOperand(0);
 | |
|   SDValue AndOp1 = CmpOp0.getOperand(1);
 | |
|   ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode());
 | |
|   if (!Mask)
 | |
|     return;
 | |
| 
 | |
|   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
 | |
|   uint64_t MaskVal = Mask->getZExtValue();
 | |
|   if (!SystemZ::isImmLL(MaskVal) && !SystemZ::isImmLH(MaskVal) &&
 | |
|       !SystemZ::isImmHL(MaskVal) && !SystemZ::isImmHH(MaskVal))
 | |
|     return;
 | |
| 
 | |
|   // Check whether the combination of mask, comparison value and comparison
 | |
|   // type are suitable.
 | |
|   unsigned BitSize = CmpOp0.getValueType().getSizeInBits();
 | |
|   unsigned NewCCMask = getTestUnderMaskCond(BitSize, Opcode, CCMask, MaskVal,
 | |
|                                             ConstCmpOp1->getZExtValue());
 | |
|   if (!NewCCMask)
 | |
|     return;
 | |
| 
 | |
|   // Go ahead and make the change.
 | |
|   Opcode = SystemZISD::TM;
 | |
|   CmpOp0 = AndOp0;
 | |
|   CmpOp1 = AndOp1;
 | |
|   CCValid = SystemZ::CCMASK_TM;
 | |
|   CCMask = NewCCMask;
 | |
| }
 | |
| 
 | |
| // Return a target node that compares CmpOp0 with CmpOp1 and stores a
 | |
| // 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
 | |
| // 2-bit results and CCMask to the subset of those results that are
 | |
| // associated with Cond.
 | |
| static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, SDValue CmpOp0,
 | |
|                        SDValue CmpOp1, ISD::CondCode Cond, unsigned &CCValid,
 | |
|                        unsigned &CCMask) {
 | |
|   bool IsUnsigned = false;
 | |
|   CCMask = CCMaskForCondCode(Cond);
 | |
|   if (CmpOp0.getValueType().isFloatingPoint())
 | |
|     CCValid = SystemZ::CCMASK_FCMP;
 | |
|   else {
 | |
|     IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
 | |
|     CCValid = SystemZ::CCMASK_ICMP;
 | |
|     CCMask &= CCValid;
 | |
|     adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
 | |
|     adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
 | |
|     if (preferUnsignedComparison(CmpOp0, CmpOp1, CCMask))
 | |
|       IsUnsigned = true;
 | |
|   }
 | |
| 
 | |
|   if (shouldSwapCmpOperands(CmpOp0, CmpOp1, IsUnsigned)) {
 | |
|     std::swap(CmpOp0, CmpOp1);
 | |
|     CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) |
 | |
|               (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
 | |
|               (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
 | |
|               (CCMask & SystemZ::CCMASK_CMP_UO));
 | |
|   }
 | |
| 
 | |
|   unsigned Opcode = (IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP);
 | |
|   adjustForTestUnderMask(Opcode, CmpOp0, CmpOp1, CCValid, CCMask);
 | |
|   return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1);
 | |
| }
 | |
| 
 | |
| // Implement a 32-bit *MUL_LOHI operation by extending both operands to
 | |
| // 64 bits.  Extend is the extension type to use.  Store the high part
 | |
| // in Hi and the low part in Lo.
 | |
| static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
 | |
|                             unsigned Extend, SDValue Op0, SDValue Op1,
 | |
|                             SDValue &Hi, SDValue &Lo) {
 | |
|   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
 | |
|   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
 | |
|   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
 | |
|   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
 | |
|   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
 | |
|   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
 | |
| }
 | |
| 
 | |
| // Lower a binary operation that produces two VT results, one in each
 | |
| // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
 | |
| // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
 | |
| // on the extended Op0 and (unextended) Op1.  Store the even register result
 | |
| // in Even and the odd register result in Odd.
 | |
| static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
 | |
|                              unsigned Extend, unsigned Opcode,
 | |
|                              SDValue Op0, SDValue Op1,
 | |
|                              SDValue &Even, SDValue &Odd) {
 | |
|   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
 | |
|   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
 | |
|                                SDValue(In128, 0), Op1);
 | |
|   bool Is32Bit = is32Bit(VT);
 | |
|   SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
 | |
|   SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
 | |
|   SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
 | |
|                                     VT, Result, SubReg0);
 | |
|   SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
 | |
|                                     VT, Result, SubReg1);
 | |
|   Even = SDValue(Reg0, 0);
 | |
|   Odd = SDValue(Reg1, 0);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain    = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue CmpOp0   = Op.getOperand(2);
 | |
|   SDValue CmpOp1   = Op.getOperand(3);
 | |
|   SDValue Dest     = Op.getOperand(4);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   unsigned CCValid, CCMask;
 | |
|   SDValue Flags = emitCmp(DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
 | |
|   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
 | |
|                      Chain, DAG.getConstant(CCValid, MVT::i32),
 | |
|                      DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDValue CmpOp0   = Op.getOperand(0);
 | |
|   SDValue CmpOp1   = Op.getOperand(1);
 | |
|   SDValue TrueOp   = Op.getOperand(2);
 | |
|   SDValue FalseOp  = Op.getOperand(3);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   unsigned CCValid, CCMask;
 | |
|   SDValue Flags = emitCmp(DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
 | |
| 
 | |
|   SmallVector<SDValue, 5> Ops;
 | |
|   Ops.push_back(TrueOp);
 | |
|   Ops.push_back(FalseOp);
 | |
|   Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
 | |
|   Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
 | |
|   Ops.push_back(Flags);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
 | |
|   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Node);
 | |
|   const GlobalValue *GV = Node->getGlobal();
 | |
|   int64_t Offset = Node->getOffset();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   Reloc::Model RM = TM.getRelocationModel();
 | |
|   CodeModel::Model CM = TM.getCodeModel();
 | |
| 
 | |
|   SDValue Result;
 | |
|   if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
 | |
|     // Make sure that the offset is aligned to a halfword.  If it isn't,
 | |
|     // create an "anchor" at the previous 12-bit boundary.
 | |
|     // FIXME check whether there is a better way of handling this.
 | |
|     if (Offset & 1) {
 | |
|       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
 | |
|                                           Offset & ~uint64_t(0xfff));
 | |
|       Offset &= 0xfff;
 | |
|     } else {
 | |
|       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
 | |
|       Offset = 0;
 | |
|     }
 | |
|     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
|   } else {
 | |
|     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
 | |
|     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
|     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
 | |
|                          MachinePointerInfo::getGOT(), false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // If there was a non-zero offset that we didn't fold, create an explicit
 | |
|   // addition for it.
 | |
|   if (Offset != 0)
 | |
|     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
 | |
|                          DAG.getConstant(Offset, PtrVT));
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
 | |
| 						     SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Node);
 | |
|   const GlobalValue *GV = Node->getGlobal();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   TLSModel::Model model = TM.getTLSModel(GV);
 | |
| 
 | |
|   if (model != TLSModel::LocalExec)
 | |
|     llvm_unreachable("only local-exec TLS mode supported");
 | |
| 
 | |
|   // The high part of the thread pointer is in access register 0.
