mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185606 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3591 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3591 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the CodeGenDAGPatterns class, which is used to read and
 | |
| // represent the patterns present in a .td file for instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenDAGPatterns.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include <algorithm>
 | |
| #include <cstdio>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  EEVT::TypeSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static inline bool isInteger(MVT::SimpleValueType VT) {
 | |
|   return EVT(VT).isInteger();
 | |
| }
 | |
| static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
 | |
|   return EVT(VT).isFloatingPoint();
 | |
| }
 | |
| static inline bool isVector(MVT::SimpleValueType VT) {
 | |
|   return EVT(VT).isVector();
 | |
| }
 | |
| static inline bool isScalar(MVT::SimpleValueType VT) {
 | |
|   return !EVT(VT).isVector();
 | |
| }
 | |
| 
 | |
| EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
 | |
|   if (VT == MVT::iAny)
 | |
|     EnforceInteger(TP);
 | |
|   else if (VT == MVT::fAny)
 | |
|     EnforceFloatingPoint(TP);
 | |
|   else if (VT == MVT::vAny)
 | |
|     EnforceVector(TP);
 | |
|   else {
 | |
|     assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
 | |
|             VT == MVT::iPTRAny) && "Not a concrete type!");
 | |
|     TypeVec.push_back(VT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
 | |
|   assert(!VTList.empty() && "empty list?");
 | |
|   TypeVec.append(VTList.begin(), VTList.end());
 | |
| 
 | |
|   if (!VTList.empty())
 | |
|     assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
 | |
|            VTList[0] != MVT::fAny);
 | |
| 
 | |
|   // Verify no duplicates.
 | |
|   array_pod_sort(TypeVec.begin(), TypeVec.end());
 | |
|   assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
 | |
| }
 | |
| 
 | |
| /// FillWithPossibleTypes - Set to all legal types and return true, only valid
 | |
| /// on completely unknown type sets.
 | |
| bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
 | |
|                                           bool (*Pred)(MVT::SimpleValueType),
 | |
|                                           const char *PredicateName) {
 | |
|   assert(isCompletelyUnknown());
 | |
|   ArrayRef<MVT::SimpleValueType> LegalTypes =
 | |
|     TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
 | |
| 
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
 | |
|     if (Pred == 0 || Pred(LegalTypes[i]))
 | |
|       TypeVec.push_back(LegalTypes[i]);
 | |
| 
 | |
|   // If we have nothing that matches the predicate, bail out.
 | |
|   if (TypeVec.empty()) {
 | |
|     TP.error("Type inference contradiction found, no " +
 | |
|              std::string(PredicateName) + " types found");
 | |
|     return false;
 | |
|   }
 | |
|   // No need to sort with one element.
 | |
|   if (TypeVec.size() == 1) return true;
 | |
| 
 | |
|   // Remove duplicates.
 | |
|   array_pod_sort(TypeVec.begin(), TypeVec.end());
 | |
|   TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
 | |
| /// integer value type.
 | |
| bool EEVT::TypeSet::hasIntegerTypes() const {
 | |
|   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
 | |
|     if (isInteger(TypeVec[i]))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
 | |
| /// a floating point value type.
 | |
| bool EEVT::TypeSet::hasFloatingPointTypes() const {
 | |
|   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
 | |
|     if (isFloatingPoint(TypeVec[i]))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
 | |
| /// value type.
 | |
| bool EEVT::TypeSet::hasVectorTypes() const {
 | |
|   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
 | |
|     if (isVector(TypeVec[i]))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| std::string EEVT::TypeSet::getName() const {
 | |
|   if (TypeVec.empty()) return "<empty>";
 | |
| 
 | |
|   std::string Result;
 | |
| 
 | |
|   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
 | |
|     std::string VTName = llvm::getEnumName(TypeVec[i]);
 | |
|     // Strip off MVT:: prefix if present.
 | |
|     if (VTName.substr(0,5) == "MVT::")
 | |
|       VTName = VTName.substr(5);
 | |
|     if (i) Result += ':';
 | |
|     Result += VTName;
 | |
|   }
 | |
| 
 | |
|   if (TypeVec.size() == 1)
 | |
|     return Result;
 | |
|   return "{" + Result + "}";
 | |
| }
 | |
| 
 | |
| /// MergeInTypeInfo - This merges in type information from the specified
 | |
| /// argument.  If 'this' changes, it returns true.  If the two types are
 | |
| /// contradictory (e.g. merge f32 into i32) then this flags an error.
 | |
| bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
 | |
|   if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   if (isCompletelyUnknown()) {
 | |
|     *this = InVT;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
 | |
| 
 | |
|   // Handle the abstract cases, seeing if we can resolve them better.
 | |
|   switch (TypeVec[0]) {
 | |
|   default: break;
 | |
|   case MVT::iPTR:
 | |
|   case MVT::iPTRAny:
 | |
|     if (InVT.hasIntegerTypes()) {
 | |
|       EEVT::TypeSet InCopy(InVT);
 | |
|       InCopy.EnforceInteger(TP);
 | |
|       InCopy.EnforceScalar(TP);
 | |
| 
 | |
|       if (InCopy.isConcrete()) {
 | |
|         // If the RHS has one integer type, upgrade iPTR to i32.
 | |
|         TypeVec[0] = InVT.TypeVec[0];
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // If the input has multiple scalar integers, this doesn't add any info.
 | |
|       if (!InCopy.isCompletelyUnknown())
 | |
|         return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If the input constraint is iAny/iPTR and this is an integer type list,
 | |
|   // remove non-integer types from the list.
 | |
|   if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
 | |
|       hasIntegerTypes()) {
 | |
|     bool MadeChange = EnforceInteger(TP);
 | |
| 
 | |
|     // If we're merging in iPTR/iPTRAny and the node currently has a list of
 | |
|     // multiple different integer types, replace them with a single iPTR.
 | |
|     if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
 | |
|         TypeVec.size() != 1) {
 | |
|       TypeVec.resize(1);
 | |
|       TypeVec[0] = InVT.TypeVec[0];
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   // If this is a type list and the RHS is a typelist as well, eliminate entries
 | |
|   // from this list that aren't in the other one.
 | |
|   bool MadeChange = false;
 | |
|   TypeSet InputSet(*this);
 | |
| 
 | |
|   for (unsigned i = 0; i != TypeVec.size(); ++i) {
 | |
|     bool InInVT = false;
 | |
|     for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
 | |
|       if (TypeVec[i] == InVT.TypeVec[j]) {
 | |
|         InInVT = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (InInVT) continue;
 | |
|     TypeVec.erase(TypeVec.begin()+i--);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   // If we removed all of our types, we have a type contradiction.
 | |
|   if (!TypeVec.empty())
 | |
|     return MadeChange;
 | |
| 
 | |
|   // FIXME: Really want an SMLoc here!
 | |
|   TP.error("Type inference contradiction found, merging '" +
 | |
|            InVT.getName() + "' into '" + InputSet.getName() + "'");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// EnforceInteger - Remove all non-integer types from this set.
 | |
| bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   // If we know nothing, then get the full set.
 | |
|   if (TypeVec.empty())
 | |
|     return FillWithPossibleTypes(TP, isInteger, "integer");
 | |
|   if (!hasFloatingPointTypes())
 | |
|     return false;
 | |
| 
 | |
|   TypeSet InputSet(*this);
 | |
| 
 | |
|   // Filter out all the fp types.
 | |
|   for (unsigned i = 0; i != TypeVec.size(); ++i)
 | |
|     if (!isInteger(TypeVec[i]))
 | |
|       TypeVec.erase(TypeVec.begin()+i--);
 | |
| 
 | |
|   if (TypeVec.empty()) {
 | |
|     TP.error("Type inference contradiction found, '" +
 | |
|              InputSet.getName() + "' needs to be integer");
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EnforceFloatingPoint - Remove all integer types from this set.
 | |
| bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
|   // If we know nothing, then get the full set.
 | |
|   if (TypeVec.empty())
 | |
|     return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
 | |
| 
 | |
|   if (!hasIntegerTypes())
 | |
|     return false;
 | |
| 
 | |
|   TypeSet InputSet(*this);
 | |
| 
 | |
|   // Filter out all the fp types.
 | |
|   for (unsigned i = 0; i != TypeVec.size(); ++i)
 | |
|     if (!isFloatingPoint(TypeVec[i]))
 | |
|       TypeVec.erase(TypeVec.begin()+i--);
 | |
| 
 | |
|   if (TypeVec.empty()) {
 | |
|     TP.error("Type inference contradiction found, '" +
 | |
|              InputSet.getName() + "' needs to be floating point");
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EnforceScalar - Remove all vector types from this.
 | |
| bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   // If we know nothing, then get the full set.
 | |
|   if (TypeVec.empty())
 | |
|     return FillWithPossibleTypes(TP, isScalar, "scalar");
 | |
| 
 | |
|   if (!hasVectorTypes())
 | |
|     return false;
 | |
| 
 | |
|   TypeSet InputSet(*this);
 | |
| 
 | |
|   // Filter out all the vector types.
 | |
|   for (unsigned i = 0; i != TypeVec.size(); ++i)
 | |
|     if (!isScalar(TypeVec[i]))
 | |
|       TypeVec.erase(TypeVec.begin()+i--);
 | |
| 
 | |
|   if (TypeVec.empty()) {
 | |
|     TP.error("Type inference contradiction found, '" +
 | |
|              InputSet.getName() + "' needs to be scalar");
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EnforceVector - Remove all vector types from this.
 | |
| bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   // If we know nothing, then get the full set.
 | |
|   if (TypeVec.empty())
 | |
|     return FillWithPossibleTypes(TP, isVector, "vector");
 | |
| 
 | |
|   TypeSet InputSet(*this);
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Filter out all the scalar types.
 | |
|   for (unsigned i = 0; i != TypeVec.size(); ++i)
 | |
|     if (!isVector(TypeVec[i])) {
 | |
|       TypeVec.erase(TypeVec.begin()+i--);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|   if (TypeVec.empty()) {
 | |
|     TP.error("Type inference contradiction found, '" +
 | |
|              InputSet.getName() + "' needs to be a vector");
 | |
|     return false;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
 | |
| /// this an other based on this information.
 | |
| bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   // Both operands must be integer or FP, but we don't care which.
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   if (isCompletelyUnknown())
 | |
|     MadeChange = FillWithPossibleTypes(TP);
 | |
| 
 | |
|   if (Other.isCompletelyUnknown())
 | |
|     MadeChange = Other.FillWithPossibleTypes(TP);
 | |
| 
 | |
|   // If one side is known to be integer or known to be FP but the other side has
 | |
|   // no information, get at least the type integrality info in there.
 | |
|   if (!hasFloatingPointTypes())
 | |
|     MadeChange |= Other.EnforceInteger(TP);
 | |
|   else if (!hasIntegerTypes())
 | |
|     MadeChange |= Other.EnforceFloatingPoint(TP);
 | |
|   if (!Other.hasFloatingPointTypes())
 | |
|     MadeChange |= EnforceInteger(TP);
 | |
|   else if (!Other.hasIntegerTypes())
 | |
|     MadeChange |= EnforceFloatingPoint(TP);
 | |
| 
 | |
|   assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
 | |
|          "Should have a type list now");
 | |
| 
 | |
|   // If one contains vectors but the other doesn't pull vectors out.
 | |
|   if (!hasVectorTypes())
 | |
|     MadeChange |= Other.EnforceScalar(TP);
 | |
|   if (!hasVectorTypes())
 | |
|     MadeChange |= EnforceScalar(TP);
 | |
| 
 | |
|   if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
 | |
|     // If we are down to concrete types, this code does not currently
 | |
|     // handle nodes which have multiple types, where some types are
 | |
|     // integer, and some are fp.  Assert that this is not the case.
 | |
|     assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
 | |
|            !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
 | |
|            "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
 | |
| 
 | |
|     // Otherwise, if these are both vector types, either this vector
 | |
|     // must have a larger bitsize than the other, or this element type
 | |
|     // must be larger than the other.
 | |
|     EVT Type(TypeVec[0]);
 | |
|     EVT OtherType(Other.TypeVec[0]);
 | |
| 
 | |
|     if (hasVectorTypes() && Other.hasVectorTypes()) {
 | |
|       if (Type.getSizeInBits() >= OtherType.getSizeInBits())
 | |
|         if (Type.getVectorElementType().getSizeInBits()
 | |
|             >= OtherType.getVectorElementType().getSizeInBits()) {
 | |
|           TP.error("Type inference contradiction found, '" +
 | |
|                    getName() + "' element type not smaller than '" +
 | |
|                    Other.getName() +"'!");
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|       // For scalar types, the bitsize of this type must be larger
 | |
|       // than that of the other.
 | |
|       if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
 | |
|         TP.error("Type inference contradiction found, '" +
 | |
|                  getName() + "' is not smaller than '" +
 | |
|                  Other.getName() +"'!");
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
|   
 | |
| 
 | |
|   // Handle int and fp as disjoint sets.  This won't work for patterns
 | |
|   // that have mixed fp/int types but those are likely rare and would
 | |
|   // not have been accepted by this code previously.
 | |
| 
 | |
|   // Okay, find the smallest type from the current set and remove it from the
 | |
|   // largest set.
 | |
|   MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
 | |
|   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
 | |
|     if (isInteger(TypeVec[i])) {
 | |
|       SmallestInt = TypeVec[i];
 | |
|       break;
 | |
|     }
 | |
|   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
 | |
|     if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
 | |
|       SmallestInt = TypeVec[i];
 | |
| 
 | |
|   MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
 | |
|   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
 | |
|     if (isFloatingPoint(TypeVec[i])) {
 | |
|       SmallestFP = TypeVec[i];
 | |
|       break;
 | |
|     }
 | |
|   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
 | |
|     if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
 | |
|       SmallestFP = TypeVec[i];
 | |
| 
 | |
|   int OtherIntSize = 0;
 | |
|   int OtherFPSize = 0;
 | |
|   for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
 | |
|          Other.TypeVec.begin();
 | |
|        TVI != Other.TypeVec.end();
 | |
|        /* NULL */) {
 | |
|     if (isInteger(*TVI)) {
 | |
|       ++OtherIntSize;
 | |
|       if (*TVI == SmallestInt) {
 | |
|         TVI = Other.TypeVec.erase(TVI);
 | |
|         --OtherIntSize;
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     else if (isFloatingPoint(*TVI)) {
 | |
|       ++OtherFPSize;
 | |
|       if (*TVI == SmallestFP) {
 | |
|         TVI = Other.TypeVec.erase(TVI);
 | |
|         --OtherFPSize;
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     ++TVI;
 | |
|   }
 | |
| 
 | |
|   // If this is the only type in the large set, the constraint can never be
 | |
|   // satisfied.
 | |
|   if ((Other.hasIntegerTypes() && OtherIntSize == 0)
 | |
|       || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
 | |
|     TP.error("Type inference contradiction found, '" +
 | |
|              Other.getName() + "' has nothing larger than '" + getName() +"'!");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, find the largest type in the Other set and remove it from the
 | |
|   // current set.
 | |
|   MVT::SimpleValueType LargestInt = MVT::Other;
 | |
|   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
 | |
|     if (isInteger(Other.TypeVec[i])) {
 | |
|       LargestInt = Other.TypeVec[i];
 | |
|       break;
 | |
|     }
 | |
|   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
 | |
|     if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
 | |
|       LargestInt = Other.TypeVec[i];
 | |
| 
 | |
|   MVT::SimpleValueType LargestFP = MVT::Other;
 | |
|   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
 | |
|     if (isFloatingPoint(Other.TypeVec[i])) {
 | |
|       LargestFP = Other.TypeVec[i];
 | |
|       break;
 | |
|     }
 | |
|   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
 | |
|     if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
 | |
|       LargestFP = Other.TypeVec[i];
 | |
| 
 | |
|   int IntSize = 0;
 | |
|   int FPSize = 0;
 | |
|   for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
 | |
|          TypeVec.begin();
 | |
|        TVI != TypeVec.end();
 | |
|        /* NULL */) {
 | |
|     if (isInteger(*TVI)) {
 | |
|       ++IntSize;
 | |
|       if (*TVI == LargestInt) {
 | |
|         TVI = TypeVec.erase(TVI);
 | |
|         --IntSize;
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     else if (isFloatingPoint(*TVI)) {
 | |
|       ++FPSize;
 | |
|       if (*TVI == LargestFP) {
 | |
|         TVI = TypeVec.erase(TVI);
 | |
|         --FPSize;
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     ++TVI;
 | |
|   }
 | |
| 
 | |
|   // If this is the only type in the small set, the constraint can never be
 | |
|   // satisfied.
