mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7031 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1355 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1355 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- DataStructure.cpp - Implement the core data structure analysis -----===//
 | |
| //
 | |
| // This file implements the core data structure functionality.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/DSGraph.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include "Support/Timer.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumFolds          ("dsnode", "Number of nodes completely folded");
 | |
|   Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged");
 | |
| };
 | |
| 
 | |
| namespace DS {   // TODO: FIXME
 | |
|   extern TargetData TD;
 | |
| }
 | |
| using namespace DS;
 | |
| 
 | |
| DSNode *DSNodeHandle::HandleForwarding() const {
 | |
|   assert(!N->ForwardNH.isNull() && "Can only be invoked if forwarding!");
 | |
| 
 | |
|   // Handle node forwarding here!
 | |
|   DSNode *Next = N->ForwardNH.getNode();  // Cause recursive shrinkage
 | |
|   Offset += N->ForwardNH.getOffset();
 | |
| 
 | |
|   if (--N->NumReferrers == 0) {
 | |
|     // Removing the last referrer to the node, sever the forwarding link
 | |
|     N->stopForwarding();
 | |
|   }
 | |
| 
 | |
|   N = Next;
 | |
|   N->NumReferrers++;
 | |
|   if (N->Size <= Offset) {
 | |
|     assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
 | |
|     Offset = 0;
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSNode Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DSNode::DSNode(const Type *T, DSGraph *G)
 | |
|   : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
 | |
|   // Add the type entry if it is specified...
 | |
|   if (T) mergeTypeInfo(T, 0);
 | |
|   G->getNodes().push_back(this);
 | |
| }
 | |
| 
 | |
| // DSNode copy constructor... do not copy over the referrers list!
 | |
| DSNode::DSNode(const DSNode &N, DSGraph *G)
 | |
|   : NumReferrers(0), Size(N.Size), ParentGraph(G), Ty(N.Ty),
 | |
|     Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) {
 | |
|   G->getNodes().push_back(this);
 | |
| }
 | |
| 
 | |
| void DSNode::assertOK() const {
 | |
|   assert((Ty != Type::VoidTy ||
 | |
|           Ty == Type::VoidTy && (Size == 0 ||
 | |
|                                  (NodeType & DSNode::Array))) &&
 | |
|          "Node not OK!");
 | |
| }
 | |
| 
 | |
| /// forwardNode - Mark this node as being obsolete, and all references to it
 | |
| /// should be forwarded to the specified node and offset.
 | |
| ///
 | |
| void DSNode::forwardNode(DSNode *To, unsigned Offset) {
 | |
|   assert(this != To && "Cannot forward a node to itself!");
 | |
|   assert(ForwardNH.isNull() && "Already forwarding from this node!");
 | |
|   if (To->Size <= 1) Offset = 0;
 | |
|   assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
 | |
|          "Forwarded offset is wrong!");
 | |
|   ForwardNH.setNode(To);
 | |
|   ForwardNH.setOffset(Offset);
 | |
|   NodeType = DEAD;
 | |
|   Size = 0;
 | |
|   Ty = Type::VoidTy;
 | |
| }
 | |
| 
 | |
| // addGlobal - Add an entry for a global value to the Globals list.  This also
 | |
| // marks the node with the 'G' flag if it does not already have it.
 | |
| //
 | |
| void DSNode::addGlobal(GlobalValue *GV) {
 | |
|   // Keep the list sorted.
 | |
|   std::vector<GlobalValue*>::iterator I =
 | |
|     std::lower_bound(Globals.begin(), Globals.end(), GV);
 | |
| 
 | |
|   if (I == Globals.end() || *I != GV) {
 | |
|     //assert(GV->getType()->getElementType() == Ty);
 | |
|     Globals.insert(I, GV);
 | |
|     NodeType |= GlobalNode;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// foldNodeCompletely - If we determine that this node has some funny
 | |
| /// behavior happening to it that we cannot represent, we fold it down to a
 | |
| /// single, completely pessimistic, node.  This node is represented as a
 | |
| /// single byte with a single TypeEntry of "void".