 | |
|   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
 | |
|                              DAG.getConstant(0, MVT::i32));
 | |
|   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
 | |
| 
 | |
|   // The low part of the thread pointer is in access register 1.
 | |
|   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
 | |
|                              DAG.getConstant(1, MVT::i32));
 | |
|   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
 | |
| 
 | |
|   // Merge them into a single 64-bit address.
 | |
|   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
 | |
| 				    DAG.getConstant(32, PtrVT));
 | |
|   SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
 | |
| 
 | |
|   // Get the offset of GA from the thread pointer.
 | |
|   SystemZConstantPoolValue *CPV =
 | |
|     SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
 | |
| 
 | |
|   // Force the offset into the constant pool and load it from there.
 | |
|   SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
 | |
|   SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
 | |
| 			       CPAddr, MachinePointerInfo::getConstantPool(),
 | |
| 			       false, false, false, 0);
 | |
| 
 | |
|   // Add the base and offset together.
 | |
|   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Node);
 | |
|   const BlockAddress *BA = Node->getBlockAddress();
 | |
|   int64_t Offset = Node->getOffset();
 | |
|   EVT PtrVT = getPointerTy();
 | |
| 
 | |
|   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
 | |
|   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDLoc DL(JT);
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | |
| 
 | |
|   // Use LARL to load the address of the table.
 | |
|   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   SDLoc DL(CP);
 | |
|   EVT PtrVT = getPointerTy();
 | |
| 
 | |
|   SDValue Result;
 | |
|   if (CP->isMachineConstantPoolEntry())
 | |
|     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
 | |
| 				       CP->getAlignment());
 | |
|   else
 | |
|     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
 | |
| 				       CP->getAlignment(), CP->getOffset());
 | |
| 
 | |
|   // Use LARL to load the address of the constant pool entry.
 | |
|   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue In = Op.getOperand(0);
 | |
|   EVT InVT = In.getValueType();
 | |
|   EVT ResVT = Op.getValueType();
 | |
| 
 | |
|   SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
 | |
|   SDValue Shift32 = DAG.getConstant(32, MVT::i64);
 | |
|   if (InVT == MVT::i32 && ResVT == MVT::f32) {
 | |
|     SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
 | |
|     SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
 | |
|     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
 | |
|     SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
 | |
|                                      MVT::f32, Out64, SubReg32);
 | |
|     return SDValue(Out, 0);
 | |
|   }
 | |
|   if (InVT == MVT::f32 && ResVT == MVT::i32) {
 | |
|     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
 | |
|     SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
 | |
|                                       MVT::f64, SDValue(U64, 0), In, SubReg32);
 | |
|     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
 | |
|     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
 | |
|     SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
 | |
|     return Out;
 | |
|   }
 | |
|   llvm_unreachable("Unexpected bitcast combination");
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SystemZMachineFunctionInfo *FuncInfo =
 | |
|     MF.getInfo<SystemZMachineFunctionInfo>();
 | |
|   EVT PtrVT = getPointerTy();
 | |
| 
 | |
|   SDValue Chain   = Op.getOperand(0);
 | |
|   SDValue Addr    = Op.getOperand(1);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // The initial values of each field.
 | |
|   const unsigned NumFields = 4;
 | |
|   SDValue Fields[NumFields] = {
 | |
|     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
 | |
|     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
 | |
|     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
 | |
|     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
 | |
|   };
 | |
| 
 | |
|   // Store each field into its respective slot.
 | |
|   SDValue MemOps[NumFields];
 | |
|   unsigned Offset = 0;
 | |
|   for (unsigned I = 0; I < NumFields; ++I) {
 | |
|     SDValue FieldAddr = Addr;
 | |
|     if (Offset != 0)
 | |
|       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
 | |
|                               DAG.getIntPtrConstant(Offset));
 | |
|     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
 | |
|                              MachinePointerInfo(SV, Offset),
 | |
|                              false, false, 0);
 | |
|     Offset += 8;
 | |
|   }
 | |
|   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue Chain      = Op.getOperand(0);
 | |
|   SDValue DstPtr     = Op.getOperand(1);
 | |
|   SDValue SrcPtr     = Op.getOperand(2);
 | |
|   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | |
|   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
 | |
|                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
 | |
|                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::
 | |
| lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   unsigned SPReg = getStackPointerRegisterToSaveRestore();
 | |
| 
 | |
|   // Get a reference to the stack pointer.
 | |
|   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
 | |
| 
 | |
|   // Get the new stack pointer value.
 | |
|   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
 | |
| 
 | |
|   // Copy the new stack pointer back.
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
 | |
| 
 | |
|   // The allocated data lives above the 160 bytes allocated for the standard
 | |
|   // frame, plus any outgoing stack arguments.  We don't know how much that
 | |
|   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
 | |
|   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
 | |
|   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
 | |
| 
 | |
|   SDValue Ops[2] = { Result, Chain };
 | |
|   return DAG.getMergeValues(Ops, 2, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Ops[2];
 | |
|   if (is32Bit(VT))
 | |
|     // Just do a normal 64-bit multiplication and extract the results.
 | |
|     // We define this so that it can be used for constant division.
 | |
|     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
 | |
|                     Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   else {
 | |
|     // Do a full 128-bit multiplication based on UMUL_LOHI64:
 | |
|     //
 | |
|     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
 | |
|     //
 | |
|     // but using the fact that the upper halves are either all zeros
 | |
|     // or all ones:
 | |
|     //
 | |
|     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
 | |
|     //
 | |
|     // and grouping the right terms together since they are quicker than the
 | |
|     // multiplication:
 | |
|     //
 | |
|     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
 | |
|     SDValue C63 = DAG.getConstant(63, MVT::i64);
 | |
|     SDValue LL = Op.getOperand(0);
 | |
|     SDValue RL = Op.getOperand(1);
 | |
|     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
 | |
|     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
 | |
|     // UMUL_LOHI64 returns the low result in the odd register and the high
 | |
|     // result in the even register.  SMUL_LOHI is defined to return the
 | |
|     // low half first, so the results are in reverse order.
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
 | |
|                      LL, RL, Ops[1], Ops[0]);
 | |
|     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
 | |
|     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
 | |
|     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
 | |
|     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
 | |
|   }
 | |
|   return DAG.getMergeValues(Ops, 2, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Ops[2];
 | |
|   if (is32Bit(VT))
 | |
|     // Just do a normal 64-bit multiplication and extract the results.
 | |
|     // We define this so that it can be used for constant division.
 | |
|     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
 | |
|                     Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   else
 | |
|     // UMUL_LOHI64 returns the low result in the odd register and the high
 | |
|     // result in the even register.  UMUL_LOHI is defined to return the
 | |
|     // low half first, so the results are in reverse order.