 | |
|   if ((hasIntegerTypes() && IntSize == 0)
 | |
|       || (hasFloatingPointTypes() && FPSize == 0)) {
 | |
|     TP.error("Type inference contradiction found, '" +
 | |
|              getName() + "' has nothing smaller than '" + Other.getName()+"'!");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
 | |
| /// whose element is specified by VTOperand.
 | |
| bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
 | |
|                                            TreePattern &TP) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   // "This" must be a vector and "VTOperand" must be a scalar.
 | |
|   bool MadeChange = false;
 | |
|   MadeChange |= EnforceVector(TP);
 | |
|   MadeChange |= VTOperand.EnforceScalar(TP);
 | |
| 
 | |
|   // If we know the vector type, it forces the scalar to agree.
 | |
|   if (isConcrete()) {
 | |
|     EVT IVT = getConcrete();
 | |
|     IVT = IVT.getVectorElementType();
 | |
|     return MadeChange |
 | |
|       VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
 | |
|   }
 | |
| 
 | |
|   // If the scalar type is known, filter out vector types whose element types
 | |
|   // disagree.
 | |
|   if (!VTOperand.isConcrete())
 | |
|     return MadeChange;
 | |
| 
 | |
|   MVT::SimpleValueType VT = VTOperand.getConcrete();
 | |
| 
 | |
|   TypeSet InputSet(*this);
 | |
| 
 | |
|   // Filter out all the types which don't have the right element type.
 | |
|   for (unsigned i = 0; i != TypeVec.size(); ++i) {
 | |
|     assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
 | |
|     if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
 | |
|       TypeVec.erase(TypeVec.begin()+i--);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
 | |
|     TP.error("Type inference contradiction found, forcing '" +
 | |
|              InputSet.getName() + "' to have a vector element");
 | |
|     return false;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
 | |
| /// vector type specified by VTOperand.
 | |
| bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
 | |
|                                                  TreePattern &TP) {
 | |
|   // "This" must be a vector and "VTOperand" must be a vector.
 | |
|   bool MadeChange = false;
 | |
|   MadeChange |= EnforceVector(TP);
 | |
|   MadeChange |= VTOperand.EnforceVector(TP);
 | |
| 
 | |
|   // "This" must be larger than "VTOperand."
 | |
|   MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
 | |
| 
 | |
|   // If we know the vector type, it forces the scalar types to agree.
 | |
|   if (isConcrete()) {
 | |
|     EVT IVT = getConcrete();
 | |
|     IVT = IVT.getVectorElementType();
 | |
| 
 | |
|     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
 | |
|     MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
 | |
|   } else if (VTOperand.isConcrete()) {
 | |
|     EVT IVT = VTOperand.getConcrete();
 | |
|     IVT = IVT.getVectorElementType();
 | |
| 
 | |
|     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
 | |
|     MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helpers for working with extended types.
 | |
| 
 | |
| /// Dependent variable map for CodeGenDAGPattern variant generation
 | |
| typedef std::map<std::string, int> DepVarMap;
 | |
| 
 | |
| /// Const iterator shorthand for DepVarMap
 | |
| typedef DepVarMap::const_iterator DepVarMap_citer;
 | |
| 
 | |
| static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
 | |
|   if (N->isLeaf()) {
 | |
|     if (isa<DefInit>(N->getLeafValue()))
 | |
|       DepMap[N->getName()]++;
 | |
|   } else {
 | |
|     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|       FindDepVarsOf(N->getChild(i), DepMap);
 | |
|   }
 | |
| }
 | |
|   
 | |
| /// Find dependent variables within child patterns
 | |
| static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
 | |
|   DepVarMap depcounts;
 | |
|   FindDepVarsOf(N, depcounts);
 | |
|   for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
 | |
|     if (i->second > 1)            // std::pair<std::string, int>
 | |
|       DepVars.insert(i->first);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Dump the dependent variable set:
 | |
| static void DumpDepVars(MultipleUseVarSet &DepVars) {
 | |
|   if (DepVars.empty()) {
 | |
|     DEBUG(errs() << "<empty set>");
 | |
|   } else {
 | |
|     DEBUG(errs() << "[ ");
 | |
|     for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
 | |
|          e = DepVars.end(); i != e; ++i) {
 | |
|       DEBUG(errs() << (*i) << " ");
 | |
|     }
 | |
|     DEBUG(errs() << "]");
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePredicateFn Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
 | |
| TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
 | |
|   assert((getPredCode().empty() || getImmCode().empty()) &&
 | |
|         ".td file corrupt: can't have a node predicate *and* an imm predicate");
 | |
| }
 | |
| 
 | |
| std::string TreePredicateFn::getPredCode() const {
 | |
|   return PatFragRec->getRecord()->getValueAsString("PredicateCode");
 | |
| }
 | |
| 
 | |
| std::string TreePredicateFn::getImmCode() const {
 | |
|   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isAlwaysTrue - Return true if this is a noop predicate.
 | |
| bool TreePredicateFn::isAlwaysTrue() const {
 | |
|   return getPredCode().empty() && getImmCode().empty();
 | |
| }
 | |
| 
 | |
| /// Return the name to use in the generated code to reference this, this is
 | |
| /// "Predicate_foo" if from a pattern fragment "foo".
 | |
| std::string TreePredicateFn::getFnName() const {
 | |
|   return "Predicate_" + PatFragRec->getRecord()->getName();
 | |
| }
 | |
| 
 | |
| /// getCodeToRunOnSDNode - Return the code for the function body that
 | |
| /// evaluates this predicate.  The argument is expected to be in "Node",
 | |
| /// not N.  This handles casting and conversion to a concrete node type as
 | |
| /// appropriate.
 | |
| std::string TreePredicateFn::getCodeToRunOnSDNode() const {
 | |
|   // Handle immediate predicates first.
 | |
|   std::string ImmCode = getImmCode();
 | |
|   if (!ImmCode.empty()) {
 | |
|     std::string Result =
 | |
|       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
 | |
|     return Result + ImmCode;
 | |
|   }
 | |
|   
 | |
|   // Handle arbitrary node predicates.
 | |
|   assert(!getPredCode().empty() && "Don't have any predicate code!");
 | |
|   std::string ClassName;
 | |
|   if (PatFragRec->getOnlyTree()->isLeaf())
 | |
|     ClassName = "SDNode";
 | |
|   else {
 | |
|     Record *Op = PatFragRec->getOnlyTree()->getOperator();
 | |
|     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
 | |
|   }
 | |
|   std::string Result;
 | |
|   if (ClassName == "SDNode")
 | |
|     Result = "    SDNode *N = Node;\n";
 | |
|   else
 | |
|     Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
 | |
|   
 | |
|   return Result + getPredCode();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PatternToMatch implementation
 | |
| //
 | |
| 
 | |
| 
 | |
| /// getPatternSize - Return the 'size' of this pattern.  We want to match large
 | |
| /// patterns before small ones.  This is used to determine the size of a
 | |
| /// pattern.
 | |
| static unsigned getPatternSize(const TreePatternNode *P,
 | |
|                                const CodeGenDAGPatterns &CGP) {
 | |
|   unsigned Size = 3;  // The node itself.
 | |
|   // If the root node is a ConstantSDNode, increases its size.
 | |
|   // e.g. (set R32:$dst, 0).
 | |
|   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
 | |
|     Size += 2;
 | |
| 
 | |
|   // FIXME: This is a hack to statically increase the priority of patterns
 | |
|   // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
 | |
|   // Later we can allow complexity / cost for each pattern to be (optionally)
 | |
|   // specified. To get best possible pattern match we'll need to dynamically
 | |
|   // calculate the complexity of all patterns a dag can potentially map to.
 | |
|   const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
 | |
|   if (AM)
 | |
|     Size += AM->getNumOperands() * 3;
 | |
| 
 | |
|   // If this node has some predicate function that must match, it adds to the
 | |
|   // complexity of this node.
 | |
|   if (!P->getPredicateFns().empty())
 | |
|     ++Size;
 | |
| 
 | |
|   // Count children in the count if they are also nodes.
 | |
|   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = P->getChild(i);
 | |
|     if (!Child->isLeaf() && Child->getNumTypes() &&
 | |
|         Child->getType(0) != MVT::Other)
 | |
|       Size += getPatternSize(Child, CGP);
 | |
|     else if (Child->isLeaf()) {
 | |
|       if (isa<IntInit>(Child->getLeafValue()))
 | |
|         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
 | |
|       else if (Child->getComplexPatternInfo(CGP))
 | |
|         Size += getPatternSize(Child, CGP);
 | |
|       else if (!Child->getPredicateFns().empty())
 | |
|         ++Size;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// Compute the complexity metric for the input pattern.  This roughly
 | |
| /// corresponds to the number of nodes that are covered.
 | |
| unsigned PatternToMatch::
 | |
| getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
 | |
|   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getPredicateCheck - Return a single string containing all of this
 | |
| /// pattern's predicates concatenated with "&&" operators.
 | |
| ///
 | |
| std::string PatternToMatch::getPredicateCheck() const {
 | |
|   std::string PredicateCheck;
 | |
|   for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
 | |
|     if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
 | |
|       Record *Def = Pred->getDef();
 | |
|       if (!Def->isSubClassOf("Predicate")) {
 | |
| #ifndef NDEBUG
 | |
|         Def->dump();
 | |
| #endif
 | |
|         llvm_unreachable("Unknown predicate type!");
 | |
|       }
 | |
|       if (!PredicateCheck.empty())
 | |
|         PredicateCheck += " && ";
 | |
|       PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return PredicateCheck;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDTypeConstraint implementation
 | |
| //
 | |
| 
 | |
| SDTypeConstraint::SDTypeConstraint(Record *R) {
 | |
|   OperandNo = R->getValueAsInt("OperandNum");
 | |
| 
 | |
|   if (R->isSubClassOf("SDTCisVT")) {
 | |
|     ConstraintType = SDTCisVT;
 | |
|     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
 | |
|     if (x.SDTCisVT_Info.VT == MVT::isVoid)
 | |
|       PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
 | |
| 
 | |
|   } else if (R->isSubClassOf("SDTCisPtrTy")) {
 | |
|     ConstraintType = SDTCisPtrTy;
 | |
|   } else if (R->isSubClassOf("SDTCisInt")) {
 | |
|     ConstraintType = SDTCisInt;
 | |
|   } else if (R->isSubClassOf("SDTCisFP")) {
 | |
|     ConstraintType = SDTCisFP;
 | |
|   } else if (R->isSubClassOf("SDTCisVec")) {
 | |
|     ConstraintType = SDTCisVec;
 | |
|   } else if (R->isSubClassOf("SDTCisSameAs")) {
 | |
|     ConstraintType = SDTCisSameAs;
 | |
|     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisVTSmallerThanOp;
 | |
|     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisOpSmallerThanOp;
 | |
|     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
 | |
|       R->getValueAsInt("BigOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
 | |
|     ConstraintType = SDTCisEltOfVec;
 | |
|     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
 | |
|   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
 | |
|     ConstraintType = SDTCisSubVecOfVec;
 | |
|     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOpNum");
 | |
|   } else {
 | |
|     errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree
 | |
| /// N, and the result number in ResNo.
 | |
| static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
 | |
|                                       const SDNodeInfo &NodeInfo,
 | |
|                                       unsigned &ResNo) {
 | |
|   unsigned NumResults = NodeInfo.getNumResults();
 | |
|   if (OpNo < NumResults) {
 | |
|     ResNo = OpNo;
 | |
|     return N;
 | |
|   }
 | |
| 
 | |
|   OpNo -= NumResults;
 | |
| 
 | |
|   if (OpNo >= N->getNumChildren()) {
 | |
|     errs() << "Invalid operand number in type constraint "
 | |
|            << (OpNo+NumResults) << " ";
 | |
|     N->dump();
 | |
|     errs() << '\n';
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   return N->getChild(OpNo);
 | |
| }
 | |
| 
 | |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | |
| /// constraint to the nodes operands.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, flag an error.
 | |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
 | |
|                                            const SDNodeInfo &NodeInfo,
 | |
|                                            TreePattern &TP) const {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResNo = 0; // The result number being referenced.
 | |
|   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
 | |
| 
 | |
|   switch (ConstraintType) {
 | |
|   case SDTCisVT:
 | |
|     // Operand must be a particular type.
 | |
|     return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
 | |
|   case SDTCisPtrTy:
 | |
|     // Operand must be same as target pointer type.
 | |
|     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
 | |
|   case SDTCisInt:
 | |
|     // Require it to be one of the legal integer VTs.
 | |
|     return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
 | |
|   case SDTCisFP:
 | |
|     // Require it to be one of the legal fp VTs.
 | |
|     return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
 | |
|   case SDTCisVec:
 | |
|     // Require it to be one of the legal vector VTs.
 | |
|     return NodeToApply->getExtType(ResNo).EnforceVector(TP);
 | |
|   case SDTCisSameAs: {
 | |
|     unsigned OResNo = 0;
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
 | |
|     return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
 | |
|            OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
 | |
|   }
 | |
|   case SDTCisVTSmallerThanOp: {
 | |
|     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
 | |
|     // have an integer type that is smaller than the VT.
 | |
|     if (!NodeToApply->isLeaf() ||
 | |
|         !isa<DefInit>(NodeToApply->getLeafValue()) ||
 | |
|         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
 | |
|                ->isSubClassOf("ValueType")) {
 | |
|       TP.error(N->getOperator()->getName() + " expects a VT operand!");
 | |
|       return false;
 | |
|     }
 | |
|     MVT::SimpleValueType VT =
 | |
|      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
 | |
| 
 | |
|     EEVT::TypeSet TypeListTmp(VT, TP);
 | |
| 
 | |
|     unsigned OResNo = 0;
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
 | |
|                     OResNo);
 | |
| 
 | |
|     return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
 | |
|   }
 | |
|   case SDTCisOpSmallerThanOp: {
 | |
|     unsigned BResNo = 0;
 | |
|     TreePatternNode *BigOperand =
 | |
|       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
 | |
|                     BResNo);
 | |
|     return NodeToApply->getExtType(ResNo).
 | |
|                   EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
 | |
|   }
 | |
|   case SDTCisEltOfVec: {
 | |
|     unsigned VResNo = 0;
 | |
|     TreePatternNode *VecOperand =
 | |
|       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
 | |
|                     VResNo);
 | |
| 
 | |
|     // Filter vector types out of VecOperand that don't have the right element
 | |
|     // type.
 | |
|     return VecOperand->getExtType(VResNo).
 | |
|       EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
 | |
|   }
 | |
|   case SDTCisSubVecOfVec: {
 | |
|     unsigned VResNo = 0;
 | |
|     TreePatternNode *BigVecOperand =
 | |
|       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
 | |
|                     VResNo);
 | |
| 
 | |
|     // Filter vector types out of BigVecOperand that don't have the
 | |
|     // right subvector type.
 | |
|     return BigVecOperand->getExtType(VResNo).
 | |
|       EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Invalid ConstraintType!");
 | |
| }
 | |
| 
 | |
| // Update the node type to match an instruction operand or result as specified
 | |
| // in the ins or outs lists on the instruction definition. Return true if the
 | |
| // type was actually changed.