 | |
| ///
 | |
| void DSNode::foldNodeCompletely() {
 | |
|   if (isNodeCompletelyFolded()) return;  // If this node is already folded...
 | |
| 
 | |
|   ++NumFolds;
 | |
| 
 | |
|   // Create the node we are going to forward to...
 | |
|   DSNode *DestNode = new DSNode(0, ParentGraph);
 | |
|   DestNode->NodeType = NodeType|DSNode::Array;
 | |
|   DestNode->Ty = Type::VoidTy;
 | |
|   DestNode->Size = 1;
 | |
|   DestNode->Globals.swap(Globals);
 | |
| 
 | |
|   // Start forwarding to the destination node...
 | |
|   forwardNode(DestNode, 0);
 | |
|   
 | |
|   if (Links.size()) {
 | |
|     DestNode->Links.push_back(Links[0]);
 | |
|     DSNodeHandle NH(DestNode);
 | |
| 
 | |
|     // If we have links, merge all of our outgoing links together...
 | |
|     for (unsigned i = Links.size()-1; i != 0; --i)
 | |
|       NH.getNode()->Links[0].mergeWith(Links[i]);
 | |
|     Links.clear();
 | |
|   } else {
 | |
|     DestNode->Links.resize(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isNodeCompletelyFolded - Return true if this node has been completely
 | |
| /// folded down to something that can never be expanded, effectively losing
 | |
| /// all of the field sensitivity that may be present in the node.
 | |
| ///
 | |
| bool DSNode::isNodeCompletelyFolded() const {
 | |
|   return getSize() == 1 && Ty == Type::VoidTy && isArray();
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   /// TypeElementWalker Class - Used for implementation of physical subtyping...
 | |
|   ///
 | |
|   class TypeElementWalker {
 | |
|     struct StackState {
 | |
|       const Type *Ty;
 | |
|       unsigned Offset;
 | |
|       unsigned Idx;
 | |
|       StackState(const Type *T, unsigned Off = 0)
 | |
|         : Ty(T), Offset(Off), Idx(0) {}
 | |
|     };
 | |
| 
 | |
|     std::vector<StackState> Stack;
 | |
|   public:
 | |
|     TypeElementWalker(const Type *T) {
 | |
|       Stack.push_back(T);
 | |
|       StepToLeaf();
 | |
|     }
 | |
| 
 | |
|     bool isDone() const { return Stack.empty(); }
 | |
|     const Type *getCurrentType()   const { return Stack.back().Ty;     }
 | |
|     unsigned    getCurrentOffset() const { return Stack.back().Offset; }
 | |
| 
 | |
|     void StepToNextType() {
 | |
|       PopStackAndAdvance();
 | |
|       StepToLeaf();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// PopStackAndAdvance - Pop the current element off of the stack and
 | |
|     /// advance the underlying element to the next contained member.
 | |
|     void PopStackAndAdvance() {
 | |
|       assert(!Stack.empty() && "Cannot pop an empty stack!");
 | |
|       Stack.pop_back();
 | |
|       while (!Stack.empty()) {
 | |
|         StackState &SS = Stack.back();
 | |
|         if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
 | |
|           ++SS.Idx;
 | |
|           if (SS.Idx != ST->getElementTypes().size()) {
 | |
|             const StructLayout *SL = TD.getStructLayout(ST);
 | |
|             SS.Offset += SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1];
 | |
|             return;
 | |
|           }
 | |
|           Stack.pop_back();  // At the end of the structure
 | |
|         } else {
 | |
|           const ArrayType *AT = cast<ArrayType>(SS.Ty);
 | |
|           ++SS.Idx;
 | |
|           if (SS.Idx != AT->getNumElements()) {
 | |
|             SS.Offset += TD.getTypeSize(AT->getElementType());
 | |
|             return;
 | |
|           }
 | |
|           Stack.pop_back();  // At the end of the array
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// StepToLeaf - Used by physical subtyping to move to the first leaf node
 | |
|     /// on the type stack.