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
 | |
|                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   return DAG.getMergeValues(Ops, 2, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Opcode;
 | |
| 
 | |
|   // We use DSGF for 32-bit division.
 | |
|   if (is32Bit(VT)) {
 | |
|     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
 | |
|     Opcode = SystemZISD::SDIVREM32;
 | |
|   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
 | |
|     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
 | |
|     Opcode = SystemZISD::SDIVREM32;
 | |
|   } else    
 | |
|     Opcode = SystemZISD::SDIVREM64;
 | |
| 
 | |
|   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
 | |
|   // input is "don't care".  The instruction returns the remainder in
 | |
|   // the even register and the quotient in the odd register.
 | |
|   SDValue Ops[2];
 | |
|   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
 | |
|                    Op0, Op1, Ops[1], Ops[0]);
 | |
|   return DAG.getMergeValues(Ops, 2, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // DL(G) uses a double-width dividend, so we need to clear the even
 | |
|   // register in the GR128 input.  The instruction returns the remainder
 | |
|   // in the even register and the quotient in the odd register.
 | |
|   SDValue Ops[2];
 | |
|   if (is32Bit(VT))
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
 | |
|                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   else
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
 | |
|                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   return DAG.getMergeValues(Ops, 2, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
 | |
| 
 | |
|   // Get the known-zero masks for each operand.
 | |
|   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
 | |
|   APInt KnownZero[2], KnownOne[2];
 | |
|   DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
 | |
|   DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
 | |
| 
 | |
|   // See if the upper 32 bits of one operand and the lower 32 bits of the
 | |
|   // other are known zero.  They are the low and high operands respectively.
 | |
|   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
 | |
|                        KnownZero[1].getZExtValue() };
 | |
|   unsigned High, Low;
 | |
|   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
 | |
|     High = 1, Low = 0;
 | |
|   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
 | |
|     High = 0, Low = 1;
 | |
|   else
 | |
|     return Op;
 | |
| 
 | |
|   SDValue LowOp = Ops[Low];
 | |
|   SDValue HighOp = Ops[High];
 | |
| 
 | |
|   // If the high part is a constant, we're better off using IILH.
 | |
|   if (HighOp.getOpcode() == ISD::Constant)
 | |
|     return Op;
 | |
| 
 | |
|   // If the low part is a constant that is outside the range of LHI,
 | |
|   // then we're better off using IILF.
 | |
|   if (LowOp.getOpcode() == ISD::Constant) {
 | |
|     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
 | |
|     if (!isInt<16>(Value))
 | |
|       return Op;
 | |
|   }
 | |
| 
 | |
|   // Check whether the high part is an AND that doesn't change the
 | |
|   // high 32 bits and just masks out low bits.  We can skip it if so.
 | |
|   if (HighOp.getOpcode() == ISD::AND &&
 | |
|       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
 | |
|     uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
 | |
|     if ((Mask >> 32) == 0xffffffff)
 | |
|       HighOp = HighOp.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // Take advantage of the fact that all GR32 operations only change the
 | |
|   // low 32 bits by truncating Low to an i32 and inserting it directly
 | |
|   // using a subreg.  The interesting cases are those where the truncation
 | |
|   // can be folded.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
 | |
|   SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
 | |
|   SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
 | |
|                                       MVT::i64, HighOp, Low32, SubReg32);
 | |
|   return SDValue(Result, 0);
 | |
| }
 | |
| 
 | |
| // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
 | |
| // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
 | |
|                                                 SelectionDAG &DAG,
 | |
|                                                 unsigned Opcode) const {
 | |
|   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
 | |
| 
 | |
|   // 32-bit operations need no code outside the main loop.
 | |
|   EVT NarrowVT = Node->getMemoryVT();
 | |
|   EVT WideVT = MVT::i32;
 | |
|   if (NarrowVT == WideVT)
 | |
|     return Op;
 | |
| 
 | |
|   int64_t BitSize = NarrowVT.getSizeInBits();
 | |
|   SDValue ChainIn = Node->getChain();
 | |
|   SDValue Addr = Node->getBasePtr();
 | |
|   SDValue Src2 = Node->getVal();
 | |
|   MachineMemOperand *MMO = Node->getMemOperand();
 | |
|   SDLoc DL(Node);
 | |
|   EVT PtrVT = Addr.getValueType();
 | |
| 
 | |
|   // Convert atomic subtracts of constants into additions.
 | |
|   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
 | |
|     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
 | |
|       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
 | |
|       Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
 | |
|     }
 | |
| 
 | |
|   // Get the address of the containing word.
 | |
|   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
 | |
|                                     DAG.getConstant(-4, PtrVT));
 | |
| 
 | |
|   // Get the number of bits that the word must be rotated left in order
 | |
|   // to bring the field to the top bits of a GR32.
 | |
|   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
 | |
|                                  DAG.getConstant(3, PtrVT));
 | |
|   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
 | |
| 
 | |
|   // Get the complementing shift amount, for rotating a field in the top
 | |
|   // bits back to its proper position.
 | |
|   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
 | |
|                                     DAG.getConstant(0, WideVT), BitShift);
 | |
| 
 | |
|   // Extend the source operand to 32 bits and prepare it for the inner loop.
 | |
|   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
 | |
|   // operations require the source to be shifted in advance.  (This shift
 | |
|   // can be folded if the source is constant.)  For AND and NAND, the lower
 | |
|   // bits must be set, while for other opcodes they should be left clear.
 | |
|   if (Opcode != SystemZISD::ATOMIC_SWAPW)
 | |
|     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
 | |
|                        DAG.getConstant(32 - BitSize, WideVT));
 | |
|   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
 | |
|       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
 | |
|     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
 | |
|                        DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
 | |
| 
 | |
|   // Construct the ATOMIC_LOADW_* node.
 | |
|   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
 | |
|   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
 | |
|                     DAG.getConstant(BitSize, WideVT) };
 | |
|   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
 | |
|                                              array_lengthof(Ops),
 | |
|                                              NarrowVT, MMO);
 | |
| 
 | |
|   // Rotate the result of the final CS so that the field is in the lower
 | |
|   // bits of a GR32, then truncate it.
 | |
|   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
 | |
|                                     DAG.getConstant(BitSize, WideVT));
 | |
|   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
 | |
| 
 | |
|   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
 | |
|   return DAG.getMergeValues(RetOps, 2, DL);
 | |
| }
 | |
| 
 | |
| // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
 | |
| // into a fullword ATOMIC_CMP_SWAPW operation.