 | |
| bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
 | |
|                                              Record *Operand,
 | |
|                                              TreePattern &TP) {
 | |
|   // The 'unknown' operand indicates that types should be inferred from the
 | |
|   // context.
 | |
|   if (Operand->isSubClassOf("unknown_class"))
 | |
|     return false;
 | |
| 
 | |
|   // The Operand class specifies a type directly.
 | |
|   if (Operand->isSubClassOf("Operand"))
 | |
|     return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
 | |
|                           TP);
 | |
| 
 | |
|   // PointerLikeRegClass has a type that is determined at runtime.
 | |
|   if (Operand->isSubClassOf("PointerLikeRegClass"))
 | |
|     return UpdateNodeType(ResNo, MVT::iPTR, TP);
 | |
| 
 | |
|   // Both RegisterClass and RegisterOperand operands derive their types from a
 | |
|   // register class def.
 | |
|   Record *RC = 0;
 | |
|   if (Operand->isSubClassOf("RegisterClass"))
 | |
|     RC = Operand;
 | |
|   else if (Operand->isSubClassOf("RegisterOperand"))
 | |
|     RC = Operand->getValueAsDef("RegClass");
 | |
| 
 | |
|   assert(RC && "Unknown operand type");
 | |
|   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
 | |
|   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDNodeInfo implementation
 | |
| //
 | |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
 | |
|   EnumName    = R->getValueAsString("Opcode");
 | |
|   SDClassName = R->getValueAsString("SDClass");
 | |
|   Record *TypeProfile = R->getValueAsDef("TypeProfile");
 | |
|   NumResults = TypeProfile->getValueAsInt("NumResults");
 | |
|   NumOperands = TypeProfile->getValueAsInt("NumOperands");
 | |
| 
 | |
|   // Parse the properties.
 | |
|   Properties = 0;
 | |
|   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
 | |
|   for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
 | |
|     if (PropList[i]->getName() == "SDNPCommutative") {
 | |
|       Properties |= 1 << SDNPCommutative;
 | |
|     } else if (PropList[i]->getName() == "SDNPAssociative") {
 | |
|       Properties |= 1 << SDNPAssociative;
 | |
|     } else if (PropList[i]->getName() == "SDNPHasChain") {
 | |
|       Properties |= 1 << SDNPHasChain;
 | |
|     } else if (PropList[i]->getName() == "SDNPOutGlue") {
 | |
|       Properties |= 1 << SDNPOutGlue;
 | |
|     } else if (PropList[i]->getName() == "SDNPInGlue") {
 | |
|       Properties |= 1 << SDNPInGlue;
 | |
|     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
 | |
|       Properties |= 1 << SDNPOptInGlue;
 | |
|     } else if (PropList[i]->getName() == "SDNPMayStore") {
 | |
|       Properties |= 1 << SDNPMayStore;
 | |
|     } else if (PropList[i]->getName() == "SDNPMayLoad") {
 | |
|       Properties |= 1 << SDNPMayLoad;
 | |
|     } else if (PropList[i]->getName() == "SDNPSideEffect") {
 | |
|       Properties |= 1 << SDNPSideEffect;
 | |
|     } else if (PropList[i]->getName() == "SDNPMemOperand") {
 | |
|       Properties |= 1 << SDNPMemOperand;
 | |
|     } else if (PropList[i]->getName() == "SDNPVariadic") {
 | |
|       Properties |= 1 << SDNPVariadic;
 | |
|     } else {
 | |
|       errs() << "Unknown SD Node property '" << PropList[i]->getName()
 | |
|              << "' on node '" << R->getName() << "'!\n";
 | |
|       exit(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Parse the type constraints.
 | |
|   std::vector<Record*> ConstraintList =
 | |
|     TypeProfile->getValueAsListOfDefs("Constraints");
 | |
|   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
 | |
| }
 | |
| 
 | |
| /// getKnownType - If the type constraints on this node imply a fixed type
 | |
| /// (e.g. all stores return void, etc), then return it as an
 | |
| /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
 | |
| MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
 | |
|   unsigned NumResults = getNumResults();
 | |
|   assert(NumResults <= 1 &&
 | |
|          "We only work with nodes with zero or one result so far!");
 | |
|   assert(ResNo == 0 && "Only handles single result nodes so far");
 | |
| 
 | |
|   for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
 | |
|     // Make sure that this applies to the correct node result.
 | |
|     if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
 | |
|       continue;
 | |
| 
 | |
|     switch (TypeConstraints[i].ConstraintType) {
 | |
|     default: break;
 | |
|     case SDTypeConstraint::SDTCisVT:
 | |
|       return TypeConstraints[i].x.SDTCisVT_Info.VT;
 | |
|     case SDTypeConstraint::SDTCisPtrTy:
 | |
|       return MVT::iPTR;
 | |
|     }
 | |
|   }
 | |
|   return MVT::Other;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePatternNode implementation
 | |
| //
 | |
| 
 | |
| TreePatternNode::~TreePatternNode() {
 | |
| #if 0 // FIXME: implement refcounted tree nodes!
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     delete getChild(i);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
 | |
|   if (Operator->getName() == "set" ||
 | |
|       Operator->getName() == "implicit")
 | |
|     return 0;  // All return nothing.
 | |
| 
 | |
|   if (Operator->isSubClassOf("Intrinsic"))
 | |
|     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
 | |
| 
 | |
|   if (Operator->isSubClassOf("SDNode"))
 | |
|     return CDP.getSDNodeInfo(Operator).getNumResults();
 | |
| 
 | |
|   if (Operator->isSubClassOf("PatFrag")) {
 | |
|     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
 | |
|     // the forward reference case where one pattern fragment references another
 | |
|     // before it is processed.
 | |
|     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
 | |
|       return PFRec->getOnlyTree()->getNumTypes();
 | |
| 
 | |
|     // Get the result tree.
 | |
|     DagInit *Tree = Operator->getValueAsDag("Fragment");
 | |
|     Record *Op = 0;
 | |
|     if (Tree)
 | |
|       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
 | |
|         Op = DI->getDef();
 | |
|     assert(Op && "Invalid Fragment");
 | |
|     return GetNumNodeResults(Op, CDP);
 | |
|   }
 | |
| 
 | |
|   if (Operator->isSubClassOf("Instruction")) {
 | |
|     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
 | |
| 
 | |
|     // FIXME: Should allow access to all the results here.
 | |
|     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
 | |
| 
 | |
|     // Add on one implicit def if it has a resolvable type.
 | |
|     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
 | |
|       ++NumDefsToAdd;
 | |
|     return NumDefsToAdd;
 | |
|   }
 | |
| 
 | |
|   if (Operator->isSubClassOf("SDNodeXForm"))
 | |
|     return 1;  // FIXME: Generalize SDNodeXForm
 | |
| 
 | |
|   Operator->dump();
 | |
|   errs() << "Unhandled node in GetNumNodeResults\n";
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| void TreePatternNode::print(raw_ostream &OS) const {
 | |
|   if (isLeaf())
 | |
|     OS << *getLeafValue();
 | |
|   else
 | |
|     OS << '(' << getOperator()->getName();
 | |
| 
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|     OS << ':' << getExtType(i).getName();
 | |
| 
 | |
|   if (!isLeaf()) {
 | |
|     if (getNumChildren() != 0) {
 | |
|       OS << " ";
 | |
|       getChild(0)->print(OS);
 | |
|       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
 | |
|         OS << ", ";
 | |
|         getChild(i)->print(OS);
 | |
|       }
 | |
|     }
 | |
|     OS << ")";
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
 | |
|     OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
 | |
|   if (TransformFn)
 | |
|     OS << "<<X:" << TransformFn->getName() << ">>";
 | |
|   if (!getName().empty())
 | |
|     OS << ":$" << getName();
 | |
| 
 | |
| }
 | |
| void TreePatternNode::dump() const {
 | |
|   print(errs());
 | |
| }
 | |
| 
 | |
| /// isIsomorphicTo - Return true if this node is recursively
 | |
| /// isomorphic to the specified node.  For this comparison, the node's
 | |
| /// entire state is considered. The assigned name is ignored, since
 | |
| /// nodes with differing names are considered isomorphic. However, if
 | |
| /// the assigned name is present in the dependent variable set, then
 | |
| /// the assigned name is considered significant and the node is
 | |
| /// isomorphic if the names match.
 | |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
 | |
|                                      const MultipleUseVarSet &DepVars) const {
 | |
|   if (N == this) return true;
 | |
|   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
 | |
|       getPredicateFns() != N->getPredicateFns() ||
 | |
|       getTransformFn() != N->getTransformFn())
 | |
|     return false;
 | |
| 
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
 | |
|       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
 | |
|         return ((DI->getDef() == NDI->getDef())
 | |
|                 && (DepVars.find(getName()) == DepVars.end()
 | |
|                     || getName() == N->getName()));
 | |
|       }
 | |
|     }
 | |
|     return getLeafValue() == N->getLeafValue();
 | |
|   }
 | |
| 
 | |
|   if (N->getOperator() != getOperator() ||
 | |
|       N->getNumChildren() != getNumChildren()) return false;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// clone - Make a copy of this tree and all of its children.
 | |
| ///
 | |
| TreePatternNode *TreePatternNode::clone() const {
 | |
|   TreePatternNode *New;
 | |
|   if (isLeaf()) {
 | |
|     New = new TreePatternNode(getLeafValue(), getNumTypes());
 | |
|   } else {
 | |
|     std::vector<TreePatternNode*> CChildren;
 | |
|     CChildren.reserve(Children.size());
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       CChildren.push_back(getChild(i)->clone());
 | |
|     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
 | |
|   }
 | |
|   New->setName(getName());
 | |
|   New->Types = Types;
 | |
|   New->setPredicateFns(getPredicateFns());
 | |
|   New->setTransformFn(getTransformFn());
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// RemoveAllTypes - Recursively strip all the types of this tree.
 | |
| void TreePatternNode::RemoveAllTypes() {
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|     Types[i] = EEVT::TypeSet();  // Reset to unknown type.
 | |
|   if (isLeaf()) return;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     getChild(i)->RemoveAllTypes();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree
 | |
| /// with actual values specified by ArgMap.
 | |
| void TreePatternNode::
 | |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
 | |
|   if (isLeaf()) return;
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = getChild(i);
 | |
|     if (Child->isLeaf()) {
 | |
|       Init *Val = Child->getLeafValue();
 | |
|       if (isa<DefInit>(Val) &&
 | |
|           cast<DefInit>(Val)->getDef()->getName() == "node") {
 | |
|         // We found a use of a formal argument, replace it with its value.
 | |
|         TreePatternNode *NewChild = ArgMap[Child->getName()];
 | |
|         assert(NewChild && "Couldn't find formal argument!");
 | |
|         assert((Child->getPredicateFns().empty() ||
 | |
|                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
 | |
|                "Non-empty child predicate clobbered!");
 | |
|         setChild(i, NewChild);
 | |
|       }
 | |
|     } else {
 | |
|       getChild(i)->SubstituteFormalArguments(ArgMap);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InlinePatternFragments - If this pattern refers to any pattern
 | |
| /// fragments, inline them into place, giving us a pattern without any
 | |
| /// PatFrag references.
 | |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
 | |
|   if (TP.hasError())
 | |
|     return 0;
 | |
| 
 | |
|   if (isLeaf())
 | |
|      return this;  // nothing to do.
 | |
|   Record *Op = getOperator();
 | |
| 
 | |
|   if (!Op->isSubClassOf("PatFrag")) {
 | |
|     // Just recursively inline children nodes.
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Child = getChild(i);
 | |
|       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
 | |
| 
 | |
|       assert((Child->getPredicateFns().empty() ||
 | |
|               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
 | |
|              "Non-empty child predicate clobbered!");
 | |
| 
 | |
|       setChild(i, NewChild);
 | |
|     }
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we found a reference to a fragment.  First, look up its
 | |
|   // TreePattern record.
 | |
|   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
 | |
| 
 | |
|   // Verify that we are passing the right number of operands.
 | |
|   if (Frag->getNumArgs() != Children.size()) {
 | |
|     TP.error("'" + Op->getName() + "' fragment requires " +
 | |
|              utostr(Frag->getNumArgs()) + " operands!");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
 | |
| 
 | |
|   TreePredicateFn PredFn(Frag);
 | |
|   if (!PredFn.isAlwaysTrue())
 | |
|     FragTree->addPredicateFn(PredFn);
 | |
| 
 | |
|   // Resolve formal arguments to their actual value.
 | |
|   if (Frag->getNumArgs()) {
 | |
|     // Compute the map of formal to actual arguments.
 | |
|     std::map<std::string, TreePatternNode*> ArgMap;
 | |
|     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
 | |
|       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
 | |
| 
 | |
|     FragTree->SubstituteFormalArguments(ArgMap);
 | |
|   }
 | |
| 
 | |
|   FragTree->setName(getName());
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|     FragTree->UpdateNodeType(i, getExtType(i), TP);
 | |
| 
 | |
|   // Transfer in the old predicates.
 | |
|   for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
 | |
|     FragTree->addPredicateFn(getPredicateFns()[i]);
 | |
| 
 | |
|   // Get a new copy of this fragment to stitch into here.
 | |
|   //delete this;    // FIXME: implement refcounting!
 | |
| 
 | |
|   // The fragment we inlined could have recursive inlining that is needed.  See
 | |
|   // if there are any pattern fragments in it and inline them as needed.
 | |
|   return FragTree->InlinePatternFragments(TP);
 | |
| }
 | |
| 
 | |
| /// getImplicitType - Check to see if the specified record has an implicit
 | |
| /// type which should be applied to it.  This will infer the type of register
 | |
| /// references from the register file information, for example.
 | |
| ///
 | |
| /// When Unnamed is set, return the type of a DAG operand with no name, such as
 | |
| /// the F8RC register class argument in:
 | |
| ///
 | |
| ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
 | |
| ///
 | |
| /// When Unnamed is false, return the type of a named DAG operand such as the
 | |
| /// GPR:$src operand above.
 | |
| ///
 | |
| static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
 | |
|                                      bool NotRegisters,
 | |
|                                      bool Unnamed,
 | |
|                                      TreePattern &TP) {
 | |
|   // Check to see if this is a register operand.
 | |
|   if (R->isSubClassOf("RegisterOperand")) {
 | |
|     assert(ResNo == 0 && "Regoperand ref only has one result!");
 | |
|     if (NotRegisters)
 | |
|       return EEVT::TypeSet(); // Unknown.
 | |
|     Record *RegClass = R->getValueAsDef("RegClass");
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is a register or a register class.
 | |
|   if (R->isSubClassOf("RegisterClass")) {
 | |
|     assert(ResNo == 0 && "Regclass ref only has one result!");
 | |
|     // An unnamed register class represents itself as an i32 immediate, for
 | |
|     // example on a COPY_TO_REGCLASS instruction.
 | |
|     if (Unnamed)
 | |
|       return EEVT::TypeSet(MVT::i32, TP);
 | |
| 
 | |
|     // In a named operand, the register class provides the possible set of
 | |
|     // types.
 | |
|     if (NotRegisters)
 | |
|       return EEVT::TypeSet(); // Unknown.
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("PatFrag")) {
 | |
|     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
 | |
|     // Pattern fragment types will be resolved when they are inlined.
 | |
|     return EEVT::TypeSet(); // Unknown.