 | |
|     void StepToLeaf() {
 | |
|       if (Stack.empty()) return;
 | |
|       while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
 | |
|         StackState &SS = Stack.back();
 | |
|         if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
 | |
|           if (ST->getElementTypes().empty()) {
 | |
|             assert(SS.Idx == 0);
 | |
|             PopStackAndAdvance();
 | |
|           } else {
 | |
|             // Step into the structure...
 | |
|             assert(SS.Idx < ST->getElementTypes().size());
 | |
|             const StructLayout *SL = TD.getStructLayout(ST);
 | |
|             Stack.push_back(StackState(ST->getElementTypes()[SS.Idx],
 | |
|                                        SS.Offset+SL->MemberOffsets[SS.Idx]));
 | |
|           }
 | |
|         } else {
 | |
|           const ArrayType *AT = cast<ArrayType>(SS.Ty);
 | |
|           if (AT->getNumElements() == 0) {
 | |
|             assert(SS.Idx == 0);
 | |
|             PopStackAndAdvance();
 | |
|           } else {
 | |
|             // Step into the array...
 | |
|             assert(SS.Idx < AT->getNumElements());
 | |
|             Stack.push_back(StackState(AT->getElementType(),
 | |
|                                        SS.Offset+SS.Idx*
 | |
|                                        TD.getTypeSize(AT->getElementType())));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// ElementTypesAreCompatible - Check to see if the specified types are
 | |
| /// "physically" compatible.  If so, return true, else return false.  We only
 | |
| /// have to check the fields in T1: T2 may be larger than T1.
 | |
| ///
 | |
| static bool ElementTypesAreCompatible(const Type *T1, const Type *T2) {
 | |
|   TypeElementWalker T1W(T1), T2W(T2);
 | |
|   
 | |
|   while (!T1W.isDone() && !T2W.isDone()) {
 | |
|     if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
 | |
|       return false;
 | |
| 
 | |
|     const Type *T1 = T1W.getCurrentType();
 | |
|     const Type *T2 = T2W.getCurrentType();
 | |
|     if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2))
 | |
|       return false;
 | |
|     
 | |
|     T1W.StepToNextType();
 | |
|     T2W.StepToNextType();
 | |
|   }
 | |
|   
 | |
|   return T1W.isDone();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// mergeTypeInfo - This method merges the specified type into the current node
 | |
| /// at the specified offset.  This may update the current node's type record if
 | |
| /// this gives more information to the node, it may do nothing to the node if
 | |
| /// this information is already known, or it may merge the node completely (and
 | |
| /// return true) if the information is incompatible with what is already known.
 | |
| ///
 | |
| /// This method returns true if the node is completely folded, otherwise false.
 | |
| ///
 | |
| bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
 | |
|                            bool FoldIfIncompatible) {
 | |
|   // Check to make sure the Size member is up-to-date.  Size can be one of the
 | |
|   // following:
 | |
|   //  Size = 0, Ty = Void: Nothing is known about this node.
 | |
|   //  Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
 | |
|   //  Size = 1, Ty = Void, Array = 1: The node is collapsed
 | |
|   //  Otherwise, sizeof(Ty) = Size
 | |
|   //
 | |
|   assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
 | |
|           (Size == 0 && !Ty->isSized() && !isArray()) ||
 | |
|           (Size == 1 && Ty == Type::VoidTy && isArray()) ||
 | |
|           (Size == 0 && !Ty->isSized() && !isArray()) ||
 | |
|           (TD.getTypeSize(Ty) == Size)) &&
 | |
|          "Size member of DSNode doesn't match the type structure!");
 | |
|   assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
 | |
| 
 | |
|   if (Offset == 0 && NewTy == Ty)
 | |
|     return false;  // This should be a common case, handle it efficiently
 | |
| 
 | |
|   // Return true immediately if the node is completely folded.