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
 | |
| 
 | |
|   // We have native support for 32-bit compare and swap.
 | |
|   EVT NarrowVT = Node->getMemoryVT();
 | |
|   EVT WideVT = MVT::i32;
 | |
|   if (NarrowVT == WideVT)
 | |
|     return Op;
 | |
| 
 | |
|   int64_t BitSize = NarrowVT.getSizeInBits();
 | |
|   SDValue ChainIn = Node->getOperand(0);
 | |
|   SDValue Addr = Node->getOperand(1);
 | |
|   SDValue CmpVal = Node->getOperand(2);
 | |
|   SDValue SwapVal = Node->getOperand(3);
 | |
|   MachineMemOperand *MMO = Node->getMemOperand();
 | |
|   SDLoc DL(Node);
 | |
|   EVT PtrVT = Addr.getValueType();
 | |
| 
 | |
|   // Get the address of the containing word.
 | |
|   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
 | |
|                                     DAG.getConstant(-4, PtrVT));
 | |
| 
 | |
|   // Get the number of bits that the word must be rotated left in order
 | |
|   // to bring the field to the top bits of a GR32.
 | |
|   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
 | |
|                                  DAG.getConstant(3, PtrVT));
 | |
|   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
 | |
| 
 | |
|   // Get the complementing shift amount, for rotating a field in the top
 | |
|   // bits back to its proper position.
 | |
|   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
 | |
|                                     DAG.getConstant(0, WideVT), BitShift);
 | |
| 
 | |
|   // Construct the ATOMIC_CMP_SWAPW node.
 | |
|   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
 | |
|   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
 | |
|                     NegBitShift, DAG.getConstant(BitSize, WideVT) };
 | |
|   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
 | |
|                                              VTList, Ops, array_lengthof(Ops),
 | |
|                                              NarrowVT, MMO);
 | |
|   return AtomicOp;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
 | |
|   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
 | |
|                             SystemZ::R15D, Op.getValueType());
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
 | |
|   return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
 | |
|                           SystemZ::R15D, Op.getOperand(1));
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
 | |
|   if (!IsData)
 | |
|     // Just preserve the chain.
 | |
|     return Op.getOperand(0);
 | |
| 
 | |
|   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | |
|   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
 | |
|   MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
 | |
|   SDValue Ops[] = {
 | |
|     Op.getOperand(0),
 | |
|     DAG.getConstant(Code, MVT::i32),
 | |
|     Op.getOperand(1)
 | |
|   };
 | |
|   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
 | |
|                                  Node->getVTList(), Ops, array_lengthof(Ops),
 | |
|                                  Node->getMemoryVT(), Node->getMemOperand());
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::BR_CC:
 | |
|     return lowerBR_CC(Op, DAG);
 | |
|   case ISD::SELECT_CC:
 | |
|     return lowerSELECT_CC(Op, DAG);
 | |
|   case ISD::GlobalAddress:
 | |
|     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
 | |
|   case ISD::GlobalTLSAddress:
 | |
|     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
 | |
|   case ISD::BlockAddress:
 | |
|     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
 | |
|   case ISD::JumpTable:
 | |
|     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
 | |
|   case ISD::ConstantPool:
 | |
|     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
 | |
|   case ISD::BITCAST:
 | |
|     return lowerBITCAST(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return lowerVASTART(Op, DAG);
 | |
|   case ISD::VACOPY:
 | |
|     return lowerVACOPY(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     return lowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|   case ISD::SMUL_LOHI:
 | |
|     return lowerSMUL_LOHI(Op, DAG);
 | |
|   case ISD::UMUL_LOHI:
 | |
|     return lowerUMUL_LOHI(Op, DAG);
 | |
|   case ISD::SDIVREM:
 | |
|     return lowerSDIVREM(Op, DAG);
 | |
|   case ISD::UDIVREM:
 | |
|     return lowerUDIVREM(Op, DAG);
 | |
|   case ISD::OR:
 | |
|     return lowerOR(Op, DAG);
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
 | |
|   case ISD::ATOMIC_LOAD_MIN:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
 | |
|   case ISD::ATOMIC_LOAD_MAX:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
 | |
|   case ISD::ATOMIC_LOAD_UMIN:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
 | |
|   case ISD::ATOMIC_LOAD_UMAX:
 | |
|     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|     return lowerATOMIC_CMP_SWAP(Op, DAG);
 | |
|   case ISD::STACKSAVE:
 | |
|     return lowerSTACKSAVE(Op, DAG);
 | |
|   case ISD::STACKRESTORE:
 | |
|     return lowerSTACKRESTORE(Op, DAG);
 | |
|   case ISD::PREFETCH:
 | |
|     return lowerPREFETCH(Op, DAG);
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected node to lower");
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
| #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
 | |
|   switch (Opcode) {
 | |
|     OPCODE(RET_FLAG);
 | |
|     OPCODE(CALL);
 | |
|     OPCODE(SIBCALL);
 | |
|     OPCODE(PCREL_WRAPPER);
 | |
|     OPCODE(CMP);
 | |
|     OPCODE(UCMP);
 | |
|     OPCODE(TM);
 | |
|     OPCODE(BR_CCMASK);
 | |
|     OPCODE(SELECT_CCMASK);
 | |
|     OPCODE(ADJDYNALLOC);
 | |
|     OPCODE(EXTRACT_ACCESS);
 | |
|     OPCODE(UMUL_LOHI64);
 | |
|     OPCODE(SDIVREM64);
 | |
|     OPCODE(UDIVREM32);
 | |
|     OPCODE(UDIVREM64);
 | |
|     OPCODE(MVC);
 | |
|     OPCODE(MVC_LOOP);
 | |
|     OPCODE(NC);
 | |
|     OPCODE(NC_LOOP);
 | |
|     OPCODE(OC);
 | |
|     OPCODE(OC_LOOP);
 | |
|     OPCODE(XC);
 | |
|     OPCODE(XC_LOOP);
 | |
|     OPCODE(CLC);
 | |
|     OPCODE(CLC_LOOP);
 | |
|     OPCODE(STRCMP);
 | |
|     OPCODE(STPCPY);
 | |
|     OPCODE(SEARCH_STRING);
 | |
|     OPCODE(IPM);
 | |
|     OPCODE(ATOMIC_SWAPW);
 | |
|     OPCODE(ATOMIC_LOADW_ADD);
 | |
|     OPCODE(ATOMIC_LOADW_SUB);
 | |
|     OPCODE(ATOMIC_LOADW_AND);
 | |
|     OPCODE(ATOMIC_LOADW_OR);
 | |
|     OPCODE(ATOMIC_LOADW_XOR);
 | |
|     OPCODE(ATOMIC_LOADW_NAND);
 | |
|     OPCODE(ATOMIC_LOADW_MIN);
 | |
|     OPCODE(ATOMIC_LOADW_MAX);
 | |
|     OPCODE(ATOMIC_LOADW_UMIN);
 | |
|     OPCODE(ATOMIC_LOADW_UMAX);
 | |
|     OPCODE(ATOMIC_CMP_SWAPW);
 | |
|     OPCODE(PREFETCH);
 | |
|   }
 | |
|   return NULL;
 | |
| #undef OPCODE
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Custom insertion
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Create a new basic block after MBB.
 | |
| static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
 | |
|   MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| // Split MBB after MI and return the new block (the one that contains
 | |
| // instructions after MI).
 | |
| static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
 | |
|                                           MachineBasicBlock *MBB) {
 | |
|   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
 | |
|   NewMBB->splice(NewMBB->begin(), MBB,
 | |
|                  llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                  MBB->end());
 | |
|   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| // Split MBB before MI and return the new block (the one that contains MI).