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("Register")) {
 | |
|     assert(ResNo == 0 && "Registers only produce one result!");
 | |
|     if (NotRegisters)
 | |
|       return EEVT::TypeSet(); // Unknown.
 | |
|     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | |
|     return EEVT::TypeSet(T.getRegisterVTs(R));
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("SubRegIndex")) {
 | |
|     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
 | |
|     return EEVT::TypeSet();
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("ValueType")) {
 | |
|     assert(ResNo == 0 && "This node only has one result!");
 | |
|     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
 | |
|     //
 | |
|     //   (sext_inreg GPR:$src, i16)
 | |
|     //                         ~~~
 | |
|     if (Unnamed)
 | |
|       return EEVT::TypeSet(MVT::Other, TP);
 | |
|     // With a name, the ValueType simply provides the type of the named
 | |
|     // variable.
 | |
|     //
 | |
|     //   (sext_inreg i32:$src, i16)
 | |
|     //               ~~~~~~~~
 | |
|     if (NotRegisters)
 | |
|       return EEVT::TypeSet(); // Unknown.
 | |
|     return EEVT::TypeSet(getValueType(R), TP);
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("CondCode")) {
 | |
|     assert(ResNo == 0 && "This node only has one result!");
 | |
|     // Using a CondCodeSDNode.
 | |
|     return EEVT::TypeSet(MVT::Other, TP);
 | |
|   }
 | |
| 
 | |
|   if (R->isSubClassOf("ComplexPattern")) {
 | |
|     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
 | |
|     if (NotRegisters)
 | |
|       return EEVT::TypeSet(); // Unknown.
 | |
|    return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
 | |
|                          TP);
 | |
|   }
 | |
|   if (R->isSubClassOf("PointerLikeRegClass")) {
 | |
|     assert(ResNo == 0 && "Regclass can only have one result!");
 | |
|     return EEVT::TypeSet(MVT::iPTR, TP);
 | |
|   }
 | |
| 
 | |
|   if (R->getName() == "node" || R->getName() == "srcvalue" ||
 | |
|       R->getName() == "zero_reg") {
 | |
|     // Placeholder.
 | |
|     return EEVT::TypeSet(); // Unknown.
 | |
|   }
 | |
| 
 | |
|   TP.error("Unknown node flavor used in pattern: " + R->getName());
 | |
|   return EEVT::TypeSet(MVT::Other, TP);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
 | |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer.
 | |
| const CodeGenIntrinsic *TreePatternNode::
 | |
| getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
 | |
|   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
 | |
|       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
 | |
|       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
 | |
|   return &CDP.getIntrinsicInfo(IID);
 | |
| }
 | |
| 
 | |
| /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
 | |
| /// return the ComplexPattern information, otherwise return null.
 | |
| const ComplexPattern *
 | |
| TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
 | |
|   if (!isLeaf()) return 0;
 | |
| 
 | |
|   DefInit *DI = dyn_cast<DefInit>(getLeafValue());
 | |
|   if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
 | |
|     return &CGP.getComplexPattern(DI->getDef());
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// NodeHasProperty - Return true if this node has the specified property.
 | |
| bool TreePatternNode::NodeHasProperty(SDNP Property,
 | |
|                                       const CodeGenDAGPatterns &CGP) const {
 | |
|   if (isLeaf()) {
 | |
|     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
 | |
|       return CP->hasProperty(Property);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Record *Operator = getOperator();
 | |
|   if (!Operator->isSubClassOf("SDNode")) return false;
 | |
| 
 | |
|   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// TreeHasProperty - Return true if any node in this tree has the specified
 | |
| /// property.
 | |
| bool TreePatternNode::TreeHasProperty(SDNP Property,
 | |
|                                       const CodeGenDAGPatterns &CGP) const {
 | |
|   if (NodeHasProperty(Property, CGP))
 | |
|     return true;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (getChild(i)->TreeHasProperty(Property, CGP))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isCommutativeIntrinsic - Return true if the node corresponds to a
 | |
| /// commutative intrinsic.
 | |
| bool
 | |
| TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
 | |
|   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
 | |
|     return Int->isCommutative;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ApplyTypeConstraints - Apply all of the type constraints relevant to
 | |
| /// this node and its children in the tree.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, flag an error.
 | |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
 | |
|   if (TP.hasError())
 | |
|     return false;
 | |
| 
 | |
|   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
 | |
|       // If it's a regclass or something else known, include the type.
 | |
|       bool MadeChange = false;
 | |
|       for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | |
|         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
 | |
|                                                         NotRegisters,
 | |
|                                                         !hasName(), TP), TP);
 | |
|       return MadeChange;
 | |
|     }
 | |
| 
 | |
|     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
 | |
|       assert(Types.size() == 1 && "Invalid IntInit");
 | |
| 
 | |
|       // Int inits are always integers. :)
 | |
|       bool MadeChange = Types[0].EnforceInteger(TP);
 | |
| 
 | |
|       if (!Types[0].isConcrete())
 | |
|         return MadeChange;
 | |
| 
 | |
|       MVT::SimpleValueType VT = getType(0);
 | |
|       if (VT == MVT::iPTR || VT == MVT::iPTRAny)
 | |
|         return MadeChange;
 | |
| 
 | |
|       unsigned Size = EVT(VT).getSizeInBits();
 | |
|       // Make sure that the value is representable for this type.
 | |
|       if (Size >= 32) return MadeChange;
 | |
| 
 | |
|       // Check that the value doesn't use more bits than we have. It must either
 | |
|       // be a sign- or zero-extended equivalent of the original.
 | |
|       int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
 | |
|       if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
 | |
|         return MadeChange;
 | |
| 
 | |
|       TP.error("Integer value '" + itostr(II->getValue()) +
 | |
|                "' is out of range for type '" + getEnumName(getType(0)) + "'!");
 | |
|       return false;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // special handling for set, which isn't really an SDNode.
 | |
|   if (getOperator()->getName() == "set") {
 | |
|     assert(getNumTypes() == 0 && "Set doesn't produce a value");
 | |
|     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
 | |
|     unsigned NC = getNumChildren();
 | |
| 
 | |
|     TreePatternNode *SetVal = getChild(NC-1);
 | |
|     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
 | |
| 
 | |
|     for (unsigned i = 0; i < NC-1; ++i) {
 | |
|       TreePatternNode *Child = getChild(i);
 | |
|       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
 | |
| 
 | |
|       // Types of operands must match.
 | |
|       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
 | |
|       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
 | |
|     }
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (getOperator()->getName() == "implicit") {
 | |
|     assert(getNumTypes() == 0 && "Node doesn't produce a value");
 | |
| 
 | |
|     bool MadeChange = false;
 | |
|     for (unsigned i = 0; i < getNumChildren(); ++i)
 | |
|       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Apply the result type to the node.
 | |
|     unsigned NumRetVTs = Int->IS.RetVTs.size();
 | |
|     unsigned NumParamVTs = Int->IS.ParamVTs.size();
 | |
| 
 | |
|     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
 | |
|       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
 | |
| 
 | |
|     if (getNumChildren() != NumParamVTs + 1) {
 | |
|       TP.error("Intrinsic '" + Int->Name + "' expects " +
 | |
|                utostr(NumParamVTs) + " operands, not " +
 | |
|                utostr(getNumChildren() - 1) + " operands!");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Apply type info to the intrinsic ID.
 | |
|     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
 | |
| 
 | |
|     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
 | |
|       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
 | |
| 
 | |
|       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
 | |
|       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
 | |
|       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
 | |
|     }
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (getOperator()->isSubClassOf("SDNode")) {
 | |
|     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
 | |
| 
 | |
|     // Check that the number of operands is sane.  Negative operands -> varargs.
 | |
|     if (NI.getNumOperands() >= 0 &&
 | |
|         getNumChildren() != (unsigned)NI.getNumOperands()) {
 | |
|       TP.error(getOperator()->getName() + " node requires exactly " +
 | |
|                itostr(NI.getNumOperands()) + " operands!");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (getOperator()->isSubClassOf("Instruction")) {
 | |
|     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
 | |
|     CodeGenInstruction &InstInfo =
 | |
|       CDP.getTargetInfo().getInstruction(getOperator());
 | |
| 
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Apply the result types to the node, these come from the things in the
 | |
|     // (outs) list of the instruction.
 | |
|     // FIXME: Cap at one result so far.
 | |
|     unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
 | |
|     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
 | |
|       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
 | |
| 
 | |
|     // If the instruction has implicit defs, we apply the first one as a result.
 | |
|     // FIXME: This sucks, it should apply all implicit defs.
 | |
|     if (!InstInfo.ImplicitDefs.empty()) {
 | |
|       unsigned ResNo = NumResultsToAdd;
 | |
| 
 | |
|       // FIXME: Generalize to multiple possible types and multiple possible
 | |
|       // ImplicitDefs.
 | |
|       MVT::SimpleValueType VT =
 | |
|         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
 | |
| 
 | |
|       if (VT != MVT::Other)
 | |
|         MadeChange |= UpdateNodeType(ResNo, VT, TP);
 | |
|     }
 | |
| 
 | |
|     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
 | |
|     // be the same.
 | |
|     if (getOperator()->getName() == "INSERT_SUBREG") {
 | |
|       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
 | |
|       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
 | |
|       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
 | |
|     }
 | |
| 
 | |
|     unsigned ChildNo = 0;
 | |
|     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
 | |
|       Record *OperandNode = Inst.getOperand(i);
 | |
| 
 | |
|       // If the instruction expects a predicate or optional def operand, we
 | |
|       // codegen this by setting the operand to it's default value if it has a
 | |
|       // non-empty DefaultOps field.
 | |
|       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
 | |
|           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
 | |
|         continue;
 | |
| 
 | |
|       // Verify that we didn't run out of provided operands.
 | |
|       if (ChildNo >= getNumChildren()) {
 | |
|         TP.error("Instruction '" + getOperator()->getName() +
 | |
|                  "' expects more operands than were provided.");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       TreePatternNode *Child = getChild(ChildNo++);
 | |
|       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
 | |
| 
 | |
|       // If the operand has sub-operands, they may be provided by distinct
 | |
|       // child patterns, so attempt to match each sub-operand separately.
 | |
|       if (OperandNode->isSubClassOf("Operand")) {
 | |
|         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
 | |
|         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
 | |
|           // But don't do that if the whole operand is being provided by
 | |
|           // a single ComplexPattern.
 | |
|           const ComplexPattern *AM = Child->getComplexPatternInfo(CDP);
 | |
|           if (!AM || AM->getNumOperands() < NumArgs) {
 | |
|             // Match first sub-operand against the child we already have.
 | |
|             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
 | |
|             MadeChange |=
 | |
|               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
 | |
| 
 | |
|             // And the remaining sub-operands against subsequent children.
 | |
|             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
 | |
|               if (ChildNo >= getNumChildren()) {
 | |
|                 TP.error("Instruction '" + getOperator()->getName() +
 | |
|                          "' expects more operands than were provided.");
 | |
|                 return false;
 | |
|               }
 | |
|               Child = getChild(ChildNo++);
 | |
| 
 | |
|               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
 | |
|               MadeChange |=
 | |
|                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
 | |
|             }
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we didn't match by pieces above, attempt to match the whole
 | |
|       // operand now.
 | |
|       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
 | |
|     }
 | |
| 
 | |
|     if (ChildNo != getNumChildren()) {
 | |
|       TP.error("Instruction '" + getOperator()->getName() +
 | |
|                "' was provided too many operands!");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     return MadeChange;
 | |
|   }
 | |
| 
 | |
|   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
 | |
| 
 | |
|   // Node transforms always take one operand.
 | |
|   if (getNumChildren() != 1) {
 | |
|     TP.error("Node transform '" + getOperator()->getName() +
 | |
|              "' requires one operand!");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
 | |
| 
 | |
| 
 | |
|   // If either the output or input of the xform does not have exact
 | |
|   // type info. We assume they must be the same. Otherwise, it is perfectly
 | |
|   // legal to transform from one type to a completely different type.
 | |
| #if 0
 | |
|   if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
 | |
|     bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
 | |
|     MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
 | |
|     return MadeChange;
 | |
|   }
 | |
| #endif
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
 | |
| /// RHS of a commutative operation, not the on LHS.
 | |
| static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
 | |
|   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
 | |
|     return true;
 | |
|   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// canPatternMatch - If it is impossible for this pattern to match on this
 | |
| /// target, fill in Reason and return false.  Otherwise, return true.  This is
 | |
| /// used as a sanity check for .td files (to prevent people from writing stuff
 | |
| /// that can never possibly work), and to prevent the pattern permuter from
 | |
| /// generating stuff that is useless.
 | |
| bool TreePatternNode::canPatternMatch(std::string &Reason,
 | |
|                                       const CodeGenDAGPatterns &CDP) {
 | |
|   if (isLeaf()) return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->canPatternMatch(Reason, CDP))
 | |
|       return false;
 | |
| 
 | |
|   // If this is an intrinsic, handle cases that would make it not match.  For
 | |
|   // example, if an operand is required to be an immediate.
 | |
|   if (getOperator()->isSubClassOf("Intrinsic")) {
 | |
|     // TODO:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this node is a commutative operator, check that the LHS isn't an
 | |
|   // immediate.
 | |
|   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
 | |
|   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | |
|     // Scan all of the operands of the node and make sure that only the last one
 | |
|     // is a constant node, unless the RHS also is.
 | |
|     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
 | |
|       bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
 | |
|       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
 | |
|         if (OnlyOnRHSOfCommutative(getChild(i))) {
 | |
|           Reason="Immediate value must be on the RHS of commutative operators!";
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePattern implementation
 | |
| //
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
 | |
|                          isInputPattern(isInput), HasError(false) {
 | |
|   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
 | |
|     Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
 | |
|                          isInputPattern(isInput), HasError(false) {
 | |
|   Trees.push_back(ParseTreePattern(Pat, ""));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
 | |
|                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
 | |
|                          isInputPattern(isInput), HasError(false) {
 | |
|   Trees.push_back(Pat);
 | |
| }
 | |
| 
 | |
| void TreePattern::error(const std::string &Msg) {
 | |
|   if (HasError)
 | |
|     return;
 | |
|   dump();
 | |
|   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
 | |
|   HasError = true;
 | |
| }
 | |
| 
 | |
| void TreePattern::ComputeNamedNodes() {
 | |
|   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | |
|     ComputeNamedNodes(Trees[i]);
 | |
| }
 | |
| 
 | |
| void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
 | |
|   if (!N->getName().empty())
 | |
|     NamedNodes[N->getName()].push_back(N);
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     ComputeNamedNodes(N->getChild(i));
 | |
| }
 | |
| 
 | |
| 
 | |
| TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
 | |
|   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
 | |
|     Record *R = DI->getDef();
 | |
| 
 | |
|     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
 | |
|     // TreePatternNode of its own.  For example:
 | |
|     ///   (foo GPR, imm) -> (foo GPR, (imm))
 | |
|     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
 | |
|       return ParseTreePattern(
 | |
|         DagInit::get(DI, "",
 | |
|                      std::vector<std::pair<Init*, std::string> >()),
 | |
|         OpName);
 | |
| 
 | |
|     // Input argument?
 | |
|     TreePatternNode *Res = new TreePatternNode(DI, 1);
 | |
|     if (R->getName() == "node" && !OpName.empty()) {
 | |
|       if (OpName.empty())
 | |
|         error("'node' argument requires a name to match with operand list");
 | |
|       Args.push_back(OpName);
 | |
|     }
 | |
| 
 | |
|     Res->setName(OpName);
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // ?:$name or just $name.
 | |
|   if (TheInit == UnsetInit::get()) {
 | |
|     if (OpName.empty())
 | |
|       error("'?' argument requires a name to match with operand list");
 | |
|     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
 | |
|     Args.push_back(OpName);
 | |
|     Res->setName(OpName);
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
 | |
|     if (!OpName.empty())
 | |
|       error("Constant int argument should not have a name!");
 | |
|     return new TreePatternNode(II, 1);
 | |
|   }
 | |
| 
 | |
|   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
 | |
|     // Turn this into an IntInit.
 | |
|     Init *II = BI->convertInitializerTo(IntRecTy::get());
 | |
|     if (II == 0 || !isa<IntInit>(II))
 | |
|       error("Bits value must be constants!");
 | |
|     return ParseTreePattern(II, OpName);
 | |
|   }
 | |
| 
 | |
|   DagInit *Dag = dyn_cast<DagInit>(TheInit);
 | |
|   if (!Dag) {
 | |
|     TheInit->dump();
 | |
|     error("Pattern has unexpected init kind!");
 | |
|   }
 | |
|   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
 | |
|   if (!OpDef) error("Pattern has unexpected operator type!");
 | |
|   Record *Operator = OpDef->getDef();
 | |
| 
 | |
|   if (Operator->isSubClassOf("ValueType")) {
 | |
|     // If the operator is a ValueType, then this must be "type cast" of a leaf
 | |
|     // node.