 | |
|   if (isNodeCompletelyFolded()) return true;
 | |
| 
 | |
|   // If this is an array type, eliminate the outside arrays because they won't
 | |
|   // be used anyway.  This greatly reduces the size of large static arrays used
 | |
|   // as global variables, for example.
 | |
|   //
 | |
|   bool WillBeArray = false;
 | |
|   while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
 | |
|     // FIXME: we might want to keep small arrays, but must be careful about
 | |
|     // things like: [2 x [10000 x int*]]
 | |
|     NewTy = AT->getElementType();
 | |
|     WillBeArray = true;
 | |
|   }
 | |
| 
 | |
|   // Figure out how big the new type we're merging in is...
 | |
|   unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;
 | |
| 
 | |
|   // Otherwise check to see if we can fold this type into the current node.  If
 | |
|   // we can't, we fold the node completely, if we can, we potentially update our
 | |
|   // internal state.
 | |
|   //
 | |
|   if (Ty == Type::VoidTy) {
 | |
|     // If this is the first type that this node has seen, just accept it without
 | |
|     // question....
 | |
|     assert(Offset == 0 && "Cannot have an offset into a void node!");
 | |
|     assert(!isArray() && "This shouldn't happen!");
 | |
|     Ty = NewTy;
 | |
|     NodeType &= ~Array;
 | |
|     if (WillBeArray) NodeType |= Array;
 | |
|     Size = NewTySize;
 | |
| 
 | |
|     // Calculate the number of outgoing links from this node.
 | |
|     Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Handle node expansion case here...
 | |
|   if (Offset+NewTySize > Size) {
 | |
|     // It is illegal to grow this node if we have treated it as an array of
 | |
|     // objects...
 | |
|     if (isArray()) {
 | |
|       if (FoldIfIncompatible) foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Offset) {  // We could handle this case, but we don't for now...
 | |
|       std::cerr << "UNIMP: Trying to merge a growth type into "
 | |
|                 << "offset != 0: Collapsing!\n";
 | |
|       if (FoldIfIncompatible) foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Okay, the situation is nice and simple, we are trying to merge a type in
 | |
|     // at offset 0 that is bigger than our current type.  Implement this by
 | |
|     // switching to the new type and then merge in the smaller one, which should
 | |
|     // hit the other code path here.  If the other code path decides it's not
 | |
|     // ok, it will collapse the node as appropriate.
 | |
|     //
 | |
|     const Type *OldTy = Ty;
 | |
|     Ty = NewTy;
 | |
|     NodeType &= ~Array;
 | |
|     if (WillBeArray) NodeType |= Array;
 | |
|     Size = NewTySize;
 | |
| 
 | |
|     // Must grow links to be the appropriate size...
 | |
|     Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
 | |
| 
 | |
|     // Merge in the old type now... which is guaranteed to be smaller than the
 | |
|     // "current" type.
 | |
|     return mergeTypeInfo(OldTy, 0);
 | |
|   }
 | |
| 
 | |
|   assert(Offset <= Size &&
 | |
|          "Cannot merge something into a part of our type that doesn't exist!");
 | |
| 
 | |
|   // Find the section of Ty that NewTy overlaps with... first we find the
 | |
|   // type that starts at offset Offset.
 | |
|   //
 | |
|   unsigned O = 0;
 | |
|   const Type *SubType = Ty;
 | |
|   while (O < Offset) {
 | |
|     assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
 | |
| 
 | |
|     switch (SubType->getPrimitiveID()) {
 | |
|     case Type::StructTyID: {
 | |
|       const StructType *STy = cast<StructType>(SubType);
 | |
|       const StructLayout &SL = *TD.getStructLayout(STy);
 | |
| 
 | |
|       unsigned i = 0, e = SL.MemberOffsets.size();
 | |
|       for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
 | |
|         /* empty */;
 | |
| 
 | |
|       // The offset we are looking for must be in the i'th element...