 | |
| static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
 | |
|                                            MachineBasicBlock *MBB) {
 | |
|   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
 | |
|   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
 | |
|   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| // Force base value Base into a register before MI.  Return the register.
 | |
| static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
 | |
|                          const SystemZInstrInfo *TII) {
 | |
|   if (Base.isReg())
 | |
|     return Base.getReg();
 | |
| 
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
 | |
|   BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
 | |
|     .addOperand(Base).addImm(0).addReg(0);
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitSelect(MachineInstr *MI,
 | |
|                                   MachineBasicBlock *MBB) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
| 
 | |
|   unsigned DestReg  = MI->getOperand(0).getReg();
 | |
|   unsigned TrueReg  = MI->getOperand(1).getReg();
 | |
|   unsigned FalseReg = MI->getOperand(2).getReg();
 | |
|   unsigned CCValid  = MI->getOperand(3).getImm();
 | |
|   unsigned CCMask   = MI->getOperand(4).getImm();
 | |
|   DebugLoc DL       = MI->getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   BRC CCMask, JoinMBB
 | |
|   //   # fallthrough to FalseMBB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
|   MBB->addSuccessor(FalseMBB);
 | |
| 
 | |
|   //  FalseMBB:
 | |
|   //   # fallthrough to JoinMBB
 | |
|   MBB = FalseMBB;
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
| 
 | |
|   //  JoinMBB:
 | |
|   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
 | |
|   //  ...
 | |
|   MBB = JoinMBB;
 | |
|   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
 | |
|     .addReg(TrueReg).addMBB(StartMBB)
 | |
|     .addReg(FalseReg).addMBB(FalseMBB);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return JoinMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
 | |
| // StoreOpcode is the store to use and Invert says whether the store should
 | |
| // happen when the condition is false rather than true.  If a STORE ON
 | |
| // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitCondStore(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *MBB,
 | |
|                                      unsigned StoreOpcode, unsigned STOCOpcode,
 | |
|                                      bool Invert) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
| 
 | |
|   unsigned SrcReg     = MI->getOperand(0).getReg();
 | |
|   MachineOperand Base = MI->getOperand(1);
 | |
|   int64_t Disp        = MI->getOperand(2).getImm();
 | |
|   unsigned IndexReg   = MI->getOperand(3).getReg();
 | |
|   unsigned CCValid    = MI->getOperand(4).getImm();
 | |
|   unsigned CCMask     = MI->getOperand(5).getImm();
 | |
|   DebugLoc DL         = MI->getDebugLoc();
 | |
| 
 | |
|   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
 | |
| 
 | |
|   // Use STOCOpcode if possible.  We could use different store patterns in
 | |
|   // order to avoid matching the index register, but the performance trade-offs
 | |
|   // might be more complicated in that case.
 | |
|   if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
 | |
|     if (Invert)
 | |
|       CCMask ^= CCValid;
 | |
|     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
 | |
|       .addReg(SrcReg).addOperand(Base).addImm(Disp)
 | |
|       .addImm(CCValid).addImm(CCMask);
 | |
|     MI->eraseFromParent();
 | |
|     return MBB;
 | |
|   }
 | |
| 
 | |
|   // Get the condition needed to branch around the store.
 | |
|   if (!Invert)
 | |
|     CCMask ^= CCValid;
 | |
| 
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   BRC CCMask, JoinMBB
 | |
|   //   # fallthrough to FalseMBB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
|   MBB->addSuccessor(FalseMBB);
 | |
| 
 | |
|   //  FalseMBB:
 | |
|   //   store %SrcReg, %Disp(%Index,%Base)
 | |
|   //   # fallthrough to JoinMBB
 | |
|   MBB = FalseMBB;
 | |
|   BuildMI(MBB, DL, TII->get(StoreOpcode))
 | |
|     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return JoinMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
 | |
| // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
 | |
| // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
 | |
| // BitSize is the width of the field in bits, or 0 if this is a partword
 | |
| // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
 | |
| // is one of the operands.  Invert says whether the field should be
 | |
| // inverted after performing BinOpcode (e.g. for NAND).
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
 | |
|                                             MachineBasicBlock *MBB,
 | |
|                                             unsigned BinOpcode,
 | |
|                                             unsigned BitSize,
 | |
|                                             bool Invert) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   bool IsSubWord = (BitSize < 32);
 | |
| 
 | |
|   // Extract the operands.  Base can be a register or a frame index.
 | |
|   // Src2 can be a register or immediate.
 | |
|   unsigned Dest        = MI->getOperand(0).getReg();
 | |
|   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
 | |
|   int64_t Disp         = MI->getOperand(2).getImm();
 | |
|   MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
 | |
|   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
 | |
|   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
 | |
|   DebugLoc DL          = MI->getDebugLoc();
 | |
|   if (IsSubWord)
 | |
|     BitSize = MI->getOperand(6).getImm();
 | |
| 
 | |
|   // Subword operations use 32-bit registers.
 | |
|   const TargetRegisterClass *RC = (BitSize <= 32 ?
 | |
|                                    &SystemZ::GR32BitRegClass :
 | |
|                                    &SystemZ::GR64BitRegClass);
 | |
|   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
 | |
|   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
 | |
| 
 | |
|   // Get the right opcodes for the displacement.
 | |
|   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
 | |
|   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
 | |
|   assert(LOpcode && CSOpcode && "Displacement out of range");
 | |
| 
 | |
|   // Create virtual registers for temporary results.
 | |
|   unsigned OrigVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned OldVal        = MRI.createVirtualRegister(RC);
 | |
|   unsigned NewVal        = (BinOpcode || IsSubWord ?
 | |
|                             MRI.createVirtualRegister(RC) : Src2.getReg());
 | |
|   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
 | |
|   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
 | |
| 
 | |
|   // Insert a basic block for the main loop.
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   ...
 | |
|   //   %OrigVal = L Disp(%Base)
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
 | |
|     .addOperand(Base).addImm(Disp).addReg(0);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
 | |
|   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
 | |
|   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
 | |
|   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
 | |
|   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
 | |
|   //   JNE LoopMBB
 | |
|   //   # fall through to DoneMMB
 | |
|   MBB = LoopMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
 | |
|     .addReg(OrigVal).addMBB(StartMBB)
 | |
|     .addReg(Dest).addMBB(LoopMBB);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
 | |
|       .addReg(OldVal).addReg(BitShift).addImm(0);
 | |
|   if (Invert) {
 | |
|     // Perform the operation normally and then invert every bit of the field.
 | |
|     unsigned Tmp = MRI.createVirtualRegister(RC);
 | |
|     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
 | |
|       .addReg(RotatedOldVal).addOperand(Src2);
 | |
|     if (BitSize < 32)
 | |
|       // XILF with the upper BitSize bits set.
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
 | |
|         .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
 | |
|     else if (BitSize == 32)
 | |
|       // XILF with every bit set.