 | |
|     if (Dag->getNumArgs() != 1)
 | |
|       error("Type cast only takes one operand!");
 | |
| 
 | |
|     TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
 | |
| 
 | |
|     // Apply the type cast.
 | |
|     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
 | |
|     New->UpdateNodeType(0, getValueType(Operator), *this);
 | |
| 
 | |
|     if (!OpName.empty())
 | |
|       error("ValueType cast should not have a name!");
 | |
|     return New;
 | |
|   }
 | |
| 
 | |
|   // Verify that this is something that makes sense for an operator.
 | |
|   if (!Operator->isSubClassOf("PatFrag") &&
 | |
|       !Operator->isSubClassOf("SDNode") &&
 | |
|       !Operator->isSubClassOf("Instruction") &&
 | |
|       !Operator->isSubClassOf("SDNodeXForm") &&
 | |
|       !Operator->isSubClassOf("Intrinsic") &&
 | |
|       Operator->getName() != "set" &&
 | |
|       Operator->getName() != "implicit")
 | |
|     error("Unrecognized node '" + Operator->getName() + "'!");
 | |
| 
 | |
|   //  Check to see if this is something that is illegal in an input pattern.
 | |
|   if (isInputPattern) {
 | |
|     if (Operator->isSubClassOf("Instruction") ||
 | |
|         Operator->isSubClassOf("SDNodeXForm"))
 | |
|       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
 | |
|   } else {
 | |
|     if (Operator->isSubClassOf("Intrinsic"))
 | |
|       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
 | |
| 
 | |
|     if (Operator->isSubClassOf("SDNode") &&
 | |
|         Operator->getName() != "imm" &&
 | |
|         Operator->getName() != "fpimm" &&
 | |
|         Operator->getName() != "tglobaltlsaddr" &&
 | |
|         Operator->getName() != "tconstpool" &&
 | |
|         Operator->getName() != "tjumptable" &&
 | |
|         Operator->getName() != "tframeindex" &&
 | |
|         Operator->getName() != "texternalsym" &&
 | |
|         Operator->getName() != "tblockaddress" &&
 | |
|         Operator->getName() != "tglobaladdr" &&
 | |
|         Operator->getName() != "bb" &&
 | |
|         Operator->getName() != "vt")
 | |
|       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
 | |
|   }
 | |
| 
 | |
|   std::vector<TreePatternNode*> Children;
 | |
| 
 | |
|   // Parse all the operands.
 | |
|   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
 | |
|     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
 | |
| 
 | |
|   // If the operator is an intrinsic, then this is just syntactic sugar for for
 | |
|   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
 | |
|   // convert the intrinsic name to a number.
 | |
|   if (Operator->isSubClassOf("Intrinsic")) {
 | |
|     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
 | |
|     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
 | |
| 
 | |
|     // If this intrinsic returns void, it must have side-effects and thus a
 | |
|     // chain.
 | |
|     if (Int.IS.RetVTs.empty())
 | |
|       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
 | |
|     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
 | |
|       // Has side-effects, requires chain.
 | |
|       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
 | |
|     else // Otherwise, no chain.
 | |
|       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
 | |
| 
 | |
|     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
 | |
|     Children.insert(Children.begin(), IIDNode);
 | |
|   }
 | |
| 
 | |
|   unsigned NumResults = GetNumNodeResults(Operator, CDP);
 | |
|   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
 | |
|   Result->setName(OpName);
 | |
| 
 | |
|   if (!Dag->getName().empty()) {
 | |
|     assert(Result->getName().empty());
 | |
|     Result->setName(Dag->getName());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// SimplifyTree - See if we can simplify this tree to eliminate something that
 | |
| /// will never match in favor of something obvious that will.  This is here
 | |
| /// strictly as a convenience to target authors because it allows them to write
 | |
| /// more type generic things and have useless type casts fold away.
 | |
| ///
 | |
| /// This returns true if any change is made.
 | |
| static bool SimplifyTree(TreePatternNode *&N) {
 | |
|   if (N->isLeaf())
 | |
|     return false;
 | |
| 
 | |
|   // If we have a bitconvert with a resolved type and if the source and
 | |
|   // destination types are the same, then the bitconvert is useless, remove it.
 | |
|   if (N->getOperator()->getName() == "bitconvert" &&
 | |
|       N->getExtType(0).isConcrete() &&
 | |
|       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
 | |
|       N->getName().empty()) {
 | |
|     N = N->getChild(0);
 | |
|     SimplifyTree(N);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Walk all children.
 | |
|   bool MadeChange = false;
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = N->getChild(i);
 | |
|     MadeChange |= SimplifyTree(Child);
 | |
|     N->setChild(i, Child);
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// InferAllTypes - Infer/propagate as many types throughout the expression
 | |
| /// patterns as possible.  Return true if all types are inferred, false
 | |
| /// otherwise.  Flags an error if a type contradiction is found.
 | |
| bool TreePattern::
 | |
| InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
 | |
|   if (NamedNodes.empty())
 | |
|     ComputeNamedNodes();
 | |
| 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
 | |
|       MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
 | |
|       MadeChange |= SimplifyTree(Trees[i]);
 | |
|     }
 | |
| 
 | |
|     // If there are constraints on our named nodes, apply them.
 | |
|     for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
 | |
|          I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
 | |
|       SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
 | |
| 
 | |
|       // If we have input named node types, propagate their types to the named
 | |
|       // values here.
 | |
|       if (InNamedTypes) {
 | |
|         // FIXME: Should be error?
 | |
|         assert(InNamedTypes->count(I->getKey()) &&
 | |
|                "Named node in output pattern but not input pattern?");
 | |
| 
 | |
|         const SmallVectorImpl<TreePatternNode*> &InNodes =
 | |
|           InNamedTypes->find(I->getKey())->second;
 | |
| 
 | |
|         // The input types should be fully resolved by now.
 | |
|         for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
 | |
|           // If this node is a register class, and it is the root of the pattern
 | |
|           // then we're mapping something onto an input register.  We allow
 | |
|           // changing the type of the input register in this case.  This allows
 | |
|           // us to match things like:
 | |
|           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
 | |
|           if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
 | |
|             DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
 | |
|             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
 | |
|                        DI->getDef()->isSubClassOf("RegisterOperand")))
 | |
|               continue;
 | |
|           }
 | |
| 
 | |
|           assert(Nodes[i]->getNumTypes() == 1 &&
 | |
|                  InNodes[0]->getNumTypes() == 1 &&
 | |
|                  "FIXME: cannot name multiple result nodes yet");
 | |
|           MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
 | |
|                                                  *this);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If there are multiple nodes with the same name, they must all have the
 | |
|       // same type.
 | |
|       if (I->second.size() > 1) {
 | |
|         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
 | |
|           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
 | |
|           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
 | |
|                  "FIXME: cannot name multiple result nodes yet");
 | |
| 
 | |
|           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
 | |
|           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool HasUnresolvedTypes = false;
 | |
|   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | |
|     HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
 | |
|   return !HasUnresolvedTypes;
 | |
| }
 | |
| 
 | |
| void TreePattern::print(raw_ostream &OS) const {
 | |
|   OS << getRecord()->getName();
 | |
|   if (!Args.empty()) {
 | |
|     OS << "(" << Args[0];
 | |
|     for (unsigned i = 1, e = Args.size(); i != e; ++i)
 | |
|       OS << ", " << Args[i];
 | |
|     OS << ")";
 | |
|   }
 | |
|   OS << ": ";
 | |
| 
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "[\n";
 | |
|   for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
 | |
|     OS << "\t";
 | |
|     Trees[i]->print(OS);
 | |
|     OS << "\n";
 | |
|   }
 | |
| 
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "]\n";
 | |
| }
 | |
| 
 | |
| void TreePattern::dump() const { print(errs()); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CodeGenDAGPatterns implementation
 | |
| //
 | |
| 
 | |
| CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
 | |
|   Records(R), Target(R) {
 | |
| 
 | |
|   Intrinsics = LoadIntrinsics(Records, false);
 | |
|   TgtIntrinsics = LoadIntrinsics(Records, true);
 | |
|   ParseNodeInfo();
 | |
|   ParseNodeTransforms();
 | |
|   ParseComplexPatterns();
 | |
|   ParsePatternFragments();
 | |
|   ParseDefaultOperands();
 | |
|   ParseInstructions();
 | |
|   ParsePatterns();
 | |
| 
 | |
|   // Generate variants.  For example, commutative patterns can match
 | |
|   // multiple ways.  Add them to PatternsToMatch as well.
 | |
|   GenerateVariants();
 | |
| 
 | |
|   // Infer instruction flags.  For example, we can detect loads,
 | |
|   // stores, and side effects in many cases by examining an
 | |
|   // instruction's pattern.
 | |
|   InferInstructionFlags();
 | |
| 
 | |
|   // Verify that instruction flags match the patterns.
 | |
|   VerifyInstructionFlags();
 | |
| }
 | |
| 
 | |
| CodeGenDAGPatterns::~CodeGenDAGPatterns() {
 | |
|   for (pf_iterator I = PatternFragments.begin(),
 | |
|        E = PatternFragments.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
 | |
|   Record *N = Records.getDef(Name);
 | |
|   if (!N || !N->isSubClassOf("SDNode")) {
 | |
|     errs() << "Error getting SDNode '" << Name << "'!\n";
 | |
|     exit(1);
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| // Parse all of the SDNode definitions for the target, populating SDNodes.
 | |
| void CodeGenDAGPatterns::ParseNodeInfo() {
 | |
|   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
 | |
|   while (!Nodes.empty()) {
 | |
|     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
 | |
|     Nodes.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Get the builtin intrinsic nodes.
 | |
|   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
 | |
|   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
 | |
|   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
 | |
| }
 | |
| 
 | |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
 | |
| /// map, and emit them to the file as functions.
 | |
| void CodeGenDAGPatterns::ParseNodeTransforms() {
 | |
|   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
 | |
|   while (!Xforms.empty()) {
 | |
|     Record *XFormNode = Xforms.back();
 | |
|     Record *SDNode = XFormNode->getValueAsDef("Opcode");
 | |
|     std::string Code = XFormNode->getValueAsString("XFormFunction");
 | |
|     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
 | |
| 
 | |
|     Xforms.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParseComplexPatterns() {
 | |
|   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
 | |
|   while (!AMs.empty()) {
 | |
|     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
 | |
|     AMs.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
 | |
| /// file, building up the PatternFragments map.  After we've collected them all,
 | |
| /// inline fragments together as necessary, so that there are no references left
 | |
| /// inside a pattern fragment to a pattern fragment.
 | |
| ///
 | |
| void CodeGenDAGPatterns::ParsePatternFragments() {
 | |
|   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
 | |
| 
 | |
|   // First step, parse all of the fragments.
 | |
|   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
 | |
|     DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
 | |
|     TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
 | |
|     PatternFragments[Fragments[i]] = P;
 | |
| 
 | |
|     // Validate the argument list, converting it to set, to discard duplicates.
 | |
|     std::vector<std::string> &Args = P->getArgList();
 | |
|     std::set<std::string> OperandsSet(Args.begin(), Args.end());
 | |
| 
 | |
|     if (OperandsSet.count(""))
 | |
|       P->error("Cannot have unnamed 'node' values in pattern fragment!");
 | |
| 
 | |
|     // Parse the operands list.
 | |
|     DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
 | |
|     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
 | |
|     // Special cases: ops == outs == ins. Different names are used to
 | |
|     // improve readability.
 | |
|     if (!OpsOp ||
 | |
|         (OpsOp->getDef()->getName() != "ops" &&
 | |
|          OpsOp->getDef()->getName() != "outs" &&
 | |
|          OpsOp->getDef()->getName() != "ins"))
 | |
|       P->error("Operands list should start with '(ops ... '!");
 | |
| 
 | |
|     // Copy over the arguments.
 | |
|     Args.clear();
 | |
|     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
 | |
|       if (!isa<DefInit>(OpsList->getArg(j)) ||
 | |
|           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
 | |
|         P->error("Operands list should all be 'node' values.");
 | |
|       if (OpsList->getArgName(j).empty())
 | |
|         P->error("Operands list should have names for each operand!");
 | |
|       if (!OperandsSet.count(OpsList->getArgName(j)))
 | |
|         P->error("'" + OpsList->getArgName(j) +
 | |
|                  "' does not occur in pattern or was multiply specified!");
 | |
|       OperandsSet.erase(OpsList->getArgName(j));
 | |
|       Args.push_back(OpsList->getArgName(j));
 | |
|     }
 | |
| 
 | |
|     if (!OperandsSet.empty())
 | |
|       P->error("Operands list does not contain an entry for operand '" +
 | |
|                *OperandsSet.begin() + "'!");
 | |
| 
 | |
|     // If there is a code init for this fragment, keep track of the fact that
 | |
|     // this fragment uses it.
 | |
|     TreePredicateFn PredFn(P);
 | |
|     if (!PredFn.isAlwaysTrue())
 | |
|       P->getOnlyTree()->addPredicateFn(PredFn);
 | |
| 
 | |
|     // If there is a node transformation corresponding to this, keep track of
 | |
|     // it.
 | |
|     Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
 | |
|     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
 | |
|       P->getOnlyTree()->setTransformFn(Transform);
 | |
|   }
 | |
| 
 | |
|   // Now that we've parsed all of the tree fragments, do a closure on them so
 | |
|   // that there are not references to PatFrags left inside of them.
 | |
|   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
 | |
|     TreePattern *ThePat = PatternFragments[Fragments[i]];
 | |
|     ThePat->InlinePatternFragments();
 | |
| 
 | |
|     // Infer as many types as possible.  Don't worry about it if we don't infer
 | |
|     // all of them, some may depend on the inputs of the pattern.
 | |
|     ThePat->InferAllTypes();
 | |
|     ThePat->resetError();
 | |
| 
 | |
|     // If debugging, print out the pattern fragment result.
 | |
|     DEBUG(ThePat->dump());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParseDefaultOperands() {
 | |
|   std::vector<Record*> DefaultOps;
 | |
|   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
 | |
| 
 | |
|   // Find some SDNode.
 | |
|   assert(!SDNodes.empty() && "No SDNodes parsed?");
 | |
|   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
 | |
| 
 | |
|   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
 | |
|     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
 | |
| 
 | |
|     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
 | |
|     // SomeSDnode so that we can parse this.
 | |
|     std::vector<std::pair<Init*, std::string> > Ops;
 | |
|     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
 | |
|       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
 | |
|                                    DefaultInfo->getArgName(op)));
 | |
|     DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
 | |
| 
 | |
|     // Create a TreePattern to parse this.
 | |
|     TreePattern P(DefaultOps[i], DI, false, *this);
 | |
|     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
 | |
| 
 | |
|     // Copy the operands over into a DAGDefaultOperand.
 | |
|     DAGDefaultOperand DefaultOpInfo;
 | |
| 
 | |
|     TreePatternNode *T = P.getTree(0);
 | |
|     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
 | |
|       TreePatternNode *TPN = T->getChild(op);
 | |
|       while (TPN->ApplyTypeConstraints(P, false))
 | |
|         /* Resolve all types */;
 | |
| 
 | |
|       if (TPN->ContainsUnresolvedType()) {
 | |
|         PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
 | |
|           DefaultOps[i]->getName() +"' doesn't have a concrete type!");
 | |
|       }
 | |
|       DefaultOpInfo.DefaultOps.push_back(TPN);
 | |
|     }
 | |
| 
 | |
|     // Insert it into the DefaultOperands map so we can find it later.
 | |
|     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
 | |
| /// instruction input.  Return true if this is a real use.