 | |
|       SubType = STy->getElementTypes()[i];
 | |
|       O += SL.MemberOffsets[i];
 | |
|       break;
 | |
|     }
 | |
|     case Type::ArrayTyID: {
 | |
|       SubType = cast<ArrayType>(SubType)->getElementType();
 | |
|       unsigned ElSize = TD.getTypeSize(SubType);
 | |
|       unsigned Remainder = (Offset-O) % ElSize;
 | |
|       O = Offset-Remainder;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       if (FoldIfIncompatible) foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(O == Offset && "Could not achieve the correct offset!");
 | |
| 
 | |
|   // If we found our type exactly, early exit
 | |
|   if (SubType == NewTy) return false;
 | |
| 
 | |
|   unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0;
 | |
| 
 | |
|   // Ok, we are getting desperate now.  Check for physical subtyping, where we
 | |
|   // just require each element in the node to be compatible.
 | |
|   if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
 | |
|       SubTypeSize && SubTypeSize < 256 && 
 | |
|       ElementTypesAreCompatible(NewTy, SubType))
 | |
|     return false;
 | |
| 
 | |
|   // Okay, so we found the leader type at the offset requested.  Search the list
 | |
|   // of types that starts at this offset.  If SubType is currently an array or
 | |
|   // structure, the type desired may actually be the first element of the
 | |
|   // composite type...
 | |
|   //
 | |
|   unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
 | |
|   while (SubType != NewTy) {
 | |
|     const Type *NextSubType = 0;
 | |
|     unsigned NextSubTypeSize = 0;
 | |
|     unsigned NextPadSize = 0;
 | |
|     switch (SubType->getPrimitiveID()) {
 | |
|     case Type::StructTyID: {
 | |
|       const StructType *STy = cast<StructType>(SubType);
 | |
|       const StructLayout &SL = *TD.getStructLayout(STy);
 | |
|       if (SL.MemberOffsets.size() > 1)
 | |
|         NextPadSize = SL.MemberOffsets[1];
 | |
|       else
 | |
|         NextPadSize = SubTypeSize;
 | |
|       NextSubType = STy->getElementTypes()[0];
 | |
|       NextSubTypeSize = TD.getTypeSize(NextSubType);
 | |
|       break;
 | |
|     }
 | |
|     case Type::ArrayTyID:
 | |
|       NextSubType = cast<ArrayType>(SubType)->getElementType();
 | |
|       NextSubTypeSize = TD.getTypeSize(NextSubType);
 | |
|       NextPadSize = NextSubTypeSize;
 | |
|       break;
 | |
|     default: ;
 | |
|       // fall out 
 | |
|     }
 | |
| 
 | |
|     if (NextSubType == 0)
 | |
|       break;   // In the default case, break out of the loop
 | |
| 
 | |
|     if (NextPadSize < NewTySize)
 | |
|       break;   // Don't allow shrinking to a smaller type than NewTySize
 | |
|     SubType = NextSubType;
 | |
|     SubTypeSize = NextSubTypeSize;
 | |
|     PadSize = NextPadSize;
 | |
|   }
 | |
| 
 | |
|   // If we found the type exactly, return it...
 | |
|   if (SubType == NewTy)
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if we have a compatible, but different type...
 | |
|   if (NewTySize == SubTypeSize) {
 | |
|     // Check to see if this type is obviously convertible... int -> uint f.e.
 | |
|     if (NewTy->isLosslesslyConvertibleTo(SubType))
 | |
|       return false;
 | |
| 
 | |
|     // Check to see if we have a pointer & integer mismatch going on here,
 | |
|     // loading a pointer as a long, for example.