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
 | |
|         .addReg(Tmp).addImm(~uint32_t(0));
 | |
|     else {
 | |
|       // Use LCGR and add -1 to the result, which is more compact than
 | |
|       // an XILF, XILH pair.
 | |
|       unsigned Tmp2 = MRI.createVirtualRegister(RC);
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
 | |
|         .addReg(Tmp2).addImm(-1);
 | |
|     }
 | |
|   } else if (BinOpcode)
 | |
|     // A simply binary operation.
 | |
|     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
 | |
|       .addReg(RotatedOldVal).addOperand(Src2);
 | |
|   else if (IsSubWord)
 | |
|     // Use RISBG to rotate Src2 into position and use it to replace the
 | |
|     // field in RotatedOldVal.
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
 | |
|       .addReg(RotatedOldVal).addReg(Src2.getReg())
 | |
|       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
 | |
|       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
 | |
|     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo
 | |
| // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
 | |
| // instruction that should be used to compare the current field with the
 | |
| // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
 | |
| // for when the current field should be kept.  BitSize is the width of
 | |
| // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
 | |
|                                             MachineBasicBlock *MBB,
 | |
|                                             unsigned CompareOpcode,
 | |
|                                             unsigned KeepOldMask,
 | |
|                                             unsigned BitSize) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   bool IsSubWord = (BitSize < 32);
 | |
| 
 | |
|   // Extract the operands.  Base can be a register or a frame index.
 | |
|   unsigned Dest        = MI->getOperand(0).getReg();
 | |
|   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
 | |
|   int64_t  Disp        = MI->getOperand(2).getImm();
 | |
|   unsigned Src2        = MI->getOperand(3).getReg();
 | |
|   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
 | |
|   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
 | |
|   DebugLoc DL          = MI->getDebugLoc();
 | |
|   if (IsSubWord)
 | |
|     BitSize = MI->getOperand(6).getImm();
 | |
| 
 | |
|   // Subword operations use 32-bit registers.
 | |
|   const TargetRegisterClass *RC = (BitSize <= 32 ?
 | |
|                                    &SystemZ::GR32BitRegClass :
 | |
|                                    &SystemZ::GR64BitRegClass);
 | |
|   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
 | |
|   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
 | |
| 
 | |
|   // Get the right opcodes for the displacement.
 | |
|   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
 | |
|   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
 | |
|   assert(LOpcode && CSOpcode && "Displacement out of range");
 | |
| 
 | |
|   // Create virtual registers for temporary results.
 | |
|   unsigned OrigVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned OldVal        = MRI.createVirtualRegister(RC);
 | |
|   unsigned NewVal        = MRI.createVirtualRegister(RC);
 | |
|   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
 | |
|   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
 | |
|   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
 | |
| 
 | |
|   // Insert 3 basic blocks for the loop.
 | |
|   MachineBasicBlock *StartMBB  = MBB;
 | |
|   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
 | |
|   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
 | |
|   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   ...
 | |
|   //   %OrigVal     = L Disp(%Base)
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
 | |
|     .addOperand(Base).addImm(Disp).addReg(0);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
 | |
|   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
 | |
|   //   CompareOpcode %RotatedOldVal, %Src2
 | |
|   //   BRC KeepOldMask, UpdateMBB
 | |
|   MBB = LoopMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
 | |
|     .addReg(OrigVal).addMBB(StartMBB)
 | |
|     .addReg(Dest).addMBB(UpdateMBB);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
 | |
|       .addReg(OldVal).addReg(BitShift).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(CompareOpcode))
 | |
|     .addReg(RotatedOldVal).addReg(Src2);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
 | |
|   MBB->addSuccessor(UpdateMBB);
 | |
|   MBB->addSuccessor(UseAltMBB);
 | |
| 
 | |
|   //  UseAltMBB:
 | |
|   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
 | |
|   //   # fall through to UpdateMMB
 | |
|   MBB = UseAltMBB;
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
 | |
|       .addReg(RotatedOldVal).addReg(Src2)
 | |
|       .addImm(32).addImm(31 + BitSize).addImm(0);
 | |
|   MBB->addSuccessor(UpdateMBB);
 | |
| 
 | |
|   //  UpdateMBB:
 | |
|   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
 | |
|   //                        [ %RotatedAltVal, UseAltMBB ]
 | |
|   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
 | |
|   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
 | |
|   //   JNE LoopMBB
 | |
|   //   # fall through to DoneMMB
 | |
|   MBB = UpdateMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
 | |
|     .addReg(RotatedOldVal).addMBB(LoopMBB)
 | |
|     .addReg(RotatedAltVal).addMBB(UseAltMBB);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
 | |
|       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
 | |
|     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
 | |
| // instruction MI.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
 | |
|                                           MachineBasicBlock *MBB) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   // Extract the operands.  Base can be a register or a frame index.
 | |
|   unsigned Dest        = MI->getOperand(0).getReg();
 | |
|   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
 | |
|   int64_t  Disp        = MI->getOperand(2).getImm();
 | |
|   unsigned OrigCmpVal  = MI->getOperand(3).getReg();
 | |
|   unsigned OrigSwapVal = MI->getOperand(4).getReg();
 | |
|   unsigned BitShift    = MI->getOperand(5).getReg();
 | |
|   unsigned NegBitShift = MI->getOperand(6).getReg();
 | |
|   int64_t  BitSize     = MI->getOperand(7).getImm();
 | |
|   DebugLoc DL          = MI->getDebugLoc();
 | |
| 
 | |
|   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
 | |
| 
 | |
|   // Get the right opcodes for the displacement.
 | |
|   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
 | |
|   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
 | |
|   assert(LOpcode && CSOpcode && "Displacement out of range");
 | |
| 
 | |
|   // Create virtual registers for temporary results.
 | |
|   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
 | |
|   unsigned OldVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned CmpVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned SwapVal      = MRI.createVirtualRegister(RC);
 | |
|   unsigned StoreVal     = MRI.createVirtualRegister(RC);
 | |
|   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
 | |
|   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
 | |
|   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|   // Insert 2 basic blocks for the loop.