 | |
| static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
 | |
|                       std::map<std::string, TreePatternNode*> &InstInputs) {
 | |
|   // No name -> not interesting.
 | |
|   if (Pat->getName().empty()) {
 | |
|     if (Pat->isLeaf()) {
 | |
|       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
 | |
|       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
 | |
|                  DI->getDef()->isSubClassOf("RegisterOperand")))
 | |
|         I->error("Input " + DI->getDef()->getName() + " must be named!");
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Record *Rec;
 | |
|   if (Pat->isLeaf()) {
 | |
|     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
 | |
|     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
 | |
|     Rec = DI->getDef();
 | |
|   } else {
 | |
|     Rec = Pat->getOperator();
 | |
|   }
 | |
| 
 | |
|   // SRCVALUE nodes are ignored.
 | |
|   if (Rec->getName() == "srcvalue")
 | |
|     return false;
 | |
| 
 | |
|   TreePatternNode *&Slot = InstInputs[Pat->getName()];
 | |
|   if (!Slot) {
 | |
|     Slot = Pat;
 | |
|     return true;
 | |
|   }
 | |
|   Record *SlotRec;
 | |
|   if (Slot->isLeaf()) {
 | |
|     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
 | |
|   } else {
 | |
|     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
 | |
|     SlotRec = Slot->getOperator();
 | |
|   }
 | |
| 
 | |
|   // Ensure that the inputs agree if we've already seen this input.
 | |
|   if (Rec != SlotRec)
 | |
|     I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|   if (Slot->getExtTypes() != Pat->getExtTypes())
 | |
|     I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
 | |
| /// part of "I", the instruction), computing the set of inputs and outputs of
 | |
| /// the pattern.  Report errors if we see anything naughty.
 | |
| void CodeGenDAGPatterns::
 | |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
 | |
|                             std::map<std::string, TreePatternNode*> &InstInputs,
 | |
|                             std::map<std::string, TreePatternNode*>&InstResults,
 | |
|                             std::vector<Record*> &InstImpResults) {
 | |
|   if (Pat->isLeaf()) {
 | |
|     bool isUse = HandleUse(I, Pat, InstInputs);
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I->error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Pat->getOperator()->getName() == "implicit") {
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Dest = Pat->getChild(i);
 | |
|       if (!Dest->isLeaf())
 | |
|         I->error("implicitly defined value should be a register!");
 | |
| 
 | |
|       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
 | |
|       if (!Val || !Val->getDef()->isSubClassOf("Register"))
 | |
|         I->error("implicitly defined value should be a register!");
 | |
|       InstImpResults.push_back(Val->getDef());
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Pat->getOperator()->getName() != "set") {
 | |
|     // If this is not a set, verify that the children nodes are not void typed,
 | |
|     // and recurse.
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | |
|       if (Pat->getChild(i)->getNumTypes() == 0)
 | |
|         I->error("Cannot have void nodes inside of patterns!");
 | |
|       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
 | |
|                                   InstImpResults);
 | |
|     }
 | |
| 
 | |
|     // If this is a non-leaf node with no children, treat it basically as if
 | |
|     // it were a leaf.  This handles nodes like (imm).
 | |
|     bool isUse = HandleUse(I, Pat, InstInputs);
 | |
| 
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I->error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is a set, validate and collect instruction results.
 | |
|   if (Pat->getNumChildren() == 0)
 | |
|     I->error("set requires operands!");
 | |
| 
 | |
|   if (Pat->getTransformFn())
 | |
|     I->error("Cannot specify a transform function on a set node!");
 | |
| 
 | |
|   // Check the set destinations.
 | |
|   unsigned NumDests = Pat->getNumChildren()-1;
 | |
|   for (unsigned i = 0; i != NumDests; ++i) {
 | |
|     TreePatternNode *Dest = Pat->getChild(i);
 | |
|     if (!Dest->isLeaf())
 | |
|       I->error("set destination should be a register!");
 | |
| 
 | |
|     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
 | |
|     if (!Val)
 | |
|       I->error("set destination should be a register!");
 | |
| 
 | |
|     if (Val->getDef()->isSubClassOf("RegisterClass") ||
 | |
|         Val->getDef()->isSubClassOf("ValueType") ||
 | |
|         Val->getDef()->isSubClassOf("RegisterOperand") ||
 | |
|         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
 | |
|       if (Dest->getName().empty())
 | |
|         I->error("set destination must have a name!");
 | |
|       if (InstResults.count(Dest->getName()))
 | |
|         I->error("cannot set '" + Dest->getName() +"' multiple times");
 | |
|       InstResults[Dest->getName()] = Dest;
 | |
|     } else if (Val->getDef()->isSubClassOf("Register")) {
 | |
|       InstImpResults.push_back(Val->getDef());
 | |
|     } else {
 | |
|       I->error("set destination should be a register!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify and collect info from the computation.
 | |
|   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
 | |
|                               InstInputs, InstResults, InstImpResults);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Instruction Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class InstAnalyzer {
 | |
|   const CodeGenDAGPatterns &CDP;
 | |
| public:
 | |
|   bool hasSideEffects;
 | |
|   bool mayStore;
 | |
|   bool mayLoad;
 | |
|   bool isBitcast;
 | |
|   bool isVariadic;
 | |
| 
 | |
|   InstAnalyzer(const CodeGenDAGPatterns &cdp)
 | |
|     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
 | |
|       isBitcast(false), isVariadic(false) {}
 | |
| 
 | |
|   void Analyze(const TreePattern *Pat) {
 | |
|     // Assume only the first tree is the pattern. The others are clobber nodes.
 | |
|     AnalyzeNode(Pat->getTree(0));
 | |
|   }
 | |
| 
 | |
|   void Analyze(const PatternToMatch *Pat) {
 | |
|     AnalyzeNode(Pat->getSrcPattern());
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool IsNodeBitcast(const TreePatternNode *N) const {
 | |
|     if (hasSideEffects || mayLoad || mayStore || isVariadic)
 | |
|       return false;
 | |
| 
 | |
|     if (N->getNumChildren() != 2)
 | |
|       return false;
 | |
| 
 | |
|     const TreePatternNode *N0 = N->getChild(0);
 | |
|     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
 | |
|       return false;
 | |
| 
 | |
|     const TreePatternNode *N1 = N->getChild(1);
 | |
|     if (N1->isLeaf())
 | |
|       return false;
 | |
|     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
 | |
|       return false;
 | |
| 
 | |
|     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
 | |
|     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
 | |
|       return false;
 | |
|     return OpInfo.getEnumName() == "ISD::BITCAST";
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   void AnalyzeNode(const TreePatternNode *N) {
 | |
|     if (N->isLeaf()) {
 | |
|       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
 | |
|         Record *LeafRec = DI->getDef();
 | |
|         // Handle ComplexPattern leaves.
 | |
|         if (LeafRec->isSubClassOf("ComplexPattern")) {
 | |
|           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
 | |
|           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
 | |
|           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
 | |
|           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Analyze children.
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|       AnalyzeNode(N->getChild(i));
 | |
| 
 | |
|     // Ignore set nodes, which are not SDNodes.
 | |
|     if (N->getOperator()->getName() == "set") {
 | |
|       isBitcast = IsNodeBitcast(N);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Get information about the SDNode for the operator.
 | |
|     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
 | |
| 
 | |
|     // Notice properties of the node.
 | |
|     if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
 | |
|     if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
 | |
|     if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
 | |
|     if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
 | |
| 
 | |
|     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
 | |
|       // If this is an intrinsic, analyze it.
 | |
|       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
 | |
|         mayLoad = true;// These may load memory.
 | |
| 
 | |
|       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
 | |
|         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
 | |
| 
 | |
|       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
 | |
|         // WriteMem intrinsics can have other strange effects.
 | |
|         hasSideEffects = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| static bool InferFromPattern(CodeGenInstruction &InstInfo,
 | |
|                              const InstAnalyzer &PatInfo,
 | |
|                              Record *PatDef) {
 | |
|   bool Error = false;
 | |
| 
 | |
|   // Remember where InstInfo got its flags.
 | |
|   if (InstInfo.hasUndefFlags())
 | |
|       InstInfo.InferredFrom = PatDef;
 | |
| 
 | |
|   // Check explicitly set flags for consistency.
 | |
|   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
 | |
|       !InstInfo.hasSideEffects_Unset) {
 | |
|     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
 | |
|     // the pattern has no side effects. That could be useful for div/rem
 | |
|     // instructions that may trap.
 | |
|     if (!InstInfo.hasSideEffects) {
 | |
|       Error = true;
 | |
|       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
 | |
|                  Twine(InstInfo.hasSideEffects));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
 | |
|     Error = true;
 | |
|     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
 | |
|                Twine(InstInfo.mayStore));
 | |
|   }
 | |
| 
 | |
|   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
 | |
|     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
 | |
|     // Some targets translate imediates to loads.
 | |
|     if (!InstInfo.mayLoad) {
 | |
|       Error = true;
 | |
|       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
 | |
|                  Twine(InstInfo.mayLoad));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transfer inferred flags.
 | |
|   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
 | |
|   InstInfo.mayStore |= PatInfo.mayStore;
 | |
|   InstInfo.mayLoad |= PatInfo.mayLoad;
 | |
| 
 | |
|   // These flags are silently added without any verification.
 | |
|   InstInfo.isBitcast |= PatInfo.isBitcast;
 | |
| 
 | |
|   // Don't infer isVariadic. This flag means something different on SDNodes and
 | |
|   // instructions. For example, a CALL SDNode is variadic because it has the
 | |
|   // call arguments as operands, but a CALL instruction is not variadic - it
 | |
|   // has argument registers as implicit, not explicit uses.
 | |
| 
 | |
|   return Error;
 | |
| }
 | |
| 
 | |
| /// hasNullFragReference - Return true if the DAG has any reference to the
 | |
| /// null_frag operator.
 | |
| static bool hasNullFragReference(DagInit *DI) {
 | |
|   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
 | |
|   if (!OpDef) return false;
 | |
|   Record *Operator = OpDef->getDef();
 | |
| 
 | |
|   // If this is the null fragment, return true.
 | |
|   if (Operator->getName() == "null_frag") return true;
 | |
|   // If any of the arguments reference the null fragment, return true.
 | |
|   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
 | |
|     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
 | |
|     if (Arg && hasNullFragReference(Arg))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasNullFragReference - Return true if any DAG in the list references
 | |
| /// the null_frag operator.
 | |
| static bool hasNullFragReference(ListInit *LI) {
 | |
|   for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
 | |
|     DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
 | |
|     assert(DI && "non-dag in an instruction Pattern list?!");
 | |
|     if (hasNullFragReference(DI))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Get all the instructions in a tree.
 | |
| static void
 | |
| getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
 | |
|   if (Tree->isLeaf())
 | |
|     return;
 | |
|   if (Tree->getOperator()->isSubClassOf("Instruction"))
 | |
|     Instrs.push_back(Tree->getOperator());
 | |
|   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
 | |
|     getInstructionsInTree(Tree->getChild(i), Instrs);
 | |
| }
 | |
| 
 | |
| /// Check the class of a pattern leaf node against the instruction operand it
 | |
| /// represents.
 | |
| static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
 | |
|                               Record *Leaf) {
 | |
|   if (OI.Rec == Leaf)
 | |
|     return true;
 | |
| 
 | |
|   // Allow direct value types to be used in instruction set patterns.
 | |
|   // The type will be checked later.
 | |
|   if (Leaf->isSubClassOf("ValueType"))
 | |
|     return true;
 | |
| 
 | |
|   // Patterns can also be ComplexPattern instances.
 | |
|   if (Leaf->isSubClassOf("ComplexPattern"))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving
 | |
| /// any fragments involved.  This populates the Instructions list with fully
 | |
| /// resolved instructions.
 | |
| void CodeGenDAGPatterns::ParseInstructions() {
 | |
|   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
 | |
| 
 | |
|   for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
 | |
|     ListInit *LI = 0;
 | |
| 
 | |
|     if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
 | |
|       LI = Instrs[i]->getValueAsListInit("Pattern");
 | |
| 
 | |
|     // If there is no pattern, only collect minimal information about the
 | |
|     // instruction for its operand list.  We have to assume that there is one
 | |
|     // result, as we have no detailed info. A pattern which references the
 | |
|     // null_frag operator is as-if no pattern were specified. Normally this
 | |
|     // is from a multiclass expansion w/ a SDPatternOperator passed in as
 | |
|     // null_frag.
 | |
|     if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
 | |
|       std::vector<Record*> Results;
 | |
|       std::vector<Record*> Operands;
 | |
| 
 | |
|       CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
 | |
| 
 | |
|       if (InstInfo.Operands.size() != 0) {
 | |
|         if (InstInfo.Operands.NumDefs == 0) {
 | |
|           // These produce no results
 | |
|           for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
 | |
|             Operands.push_back(InstInfo.Operands[j].Rec);
 | |
|         } else {
 | |
|           // Assume the first operand is the result.
 | |
|           Results.push_back(InstInfo.Operands[0].Rec);
 | |
| 
 | |
|           // The rest are inputs.
 | |
|           for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
 | |
|             Operands.push_back(InstInfo.Operands[j].Rec);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create and insert the instruction.
 | |
|       std::vector<Record*> ImpResults;
 | |
|       Instructions.insert(std::make_pair(Instrs[i],
 | |
|                           DAGInstruction(0, Results, Operands, ImpResults)));
 | |
|       continue;  // no pattern.
 | |
|     }
 | |
| 
 | |
|     // Parse the instruction.
 | |
|     TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
 | |
|     // Inline pattern fragments into it.
 | |
|     I->InlinePatternFragments();
 | |
| 
 | |
|     // Infer as many types as possible.  If we cannot infer all of them, we can
 | |
|     // never do anything with this instruction pattern: report it to the user.
 | |
|     if (!I->InferAllTypes())
 | |
|       I->error("Could not infer all types in pattern!");
 | |
| 
 | |
|     // InstInputs - Keep track of all of the inputs of the instruction, along
 | |
|     // with the record they are declared as.
 | |
|     std::map<std::string, TreePatternNode*> InstInputs;
 | |
| 
 | |
|     // InstResults - Keep track of all the virtual registers that are 'set'
 | |
|     // in the instruction, including what reg class they are.
 | |
|     std::map<std::string, TreePatternNode*> InstResults;
 | |
| 
 | |
|     std::vector<Record*> InstImpResults;
 | |
| 
 | |
|     // Verify that the top-level forms in the instruction are of void type, and
 | |
|     // fill in the InstResults map.
 | |
|     for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
 | |
|       TreePatternNode *Pat = I->getTree(j);
 | |
|       if (Pat->getNumTypes() != 0)
 | |
|         I->error("Top-level forms in instruction pattern should have"
 | |
|                  " void types");
 | |
| 
 | |
|       // Find inputs and outputs, and verify the structure of the uses/defs.
 | |
|       FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
 | |
|                                   InstImpResults);
 | |
|     }
 | |
| 
 | |
|     // Now that we have inputs and outputs of the pattern, inspect the operands
 | |
|     // list for the instruction.  This determines the order that operands are
 | |
|     // added to the machine instruction the node corresponds to.
 | |
|     unsigned NumResults = InstResults.size();
 | |
| 
 | |
|     // Parse the operands list from the (ops) list, validating it.
 | |
|     assert(I->getArgList().empty() && "Args list should still be empty here!");
 | |
|     CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
 | |
| 
 | |
|     // Check that all of the results occur first in the list.
 | |
|     std::vector<Record*> Results;
 | |
|     TreePatternNode *Res0Node = 0;
 | |
|     for (unsigned i = 0; i != NumResults; ++i) {
 | |
|       if (i == CGI.Operands.size())
 | |
|         I->error("'" + InstResults.begin()->first +
 | |
|                  "' set but does not appear in operand list!");
 | |
|       const std::string &OpName = CGI.Operands[i].Name;
 | |
| 
 | |
|       // Check that it exists in InstResults.