 | |
|     //
 | |
|     if (SubType->isInteger() && isa<PointerType>(NewTy) ||
 | |
|         NewTy->isInteger() && isa<PointerType>(SubType))
 | |
|       return false;
 | |
|   } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
 | |
|     // We are accessing the field, plus some structure padding.  Ignore the
 | |
|     // structure padding.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty
 | |
|                   << "\n due to:" << NewTy << " @ " << Offset << "!\n"
 | |
|                   << "SubType: " << SubType << "\n\n");
 | |
| 
 | |
|   if (FoldIfIncompatible) foldNodeCompletely();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // addEdgeTo - Add an edge from the current node to the specified node.  This
 | |
| // can cause merging of nodes in the graph.
 | |
| //
 | |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
 | |
|   if (NH.getNode() == 0) return;       // Nothing to do
 | |
| 
 | |
|   DSNodeHandle &ExistingEdge = getLink(Offset);
 | |
|   if (ExistingEdge.getNode()) {
 | |
|     // Merge the two nodes...
 | |
|     ExistingEdge.mergeWith(NH);
 | |
|   } else {                             // No merging to perform...
 | |
|     setLink(Offset, NH);               // Just force a link in there...
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // MergeSortedVectors - Efficiently merge a vector into another vector where
 | |
| // duplicates are not allowed and both are sorted.  This assumes that 'T's are
 | |
| // efficiently copyable and have sane comparison semantics.
 | |
| //
 | |
| static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
 | |
|                                const std::vector<GlobalValue*> &Src) {
 | |
|   // By far, the most common cases will be the simple ones.  In these cases,
 | |
|   // avoid having to allocate a temporary vector...
 | |
|   //
 | |
|   if (Src.empty()) {             // Nothing to merge in...
 | |
|     return;
 | |
|   } else if (Dest.empty()) {     // Just copy the result in...
 | |
|     Dest = Src;
 | |
|   } else if (Src.size() == 1) {  // Insert a single element...
 | |
|     const GlobalValue *V = Src[0];
 | |
|     std::vector<GlobalValue*>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(), V);
 | |
|     if (I == Dest.end() || *I != Src[0])  // If not already contained...
 | |
|       Dest.insert(I, Src[0]);
 | |
|   } else if (Dest.size() == 1) {
 | |
|     GlobalValue *Tmp = Dest[0];           // Save value in temporary...
 | |
|     Dest = Src;                           // Copy over list...
 | |
|     std::vector<GlobalValue*>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(), Tmp);
 | |
|     if (I == Dest.end() || *I != Tmp)     // If not already contained...
 | |
|       Dest.insert(I, Tmp);
 | |
| 
 | |
|   } else {
 | |
|     // Make a copy to the side of Dest...
 | |
|     std::vector<GlobalValue*> Old(Dest);
 | |
|     
 | |
|     // Make space for all of the type entries now...
 | |
|     Dest.resize(Dest.size()+Src.size());
 | |
|     
 | |
|     // Merge the two sorted ranges together... into Dest.
 | |
|     std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
 | |
|     
 | |
|     // Now erase any duplicate entries that may have accumulated into the 
 | |
|     // vectors (because they were in both of the input sets)
 | |
|     Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // MergeNodes() - Helper function for DSNode::mergeWith().
 | |
| // This function does the hard work of merging two nodes, CurNodeH
 | |
| // and NH after filtering out trivial cases and making sure that
 | |
| // CurNodeH.offset >= NH.offset.
 | |
| // 
 | |
| // ***WARNING***
 | |
| // Since merging may cause either node to go away, we must always
 | |
| // use the node-handles to refer to the nodes.  These node handles are
 | |
| // automatically updated during merging, so will always provide access
 | |
| // to the correct node after a merge.
 | |
| //
 | |
| void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
 | |
|   assert(CurNodeH.getOffset() >= NH.getOffset() &&
 | |
|          "This should have been enforced in the caller.");
 | |
| 
 | |
|   // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
 | |
|   // respect to NH.Offset) is now zero.  NOffset is the distance from the base
 | |
|   // of our object that N starts from.