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
 | |
|   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   ...
 | |
|   //   %OrigOldVal     = L Disp(%Base)
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
 | |
|     .addOperand(Base).addImm(Disp).addReg(0);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
 | |
|   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
 | |
|   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
 | |
|   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
 | |
|   //                      ^^ The low BitSize bits contain the field
 | |
|   //                         of interest.
 | |
|   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
 | |
|   //                      ^^ Replace the upper 32-BitSize bits of the
 | |
|   //                         comparison value with those that we loaded,
 | |
|   //                         so that we can use a full word comparison.
 | |
|   //   CR %Dest, %RetryCmpVal
 | |
|   //   JNE DoneMBB
 | |
|   //   # Fall through to SetMBB
 | |
|   MBB = LoopMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
 | |
|     .addReg(OrigOldVal).addMBB(StartMBB)
 | |
|     .addReg(RetryOldVal).addMBB(SetMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
 | |
|     .addReg(OrigCmpVal).addMBB(StartMBB)
 | |
|     .addReg(RetryCmpVal).addMBB(SetMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
 | |
|     .addReg(OrigSwapVal).addMBB(StartMBB)
 | |
|     .addReg(RetrySwapVal).addMBB(SetMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
 | |
|     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
 | |
|     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::CR))
 | |
|     .addReg(Dest).addReg(RetryCmpVal);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_ICMP)
 | |
|     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
|   MBB->addSuccessor(SetMBB);
 | |
| 
 | |
|   //  SetMBB:
 | |
|   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
 | |
|   //                      ^^ Replace the upper 32-BitSize bits of the new
 | |
|   //                         value with those that we loaded.
 | |
|   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
 | |
|   //                      ^^ Rotate the new field to its proper position.
 | |
|   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
 | |
|   //   JNE LoopMBB
 | |
|   //   # fall through to ExitMMB
 | |
|   MBB = SetMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
 | |
|     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
 | |
|     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
 | |
|   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
 | |
|     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
 | |
| // if the high register of the GR128 value must be cleared or false if
 | |
| // it's "don't care".  SubReg is subreg_odd32 when extending a GR32
 | |
| // and subreg_odd when extending a GR64.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitExt128(MachineInstr *MI,
 | |
|                                   MachineBasicBlock *MBB,
 | |
|                                   bool ClearEven, unsigned SubReg) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|   unsigned Dest  = MI->getOperand(0).getReg();
 | |
|   unsigned Src   = MI->getOperand(1).getReg();
 | |
|   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
 | |
| 
 | |
|   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
 | |
|   if (ClearEven) {
 | |
|     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
 | |
|     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
 | |
| 
 | |
|     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
 | |
|       .addImm(0);
 | |
|     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
 | |
|       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
 | |
|     In128 = NewIn128;
 | |
|   }
 | |
|   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
 | |
|     .addReg(In128).addReg(Src).addImm(SubReg);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
 | |
|                                          MachineBasicBlock *MBB,
 | |
|                                          unsigned Opcode) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|   MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
 | |
|   uint64_t       DestDisp = MI->getOperand(1).getImm();
 | |
|   MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
 | |
|   uint64_t       SrcDisp  = MI->getOperand(3).getImm();
 | |
|   uint64_t       Length   = MI->getOperand(4).getImm();
 | |
| 
 | |
|   // When generating more than one CLC, all but the last will need to
 | |
|   // branch to the end when a difference is found.
 | |
|   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
 | |
|                                splitBlockAfter(MI, MBB) : 0);
 | |
| 
 | |
|   // Check for the loop form, in which operand 5 is the trip count.
 | |
|   if (MI->getNumExplicitOperands() > 5) {
 | |
|     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
 | |
| 
 | |
|     uint64_t StartCountReg = MI->getOperand(5).getReg();
 | |
|     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
 | |
|     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
 | |
|                               forceReg(MI, DestBase, TII));
 | |
| 
 | |
|     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
 | |
|     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
 | |
|     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
 | |
|                             MRI.createVirtualRegister(RC));
 | |
|     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
 | |
|     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
 | |
|                             MRI.createVirtualRegister(RC));
 | |
| 
 | |
|     RC = &SystemZ::GR64BitRegClass;
 | |
|     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
 | |
|     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|     MachineBasicBlock *StartMBB = MBB;
 | |
|     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
 | |
|     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
 | |
|     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
 | |
| 
 | |
|     //  StartMBB:
 | |
|     //   # fall through to LoopMMB
 | |
|     MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|     //  LoopMBB:
 | |
|     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
 | |
|     //                      [ %NextDestReg, NextMBB ]
 | |
|     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
 | |
|     //                     [ %NextSrcReg, NextMBB ]
 | |
|     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
 | |
|     //                       [ %NextCountReg, NextMBB ]
 | |
|     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
 | |
|     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
 | |
|     //   ( JLH EndMBB )
 | |
|     //
 | |
|     // The prefetch is used only for MVC.  The JLH is used only for CLC.
 | |
|     MBB = LoopMBB;
 | |
| 
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
 | |
|       .addReg(StartDestReg).addMBB(StartMBB)
 | |
|       .addReg(NextDestReg).addMBB(NextMBB);
 | |
|     if (!HaveSingleBase)
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
 | |
|         .addReg(StartSrcReg).addMBB(StartMBB)
 | |
|         .addReg(NextSrcReg).addMBB(NextMBB);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
 | |
|       .addReg(StartCountReg).addMBB(StartMBB)
 | |
|       .addReg(NextCountReg).addMBB(NextMBB);
 | |
|     if (Opcode == SystemZ::MVC)
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
 | |
|         .addImm(SystemZ::PFD_WRITE)
 | |
|         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
 | |
|     BuildMI(MBB, DL, TII->get(Opcode))
 | |
|       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
 | |
|       .addReg(ThisSrcReg).addImm(SrcDisp);
 | |
|     if (EndMBB) {
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
 | |
|         .addMBB(EndMBB);
 | |
|       MBB->addSuccessor(EndMBB);
 | |
|       MBB->addSuccessor(NextMBB);
 | |
|     }
 | |
| 
 | |
|     // NextMBB:
 | |
|     //   %NextDestReg = LA 256(%ThisDestReg)
 | |
|     //   %NextSrcReg = LA 256(%ThisSrcReg)
 | |
|     //   %NextCountReg = AGHI %ThisCountReg, -1
 | |
|     //   CGHI %NextCountReg, 0
 | |
|     //   JLH LoopMBB
 | |
|     //   # fall through to DoneMMB
 | |
|     //
 | |
|     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
 | |
|     MBB = NextMBB;
 | |
| 
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
 | |
|       .addReg(ThisDestReg).addImm(256).addReg(0);
 | |
|     if (!HaveSingleBase)
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
 | |
|         .addReg(ThisSrcReg).addImm(256).addReg(0);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
 | |
|       .addReg(ThisCountReg).addImm(-1);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
 | |
|       .addReg(NextCountReg).addImm(0);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
 | |
|       .addMBB(LoopMBB);
 | |
|     MBB->addSuccessor(LoopMBB);
 | |
|     MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|     DestBase = MachineOperand::CreateReg(NextDestReg, false);
 | |
|     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
 | |
|     Length &= 255;
 | |
|     MBB = DoneMBB;
 | |
|   }
 | |
|   // Handle any remaining bytes with straight-line code.
 | |
|   while (Length > 0) {
 | |
|     uint64_t ThisLength = std::min(Length, uint64_t(256));
 | |
|     // The previous iteration might have created out-of-range displacements.
 | |
|     // Apply them using LAY if so.