 | |
|       TreePatternNode *RNode = InstResults[OpName];
 | |
|       if (RNode == 0)
 | |
|         I->error("Operand $" + OpName + " does not exist in operand list!");
 | |
| 
 | |
|       if (i == 0)
 | |
|         Res0Node = RNode;
 | |
|       Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
 | |
|       if (R == 0)
 | |
|         I->error("Operand $" + OpName + " should be a set destination: all "
 | |
|                  "outputs must occur before inputs in operand list!");
 | |
| 
 | |
|       if (!checkOperandClass(CGI.Operands[i], R))
 | |
|         I->error("Operand $" + OpName + " class mismatch!");
 | |
| 
 | |
|       // Remember the return type.
 | |
|       Results.push_back(CGI.Operands[i].Rec);
 | |
| 
 | |
|       // Okay, this one checks out.
 | |
|       InstResults.erase(OpName);
 | |
|     }
 | |
| 
 | |
|     // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
 | |
|     // the copy while we're checking the inputs.
 | |
|     std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
 | |
| 
 | |
|     std::vector<TreePatternNode*> ResultNodeOperands;
 | |
|     std::vector<Record*> Operands;
 | |
|     for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
 | |
|       CGIOperandList::OperandInfo &Op = CGI.Operands[i];
 | |
|       const std::string &OpName = Op.Name;
 | |
|       if (OpName.empty())
 | |
|         I->error("Operand #" + utostr(i) + " in operands list has no name!");
 | |
| 
 | |
|       if (!InstInputsCheck.count(OpName)) {
 | |
|         // If this is an operand with a DefaultOps set filled in, we can ignore
 | |
|         // this.  When we codegen it, we will do so as always executed.
 | |
|         if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
 | |
|           // Does it have a non-empty DefaultOps field?  If so, ignore this
 | |
|           // operand.
 | |
|           if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
 | |
|             continue;
 | |
|         }
 | |
|         I->error("Operand $" + OpName +
 | |
|                  " does not appear in the instruction pattern");
 | |
|       }
 | |
|       TreePatternNode *InVal = InstInputsCheck[OpName];
 | |
|       InstInputsCheck.erase(OpName);   // It occurred, remove from map.
 | |
| 
 | |
|       if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
 | |
|         Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
 | |
|         if (!checkOperandClass(Op, InRec))
 | |
|           I->error("Operand $" + OpName + "'s register class disagrees"
 | |
|                    " between the operand and pattern");
 | |
|       }
 | |
|       Operands.push_back(Op.Rec);
 | |
| 
 | |
|       // Construct the result for the dest-pattern operand list.
 | |
|       TreePatternNode *OpNode = InVal->clone();
 | |
| 
 | |
|       // No predicate is useful on the result.
 | |
|       OpNode->clearPredicateFns();
 | |
| 
 | |
|       // Promote the xform function to be an explicit node if set.
 | |
|       if (Record *Xform = OpNode->getTransformFn()) {
 | |
|         OpNode->setTransformFn(0);
 | |
|         std::vector<TreePatternNode*> Children;
 | |
|         Children.push_back(OpNode);
 | |
|         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
 | |
|       }
 | |
| 
 | |
|       ResultNodeOperands.push_back(OpNode);
 | |
|     }
 | |
| 
 | |
|     if (!InstInputsCheck.empty())
 | |
|       I->error("Input operand $" + InstInputsCheck.begin()->first +
 | |
|                " occurs in pattern but not in operands list!");
 | |
| 
 | |
|     TreePatternNode *ResultPattern =
 | |
|       new TreePatternNode(I->getRecord(), ResultNodeOperands,
 | |
|                           GetNumNodeResults(I->getRecord(), *this));
 | |
|     // Copy fully inferred output node type to instruction result pattern.
 | |
|     for (unsigned i = 0; i != NumResults; ++i)
 | |
|       ResultPattern->setType(i, Res0Node->getExtType(i));
 | |
| 
 | |
|     // Create and insert the instruction.
 | |
|     // FIXME: InstImpResults should not be part of DAGInstruction.
 | |
|     DAGInstruction TheInst(I, Results, Operands, InstImpResults);
 | |
|     Instructions.insert(std::make_pair(I->getRecord(), TheInst));
 | |
| 
 | |
|     // Use a temporary tree pattern to infer all types and make sure that the
 | |
|     // constructed result is correct.  This depends on the instruction already
 | |
|     // being inserted into the Instructions map.
 | |
|     TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
 | |
|     Temp.InferAllTypes(&I->getNamedNodesMap());
 | |
| 
 | |
|     DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
 | |
|     TheInsertedInst.setResultPattern(Temp.getOnlyTree());
 | |
| 
 | |
|     DEBUG(I->dump());
 | |
|   }
 | |
| 
 | |
|   // If we can, convert the instructions to be patterns that are matched!
 | |
|   for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
 | |
|         Instructions.begin(),
 | |
|        E = Instructions.end(); II != E; ++II) {
 | |
|     DAGInstruction &TheInst = II->second;
 | |
|     TreePattern *I = TheInst.getPattern();
 | |
|     if (I == 0) continue;  // No pattern.
 | |
| 
 | |
|     // FIXME: Assume only the first tree is the pattern. The others are clobber
 | |
|     // nodes.
 | |
|     TreePatternNode *Pattern = I->getTree(0);
 | |
|     TreePatternNode *SrcPattern;
 | |
|     if (Pattern->getOperator()->getName() == "set") {
 | |
|       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
 | |
|     } else{
 | |
|       // Not a set (store or something?)
 | |
|       SrcPattern = Pattern;
 | |
|     }
 | |
| 
 | |
|     Record *Instr = II->first;
 | |
|     AddPatternToMatch(I,
 | |
|                       PatternToMatch(Instr,
 | |
|                                      Instr->getValueAsListInit("Predicates"),
 | |
|                                      SrcPattern,
 | |
|                                      TheInst.getResultPattern(),
 | |
|                                      TheInst.getImpResults(),
 | |
|                                      Instr->getValueAsInt("AddedComplexity"),
 | |
|                                      Instr->getID()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
 | |
| 
 | |
| static void FindNames(const TreePatternNode *P,
 | |
|                       std::map<std::string, NameRecord> &Names,
 | |
|                       TreePattern *PatternTop) {
 | |
|   if (!P->getName().empty()) {
 | |
|     NameRecord &Rec = Names[P->getName()];
 | |
|     // If this is the first instance of the name, remember the node.
 | |
|     if (Rec.second++ == 0)
 | |
|       Rec.first = P;
 | |
|     else if (Rec.first->getExtTypes() != P->getExtTypes())
 | |
|       PatternTop->error("repetition of value: $" + P->getName() +
 | |
|                         " where different uses have different types!");
 | |
|   }
 | |
| 
 | |
|   if (!P->isLeaf()) {
 | |
|     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
 | |
|       FindNames(P->getChild(i), Names, PatternTop);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
 | |
|                                            const PatternToMatch &PTM) {
 | |
|   // Do some sanity checking on the pattern we're about to match.
 | |
|   std::string Reason;
 | |
|   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
 | |
|     PrintWarning(Pattern->getRecord()->getLoc(),
 | |
|       Twine("Pattern can never match: ") + Reason);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the source pattern's root is a complex pattern, that complex pattern
 | |
|   // must specify the nodes it can potentially match.
 | |
|   if (const ComplexPattern *CP =
 | |
|         PTM.getSrcPattern()->getComplexPatternInfo(*this))
 | |
|     if (CP->getRootNodes().empty())
 | |
|       Pattern->error("ComplexPattern at root must specify list of opcodes it"
 | |
|                      " could match");
 | |
| 
 | |
| 
 | |
|   // Find all of the named values in the input and output, ensure they have the
 | |
|   // same type.
 | |
|   std::map<std::string, NameRecord> SrcNames, DstNames;
 | |
|   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
 | |
|   FindNames(PTM.getDstPattern(), DstNames, Pattern);
 | |
| 
 | |
|   // Scan all of the named values in the destination pattern, rejecting them if
 | |
|   // they don't exist in the input pattern.
 | |
|   for (std::map<std::string, NameRecord>::iterator
 | |
|        I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
 | |
|     if (SrcNames[I->first].first == 0)
 | |
|       Pattern->error("Pattern has input without matching name in output: $" +
 | |
|                      I->first);
 | |
|   }
 | |
| 
 | |
|   // Scan all of the named values in the source pattern, rejecting them if the
 | |
|   // name isn't used in the dest, and isn't used to tie two values together.
 | |
|   for (std::map<std::string, NameRecord>::iterator
 | |
|        I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
 | |
|     if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
 | |
|       Pattern->error("Pattern has dead named input: $" + I->first);
 | |
| 
 | |
|   PatternsToMatch.push_back(PTM);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void CodeGenDAGPatterns::InferInstructionFlags() {
 | |
|   const std::vector<const CodeGenInstruction*> &Instructions =
 | |
|     Target.getInstructionsByEnumValue();
 | |
| 
 | |
|   // First try to infer flags from the primary instruction pattern, if any.
 | |
|   SmallVector<CodeGenInstruction*, 8> Revisit;
 | |
|   unsigned Errors = 0;
 | |
|   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
 | |
|     CodeGenInstruction &InstInfo =
 | |
|       const_cast<CodeGenInstruction &>(*Instructions[i]);
 | |
| 
 | |
|     // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
 | |
|     // This flag is obsolete and will be removed.
 | |
|     if (InstInfo.neverHasSideEffects) {
 | |
|       assert(!InstInfo.hasSideEffects);
 | |
|       InstInfo.hasSideEffects_Unset = false;
 | |
|     }
 | |
| 
 | |
|     // Get the primary instruction pattern.
 | |
|     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
 | |
|     if (!Pattern) {
 | |
|       if (InstInfo.hasUndefFlags())
 | |
|         Revisit.push_back(&InstInfo);
 | |
|       continue;
 | |
|     }
 | |
|     InstAnalyzer PatInfo(*this);
 | |
|     PatInfo.Analyze(Pattern);
 | |
|     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
 | |
|   }
 | |
| 
 | |
|   // Second, look for single-instruction patterns defined outside the
 | |
|   // instruction.
 | |
|   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
 | |
|     const PatternToMatch &PTM = *I;
 | |
| 
 | |
|     // We can only infer from single-instruction patterns, otherwise we won't
 | |
|     // know which instruction should get the flags.
 | |
|     SmallVector<Record*, 8> PatInstrs;
 | |
|     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
 | |
|     if (PatInstrs.size() != 1)
 | |
|       continue;
 | |
| 
 | |
|     // Get the single instruction.
 | |
|     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
 | |
| 
 | |
|     // Only infer properties from the first pattern. We'll verify the others.
 | |
|     if (InstInfo.InferredFrom)
 | |
|       continue;
 | |
| 
 | |
|     InstAnalyzer PatInfo(*this);
 | |
|     PatInfo.Analyze(&PTM);
 | |
|     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
 | |
|   }
 | |
| 
 | |
|   if (Errors)
 | |
|     PrintFatalError("pattern conflicts");
 | |
| 
 | |
|   // Revisit instructions with undefined flags and no pattern.
 | |
|   if (Target.guessInstructionProperties()) {
 | |
|     for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
 | |
|       CodeGenInstruction &InstInfo = *Revisit[i];
 | |
|       if (InstInfo.InferredFrom)
 | |
|         continue;
 | |
|       // The mayLoad and mayStore flags default to false.
 | |
|       // Conservatively assume hasSideEffects if it wasn't explicit.
 | |
|       if (InstInfo.hasSideEffects_Unset)
 | |
|         InstInfo.hasSideEffects = true;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Complain about any flags that are still undefined.
 | |
|   for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
 | |
|     CodeGenInstruction &InstInfo = *Revisit[i];
 | |
|     if (InstInfo.InferredFrom)
 | |
|       continue;
 | |
|     if (InstInfo.hasSideEffects_Unset)
 | |
|       PrintError(InstInfo.TheDef->getLoc(),
 | |
|                  "Can't infer hasSideEffects from patterns");
 | |
|     if (InstInfo.mayStore_Unset)
 | |
|       PrintError(InstInfo.TheDef->getLoc(),
 | |
|                  "Can't infer mayStore from patterns");
 | |
|     if (InstInfo.mayLoad_Unset)
 | |
|       PrintError(InstInfo.TheDef->getLoc(),
 | |
|                  "Can't infer mayLoad from patterns");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Verify instruction flags against pattern node properties.
 | |
| void CodeGenDAGPatterns::VerifyInstructionFlags() {
 | |
|   unsigned Errors = 0;
 | |
|   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
 | |
|     const PatternToMatch &PTM = *I;
 | |
|     SmallVector<Record*, 8> Instrs;
 | |
|     getInstructionsInTree(PTM.getDstPattern(), Instrs);
 | |
|     if (Instrs.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Count the number of instructions with each flag set.
 | |
|     unsigned NumSideEffects = 0;
 | |
|     unsigned NumStores = 0;
 | |
|     unsigned NumLoads = 0;
 | |
|     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
 | |
|       const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
 | |
|       NumSideEffects += InstInfo.hasSideEffects;
 | |
|       NumStores += InstInfo.mayStore;
 | |
|       NumLoads += InstInfo.mayLoad;
 | |
|     }
 | |
| 
 | |
|     // Analyze the source pattern.
 | |
|     InstAnalyzer PatInfo(*this);
 | |
|     PatInfo.Analyze(&PTM);
 | |
| 
 | |
|     // Collect error messages.
 | |
|     SmallVector<std::string, 4> Msgs;
 | |
| 
 | |
|     // Check for missing flags in the output.
 | |
|     // Permit extra flags for now at least.
 | |
|     if (PatInfo.hasSideEffects && !NumSideEffects)
 | |
|       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
 | |
| 
 | |
|     // Don't verify store flags on instructions with side effects. At least for
 | |
|     // intrinsics, side effects implies mayStore.
 | |
|     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
 | |
|       Msgs.push_back("pattern may store, but mayStore isn't set");
 | |
| 
 | |
|     // Similarly, mayStore implies mayLoad on intrinsics.
 | |
|     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
 | |
|       Msgs.push_back("pattern may load, but mayLoad isn't set");
 | |
| 
 | |
|     // Print error messages.
 | |
|     if (Msgs.empty())
 | |
|       continue;
 | |
|     ++Errors;
 | |
| 
 | |
|     for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
 | |
|       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
 | |
|                  (Instrs.size() == 1 ?
 | |
|                   "instruction" : "output instructions"));
 | |
|     // Provide the location of the relevant instruction definitions.
 | |
|     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
 | |
|       if (Instrs[i] != PTM.getSrcRecord())
 | |
|         PrintError(Instrs[i]->getLoc(), "defined here");
 | |
|       const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
 | |
|       if (InstInfo.InferredFrom &&
 | |
|           InstInfo.InferredFrom != InstInfo.TheDef &&
 | |
|           InstInfo.InferredFrom != PTM.getSrcRecord())
 | |
|         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
 | |
|     }
 | |
|   }
 | |
|   if (Errors)
 | |
|     PrintFatalError("Errors in DAG patterns");
 | |
| }
 | |
| 
 | |
| /// Given a pattern result with an unresolved type, see if we can find one
 | |
| /// instruction with an unresolved result type.  Force this result type to an
 | |
| /// arbitrary element if it's possible types to converge results.
 | |
| static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
 | |
|   if (N->isLeaf())
 | |
|     return false;
 | |
| 
 | |
|   // Analyze children.