 | |
|   //
 | |
|   unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
 | |
|   unsigned NSize = NH.getNode()->getSize();
 | |
| 
 | |
|   // If the two nodes are of different size, and the smaller node has the array
 | |
|   // bit set, collapse!
 | |
|   if (NSize != CurNodeH.getNode()->getSize()) {
 | |
|     if (NSize < CurNodeH.getNode()->getSize()) {
 | |
|       if (NH.getNode()->isArray())
 | |
|         NH.getNode()->foldNodeCompletely();
 | |
|     } else if (CurNodeH.getNode()->isArray()) {
 | |
|       NH.getNode()->foldNodeCompletely();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge the type entries of the two nodes together...    
 | |
|   if (NH.getNode()->Ty != Type::VoidTy)
 | |
|     CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
 | |
|   assert(!CurNodeH.getNode()->isDeadNode());
 | |
| 
 | |
|   // If we are merging a node with a completely folded node, then both nodes are
 | |
|   // now completely folded.
 | |
|   //
 | |
|   if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
 | |
|     if (!NH.getNode()->isNodeCompletelyFolded()) {
 | |
|       NH.getNode()->foldNodeCompletely();
 | |
|       assert(NH.getNode() && NH.getOffset() == 0 &&
 | |
|              "folding did not make offset 0?");
 | |
|       NOffset = NH.getOffset();
 | |
|       NSize = NH.getNode()->getSize();
 | |
|       assert(NOffset == 0 && NSize == 1);
 | |
|     }
 | |
|   } else if (NH.getNode()->isNodeCompletelyFolded()) {
 | |
|     CurNodeH.getNode()->foldNodeCompletely();
 | |
|     assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
 | |
|            "folding did not make offset 0?");
 | |
|     NOffset = NH.getOffset();
 | |
|     NSize = NH.getNode()->getSize();
 | |
|     assert(NOffset == 0 && NSize == 1);
 | |
|   }
 | |
| 
 | |
|   DSNode *N = NH.getNode();
 | |
|   if (CurNodeH.getNode() == N || N == 0) return;
 | |
|   assert(!CurNodeH.getNode()->isDeadNode());
 | |
| 
 | |
|   // Merge the NodeType information...
 | |
|   CurNodeH.getNode()->NodeType |= N->NodeType;
 | |
| 
 | |
|   // Start forwarding to the new node!
 | |
|   N->forwardNode(CurNodeH.getNode(), NOffset);
 | |
|   assert(!CurNodeH.getNode()->isDeadNode());
 | |
| 
 | |
|   // Make all of the outgoing links of N now be outgoing links of CurNodeH.
 | |
|   //
 | |
|   for (unsigned i = 0; i < N->getNumLinks(); ++i) {
 | |
|     DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
 | |
|     if (Link.getNode()) {
 | |
|       // Compute the offset into the current node at which to
 | |
|       // merge this link.  In the common case, this is a linear
 | |
|       // relation to the offset in the original node (with
 | |
|       // wrapping), but if the current node gets collapsed due to
 | |
|       // recursive merging, we must make sure to merge in all remaining
 | |
|       // links at offset zero.
 | |
|       unsigned MergeOffset = 0;
 | |
|       DSNode *CN = CurNodeH.getNode();
 | |
|       if (CN->Size != 1)
 | |
|         MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
 | |
|       CN->addEdgeTo(MergeOffset, Link);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that there are no outgoing edges, all of the Links are dead.
 | |
|   N->Links.clear();
 | |
| 
 | |
|   // Merge the globals list...
 | |
|   if (!N->Globals.empty()) {
 | |
|     MergeSortedVectors(CurNodeH.getNode()->Globals, N->Globals);
 | |
| 
 | |
|     // Delete the globals from the old node...
 | |
|     std::vector<GlobalValue*>().swap(N->Globals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // mergeWith - Merge this node and the specified node, moving all links to and
 | |
| // from the argument node into the current node, deleting the node argument.