 | |
|     if (!isUInt<12>(DestDisp)) {
 | |
|       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
 | |
|       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
 | |
|         .addOperand(DestBase).addImm(DestDisp).addReg(0);
 | |
|       DestBase = MachineOperand::CreateReg(Reg, false);
 | |
|       DestDisp = 0;
 | |
|     }
 | |
|     if (!isUInt<12>(SrcDisp)) {
 | |
|       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
 | |
|       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
 | |
|         .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
 | |
|       SrcBase = MachineOperand::CreateReg(Reg, false);
 | |
|       SrcDisp = 0;
 | |
|     }
 | |
|     BuildMI(*MBB, MI, DL, TII->get(Opcode))
 | |
|       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
 | |
|       .addOperand(SrcBase).addImm(SrcDisp);
 | |
|     DestDisp += ThisLength;
 | |
|     SrcDisp += ThisLength;
 | |
|     Length -= ThisLength;
 | |
|     // If there's another CLC to go, branch to the end if a difference
 | |
|     // was found.
 | |
|     if (EndMBB && Length > 0) {
 | |
|       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
 | |
|         .addMBB(EndMBB);
 | |
|       MBB->addSuccessor(EndMBB);
 | |
|       MBB->addSuccessor(NextMBB);
 | |
|       MBB = NextMBB;
 | |
|     }
 | |
|   }
 | |
|   if (EndMBB) {
 | |
|     MBB->addSuccessor(EndMBB);
 | |
|     MBB = EndMBB;
 | |
|     MBB->addLiveIn(SystemZ::CC);
 | |
|   }
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| // Decompose string pseudo-instruction MI into a loop that continually performs
 | |
| // Opcode until CC != 3.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
 | |
|                                          MachineBasicBlock *MBB,
 | |
|                                          unsigned Opcode) const {
 | |
|   const SystemZInstrInfo *TII = TM.getInstrInfo();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|   uint64_t End1Reg   = MI->getOperand(0).getReg();
 | |
|   uint64_t Start1Reg = MI->getOperand(1).getReg();
 | |
|   uint64_t Start2Reg = MI->getOperand(2).getReg();
 | |
|   uint64_t CharReg   = MI->getOperand(3).getReg();
 | |
| 
 | |
|   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
 | |
|   uint64_t This1Reg = MRI.createVirtualRegister(RC);
 | |
|   uint64_t This2Reg = MRI.createVirtualRegister(RC);
 | |
|   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
 | |
|   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
 | |
|   //   R0W = %CharReg
 | |
|   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0W
 | |
|   //   JO LoopMBB
 | |
|   //   # fall through to DoneMMB
 | |
|   //
 | |
|   // The load of R0W can be hoisted by post-RA LICM.
 | |
|   MBB = LoopMBB;
 | |
| 
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
 | |
|     .addReg(Start1Reg).addMBB(StartMBB)
 | |
|     .addReg(End1Reg).addMBB(LoopMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
 | |
|     .addReg(Start2Reg).addMBB(StartMBB)
 | |
|     .addReg(End2Reg).addMBB(LoopMBB);
 | |
|   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0W).addReg(CharReg);
 | |
|   BuildMI(MBB, DL, TII->get(Opcode))
 | |
|     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
 | |
|     .addReg(This1Reg).addReg(This2Reg);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   DoneMBB->addLiveIn(SystemZ::CC);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *SystemZTargetLowering::
 | |
| EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case SystemZ::Select32:
 | |
|   case SystemZ::SelectF32:
 | |
|   case SystemZ::Select64:
 | |
|   case SystemZ::SelectF64:
 | |
|   case SystemZ::SelectF128:
 | |
|     return emitSelect(MI, MBB);
 | |
| 
 | |
|   case SystemZ::CondStore8_32:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
 | |
|   case SystemZ::CondStore8_32Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
 | |
|   case SystemZ::CondStore16_32:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
 | |
|   case SystemZ::CondStore16_32Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
 | |
|   case SystemZ::CondStore32_32:
 | |
|     return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
 | |
|   case SystemZ::CondStore32_32Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
 | |
|   case SystemZ::CondStore8:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
 | |
|   case SystemZ::CondStore8Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
 | |
|   case SystemZ::CondStore16:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
 | |
|   case SystemZ::CondStore16Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
 | |
|   case SystemZ::CondStore32:
 | |
|     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
 | |
|   case SystemZ::CondStore32Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
 | |
|   case SystemZ::CondStore64:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
 | |
|   case SystemZ::CondStore64Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
 | |
|   case SystemZ::CondStoreF32:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
 | |
|   case SystemZ::CondStoreF32Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
 | |
|   case SystemZ::CondStoreF64:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
 | |
|   case SystemZ::CondStoreF64Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
 | |
| 
 | |
|   case SystemZ::AEXT128_64:
 | |
|     return emitExt128(MI, MBB, false, SystemZ::subreg_low);
 | |
|   case SystemZ::ZEXT128_32:
 | |
|     return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
 | |
|   case SystemZ::ZEXT128_64:
 | |
|     return emitExt128(MI, MBB, true, SystemZ::subreg_low);
 | |
| 
 | |
|   case SystemZ::ATOMIC_SWAPW:
 | |
|     return emitAtomicLoadBinary(MI, MBB, 0, 0);
 | |
|   case SystemZ::ATOMIC_SWAP_32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, 0, 32);
 | |
|   case SystemZ::ATOMIC_SWAP_64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, 0, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_AR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_AFI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_AR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_AHI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_AFI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_AGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_AGHI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_AGFI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_SR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_SR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_SGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_NR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_NILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_NR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NILL32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NILH32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NILF32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NILL:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHL:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_OR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_OILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_OR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OILL32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OILH32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OILF32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OILL:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OIHL:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OIHH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OIHF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_XR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_XILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_XR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_XILF32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_XGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_XILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_XIHF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_NRi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
 | |
|   case SystemZ::ATOMIC_LOADW_NILHi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NRi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILL32i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILH32i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILF32i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NGRi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILLi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILHi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHLi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHHi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILFi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHFi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_MIN:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_MIN_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_MIN_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_MAX:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_MAX_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_MAX_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_UMIN:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_UMIN_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_UMIN_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_UMAX:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_UMAX_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_UMAX_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_CMP_SWAPW:
 | |
|     return emitAtomicCmpSwapW(MI, MBB);
 | |
|   case SystemZ::MVCSequence:
 | |
|   case SystemZ::MVCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
 | |
|   case SystemZ::NCSequence:
 | |
|   case SystemZ::NCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
 | |
|   case SystemZ::OCSequence:
 | |
|   case SystemZ::OCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
 | |
|   case SystemZ::XCSequence:
 | |
|   case SystemZ::XCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
 | |
|   case SystemZ::CLCSequence:
 | |
|   case SystemZ::CLCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
 | |
|   case SystemZ::CLSTLoop:
 | |
|     return emitStringWrapper(MI, MBB, SystemZ::CLST);
 | |
|   case SystemZ::MVSTLoop:
 | |
|     return emitStringWrapper(MI, MBB, SystemZ::MVST);
 | |
|   case SystemZ::SRSTLoop:
 | |
|     return emitStringWrapper(MI, MBB, SystemZ::SRST);
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   }
 | |
| }
 |