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     if (ForceArbitraryInstResultType(N->getChild(i), TP))
 | |
|       return true;
 | |
| 
 | |
|   if (!N->getOperator()->isSubClassOf("Instruction"))
 | |
|     return false;
 | |
| 
 | |
|   // If this type is already concrete or completely unknown we can't do
 | |
|   // anything.
 | |
|   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
 | |
|     if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, force its type to the first possibility (an arbitrary choice).
 | |
|     if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CodeGenDAGPatterns::ParsePatterns() {
 | |
|   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
 | |
| 
 | |
|   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
 | |
|     Record *CurPattern = Patterns[i];
 | |
|     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
 | |
| 
 | |
|     // If the pattern references the null_frag, there's nothing to do.
 | |
|     if (hasNullFragReference(Tree))
 | |
|       continue;
 | |
| 
 | |
|     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
 | |
| 
 | |
|     // Inline pattern fragments into it.
 | |
|     Pattern->InlinePatternFragments();
 | |
| 
 | |
|     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
 | |
|     if (LI->getSize() == 0) continue;  // no pattern.
 | |
| 
 | |
|     // Parse the instruction.
 | |
|     TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
 | |
| 
 | |
|     // Inline pattern fragments into it.
 | |
|     Result->InlinePatternFragments();
 | |
| 
 | |
|     if (Result->getNumTrees() != 1)
 | |
|       Result->error("Cannot handle instructions producing instructions "
 | |
|                     "with temporaries yet!");
 | |
| 
 | |
|     bool IterateInference;
 | |
|     bool InferredAllPatternTypes, InferredAllResultTypes;
 | |
|     do {
 | |
|       // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|       // can never do anything with this pattern: report it to the user.
 | |
|       InferredAllPatternTypes =
 | |
|         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
 | |
| 
 | |
|       // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|       // can never do anything with this pattern: report it to the user.
 | |
|       InferredAllResultTypes =
 | |
|         Result->InferAllTypes(&Pattern->getNamedNodesMap());
 | |
| 
 | |
|       IterateInference = false;
 | |
| 
 | |
|       // Apply the type of the result to the source pattern.  This helps us
 | |
|       // resolve cases where the input type is known to be a pointer type (which
 | |
|       // is considered resolved), but the result knows it needs to be 32- or
 | |
|       // 64-bits.  Infer the other way for good measure.
 | |
|       for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
 | |
|                                         Pattern->getTree(0)->getNumTypes());
 | |
|            i != e; ++i) {
 | |
|         IterateInference = Pattern->getTree(0)->
 | |
|           UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
 | |
|         IterateInference |= Result->getTree(0)->
 | |
|           UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
 | |
|       }
 | |
| 
 | |
|       // If our iteration has converged and the input pattern's types are fully
 | |
|       // resolved but the result pattern is not fully resolved, we may have a
 | |
|       // situation where we have two instructions in the result pattern and
 | |
|       // the instructions require a common register class, but don't care about
 | |
|       // what actual MVT is used.  This is actually a bug in our modelling:
 | |
|       // output patterns should have register classes, not MVTs.
 | |
|       //
 | |
|       // In any case, to handle this, we just go through and disambiguate some
 | |
|       // arbitrary types to the result pattern's nodes.
 | |
|       if (!IterateInference && InferredAllPatternTypes &&
 | |
|           !InferredAllResultTypes)
 | |
|         IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
 | |
|                                                         *Result);
 | |
|     } while (IterateInference);
 | |
| 
 | |
|     // Verify that we inferred enough types that we can do something with the
 | |
|     // pattern and result.  If these fire the user has to add type casts.
 | |
|     if (!InferredAllPatternTypes)
 | |
|       Pattern->error("Could not infer all types in pattern!");
 | |
|     if (!InferredAllResultTypes) {
 | |
|       Pattern->dump();
 | |
|       Result->error("Could not infer all types in pattern result!");
 | |
|     }
 | |
| 
 | |
|     // Validate that the input pattern is correct.
 | |
|     std::map<std::string, TreePatternNode*> InstInputs;
 | |
|     std::map<std::string, TreePatternNode*> InstResults;
 | |
|     std::vector<Record*> InstImpResults;
 | |
|     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
 | |
|       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
 | |
|                                   InstInputs, InstResults,
 | |
|                                   InstImpResults);
 | |
| 
 | |
|     // Promote the xform function to be an explicit node if set.
 | |
|     TreePatternNode *DstPattern = Result->getOnlyTree();
 | |
|     std::vector<TreePatternNode*> ResultNodeOperands;
 | |
|     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
 | |
|       TreePatternNode *OpNode = DstPattern->getChild(ii);
 | |
|       if (Record *Xform = OpNode->getTransformFn()) {
 | |
|         OpNode->setTransformFn(0);
 | |
|         std::vector<TreePatternNode*> Children;
 | |
|         Children.push_back(OpNode);
 | |
|         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
 | |
|       }
 | |
|       ResultNodeOperands.push_back(OpNode);
 | |
|     }
 | |
|     DstPattern = Result->getOnlyTree();
 | |
|     if (!DstPattern->isLeaf())
 | |
|       DstPattern = new TreePatternNode(DstPattern->getOperator(),
 | |
|                                        ResultNodeOperands,
 | |
|                                        DstPattern->getNumTypes());
 | |
| 
 | |
|     for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
 | |
|       DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
 | |
| 
 | |
|     TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
 | |
|     Temp.InferAllTypes();
 | |
| 
 | |
| 
 | |
|     AddPatternToMatch(Pattern,
 | |
|                     PatternToMatch(CurPattern,
 | |
|                                    CurPattern->getValueAsListInit("Predicates"),
 | |
|                                    Pattern->getTree(0),
 | |
|                                    Temp.getOnlyTree(), InstImpResults,
 | |
|                                    CurPattern->getValueAsInt("AddedComplexity"),
 | |
|                                    CurPattern->getID()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CombineChildVariants - Given a bunch of permutations of each child of the
 | |
| /// 'operator' node, put them together in all possible ways.
 | |
| static void CombineChildVariants(TreePatternNode *Orig,
 | |
|                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
 | |
|                                  std::vector<TreePatternNode*> &OutVariants,
 | |
|                                  CodeGenDAGPatterns &CDP,
 | |
|                                  const MultipleUseVarSet &DepVars) {
 | |
|   // Make sure that each operand has at least one variant to choose from.
 | |
|   for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | |
|     if (ChildVariants[i].empty())
 | |
|       return;
 | |
| 
 | |
|   // The end result is an all-pairs construction of the resultant pattern.
 | |
|   std::vector<unsigned> Idxs;
 | |
|   Idxs.resize(ChildVariants.size());
 | |
|   bool NotDone;
 | |
|   do {
 | |
| #ifndef NDEBUG
 | |
|     DEBUG(if (!Idxs.empty()) {
 | |
|             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
 | |
|               for (unsigned i = 0; i < Idxs.size(); ++i) {
 | |
|                 errs() << Idxs[i] << " ";
 | |
|             }
 | |
|             errs() << "]\n";
 | |
|           });
 | |
| #endif
 | |
|     // Create the variant and add it to the output list.
 | |
|     std::vector<TreePatternNode*> NewChildren;
 | |
|     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | |
|       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
 | |
|     TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
 | |
|                                              Orig->getNumTypes());
 | |
| 
 | |
|     // Copy over properties.
 | |
|     R->setName(Orig->getName());
 | |
|     R->setPredicateFns(Orig->getPredicateFns());
 | |
|     R->setTransformFn(Orig->getTransformFn());
 | |
|     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
 | |
|       R->setType(i, Orig->getExtType(i));
 | |
| 
 | |
|     // If this pattern cannot match, do not include it as a variant.
 | |
|     std::string ErrString;
 | |
|     if (!R->canPatternMatch(ErrString, CDP)) {
 | |
|       delete R;
 | |
|     } else {
 | |
|       bool AlreadyExists = false;
 | |
| 
 | |
|       // Scan to see if this pattern has already been emitted.  We can get
 | |
|       // duplication due to things like commuting:
 | |
|       //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
 | |
|       // which are the same pattern.  Ignore the dups.
 | |
|       for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
 | |
|         if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
 | |
|           AlreadyExists = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (AlreadyExists)
 | |
|         delete R;
 | |
|       else
 | |
|         OutVariants.push_back(R);
 | |
|     }
 | |
| 
 | |
|     // Increment indices to the next permutation by incrementing the
 | |
|     // indicies from last index backward, e.g., generate the sequence
 | |
|     // [0, 0], [0, 1], [1, 0], [1, 1].
 | |
|     int IdxsIdx;
 | |
|     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
 | |
|       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
 | |
|         Idxs[IdxsIdx] = 0;
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|     NotDone = (IdxsIdx >= 0);
 | |
|   } while (NotDone);
 | |
| }
 | |
| 
 | |
| /// CombineChildVariants - A helper function for binary operators.
 | |
| ///
 | |
| static void CombineChildVariants(TreePatternNode *Orig,
 | |
|                                  const std::vector<TreePatternNode*> &LHS,
 | |
|                                  const std::vector<TreePatternNode*> &RHS,
 | |
|                                  std::vector<TreePatternNode*> &OutVariants,
 | |
|                                  CodeGenDAGPatterns &CDP,
 | |
|                                  const MultipleUseVarSet &DepVars) {
 | |
|   std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | |
|   ChildVariants.push_back(LHS);
 | |
|   ChildVariants.push_back(RHS);
 | |
|   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
 | |
|                                      std::vector<TreePatternNode *> &Children) {
 | |
|   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
 | |
|   Record *Operator = N->getOperator();
 | |
| 
 | |
|   // Only permit raw nodes.
 | |
|   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
 | |
|       N->getTransformFn()) {
 | |
|     Children.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChild(0));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
 | |
| 
 | |
|   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChild(1));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
 | |
| }
 | |
| 
 | |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
 | |
| /// the (potentially recursive) pattern by using algebraic laws.
 | |
| ///
 | |
| static void GenerateVariantsOf(TreePatternNode *N,
 | |
|                                std::vector<TreePatternNode*> &OutVariants,
 | |
|                                CodeGenDAGPatterns &CDP,
 | |
|                                const MultipleUseVarSet &DepVars) {
 | |
|   // We cannot permute leaves.
 | |
|   if (N->isLeaf()) {
 | |
|     OutVariants.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Look up interesting info about the node.
 | |
|   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
 | |
| 
 | |
|   // If this node is associative, re-associate.
 | |
|   if (NodeInfo.hasProperty(SDNPAssociative)) {
 | |
|     // Re-associate by pulling together all of the linked operators
 | |
|     std::vector<TreePatternNode*> MaximalChildren;
 | |
|     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
 | |
| 
 | |
|     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
 | |
|     // permutations.
 | |
|     if (MaximalChildren.size() == 3) {
 | |
|       // Find the variants of all of our maximal children.
 | |
|       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
 | |
|       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
 | |
|       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
 | |
|       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
 | |
| 
 | |
|       // There are only two ways we can permute the tree:
 | |
|       //   (A op B) op C    and    A op (B op C)
 | |
|       // Within these forms, we can also permute A/B/C.
 | |
| 
 | |
|       // Generate legal pair permutations of A/B/C.
 | |
|       std::vector<TreePatternNode*> ABVariants;
 | |
|       std::vector<TreePatternNode*> BAVariants;
 | |
|       std::vector<TreePatternNode*> ACVariants;
 | |
|       std::vector<TreePatternNode*> CAVariants;
 | |
|       std::vector<TreePatternNode*> BCVariants;
 | |
|       std::vector<TreePatternNode*> CBVariants;
 | |
|       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
 | |
| 
 | |
|       // Combine those into the result: (x op x) op x
 | |
|       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
 | |
| 
 | |
|       // Combine those into the result: x op (x op x)
 | |
|       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
 | |
|       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute permutations of all children.
 | |
|   std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | |
|   ChildVariants.resize(N->getNumChildren());
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
 | |
| 
 | |
|   // Build all permutations based on how the children were formed.
 | |
|   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
 | |
| 
 | |
|   // If this node is commutative, consider the commuted order.
 | |
|   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | |
|     assert((N->getNumChildren()==2 || isCommIntrinsic) &&
 | |
|            "Commutative but doesn't have 2 children!");
 | |
|     // Don't count children which are actually register references.
 | |
|     unsigned NC = 0;
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Child = N->getChild(i);
 | |
|       if (Child->isLeaf())
 | |
|         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
 | |
|           Record *RR = DI->getDef();
 | |
|           if (RR->isSubClassOf("Register"))
 | |
|             continue;
 | |
|         }
 | |
|       NC++;
 | |
|     }
 | |
|     // Consider the commuted order.
 | |
|     if (isCommIntrinsic) {
 | |
|       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
 | |
|       // operands are the commutative operands, and there might be more operands
 | |
|       // after those.
 | |
|       assert(NC >= 3 &&
 | |
|              "Commutative intrinsic should have at least 3 childrean!");
 | |
|       std::vector<std::vector<TreePatternNode*> > Variants;
 | |
|       Variants.push_back(ChildVariants[0]); // Intrinsic id.
 | |
|       Variants.push_back(ChildVariants[2]);
 | |
|       Variants.push_back(ChildVariants[1]);
 | |
|       for (unsigned i = 3; i != NC; ++i)
 | |
|         Variants.push_back(ChildVariants[i]);
 | |
|       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
 | |
|     } else if (NC == 2)
 | |
|       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
 | |
|                            OutVariants, CDP, DepVars);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // GenerateVariants - Generate variants.  For example, commutative patterns can
 | |
| // match multiple ways.  Add them to PatternsToMatch as well.
 | |
| void CodeGenDAGPatterns::GenerateVariants() {
 | |
|   DEBUG(errs() << "Generating instruction variants.\n");
 | |
| 
 | |
|   // Loop over all of the patterns we've collected, checking to see if we can
 | |
|   // generate variants of the instruction, through the exploitation of
 | |
|   // identities.  This permits the target to provide aggressive matching without
 | |
|   // the .td file having to contain tons of variants of instructions.
 | |
|   //
 | |
|   // Note that this loop adds new patterns to the PatternsToMatch list, but we
 | |
|   // intentionally do not reconsider these.  Any variants of added patterns have
 | |
|   // already been added.
 | |
|   //
 | |
|   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
 | |
|     MultipleUseVarSet             DepVars;
 | |
|     std::vector<TreePatternNode*> Variants;
 | |
|     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
 | |
|     DEBUG(errs() << "Dependent/multiply used variables: ");
 | |
|     DEBUG(DumpDepVars(DepVars));
 | |
|     DEBUG(errs() << "\n");
 | |
|     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
 | |
|                        DepVars);
 | |
| 
 | |
|     assert(!Variants.empty() && "Must create at least original variant!");
 | |
|     Variants.erase(Variants.begin());  // Remove the original pattern.
 | |
| 
 | |
|     if (Variants.empty())  // No variants for this pattern.
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(errs() << "FOUND VARIANTS OF: ";
 | |
|           PatternsToMatch[i].getSrcPattern()->dump();
 | |
|           errs() << "\n");
 | |
| 
 | |
|     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
 | |
|       TreePatternNode *Variant = Variants[v];
 | |
| 
 | |
|       DEBUG(errs() << "  VAR#" << v <<  ": ";
 | |
|             Variant->dump();
 | |
|             errs() << "\n");
 | |
| 
 | |
|       // Scan to see if an instruction or explicit pattern already matches this.
 | |
|       bool AlreadyExists = false;
 | |
|       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
 | |
|         // Skip if the top level predicates do not match.
 | |
|         if (PatternsToMatch[i].getPredicates() !=
 | |
|             PatternsToMatch[p].getPredicates())
 | |
|           continue;
 | |
|         // Check to see if this variant already exists.
 | |
|         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
 | |
|                                     DepVars)) {
 | |
|           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
 | |
|           AlreadyExists = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // If we already have it, ignore the variant.
 | |
|       if (AlreadyExists) continue;
 | |
| 
 | |
|       // Otherwise, add it to the list of patterns we have.
 | |
|       PatternsToMatch.
 | |
|         push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
 | |
|                                  PatternsToMatch[i].getPredicates(),
 | |
|                                  Variant, PatternsToMatch[i].getDstPattern(),
 | |
|                                  PatternsToMatch[i].getDstRegs(),
 | |
|                                  PatternsToMatch[i].getAddedComplexity(),
 | |
|                                  Record::getNewUID()));
 | |
|     }
 | |
| 
 | |
|     DEBUG(errs() << "\n");
 | |
|   }
 | |
| }
 |