 | |
| // Offset indicates what offset the specified node is to be merged into the
 | |
| // current node.
 | |
| //
 | |
| // The specified node may be a null pointer (in which case, nothing happens).
 | |
| //
 | |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
 | |
|   DSNode *N = NH.getNode();
 | |
|   if (N == 0 || (N == this && NH.getOffset() == Offset))
 | |
|     return;  // Noop
 | |
| 
 | |
|   assert(!N->isDeadNode() && !isDeadNode());
 | |
|   assert(!hasNoReferrers() && "Should not try to fold a useless node!");
 | |
| 
 | |
|   if (N == this) {
 | |
|     // We cannot merge two pieces of the same node together, collapse the node
 | |
|     // completely.
 | |
|     DEBUG(std::cerr << "Attempting to merge two chunks of"
 | |
|                     << " the same node together!\n");
 | |
|     foldNodeCompletely();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If both nodes are not at offset 0, make sure that we are merging the node
 | |
|   // at an later offset into the node with the zero offset.
 | |
|   //
 | |
|   if (Offset < NH.getOffset()) {
 | |
|     N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
 | |
|     return;
 | |
|   } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
 | |
|     // If the offsets are the same, merge the smaller node into the bigger node
 | |
|     N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Ok, now we can merge the two nodes.  Use a static helper that works with
 | |
|   // two node handles, since "this" may get merged away at intermediate steps.
 | |
|   DSNodeHandle CurNodeH(this, Offset);
 | |
|   DSNodeHandle NHCopy(NH);
 | |
|   DSNode::MergeNodes(CurNodeH, NHCopy);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSCallSite Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
 | |
| Function &DSCallSite::getCaller() const {
 | |
|   return *Inst->getParent()->getParent();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSGraph Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getFunctionNames - Return a space separated list of the name of the
 | |
| /// functions in this graph (if any)
 | |
| std::string DSGraph::getFunctionNames() const {
 | |
|   switch (getReturnNodes().size()) {
 | |
|   case 0: return "Globals graph";
 | |
|   case 1: return getReturnNodes().begin()->first->getName();
 | |
|   default:
 | |
|     std::string Return;
 | |
|     for (DSGraph::ReturnNodesTy::const_iterator I = getReturnNodes().begin();
 | |
|          I != getReturnNodes().end(); ++I)
 | |
|       Return += I->first->getName() + " ";
 | |
|     Return.erase(Return.end()-1, Return.end());   // Remove last space character
 | |
|     return Return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| DSGraph::DSGraph(const DSGraph &G) : GlobalsGraph(0) {
 | |
|   PrintAuxCalls = false;
 | |
|   NodeMapTy NodeMap;
 | |
|   cloneInto(G, ScalarMap, ReturnNodes, NodeMap);
 | |
| }
 | |
| 
 | |
| DSGraph::DSGraph(const DSGraph &G, NodeMapTy &NodeMap)
 | |
|   : GlobalsGraph(0) {
 | |
|   PrintAuxCalls = false;
 | |
|   cloneInto(G, ScalarMap, ReturnNodes, NodeMap);
 | |
| }
 | |
| 
 | |
| DSGraph::~DSGraph() {
 | |
|   FunctionCalls.clear();
 | |
|   AuxFunctionCalls.clear();
 | |
|   ScalarMap.clear();
 | |
|   ReturnNodes.clear();
 | |
| 
 | |
|   // Drop all intra-node references, so that assertions don't fail...
 | |
|   std::for_each(Nodes.begin(), Nodes.end(),
 | |
|                 std::mem_fun(&DSNode::dropAllReferences));
 | |
| 
 | |
|   // Delete all of the nodes themselves...
 | |
|   std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
 | |
| }
 | |
| 
 | |
| // dump - Allow inspection of graph in a debugger.
 | |
| void DSGraph::dump() const { print(std::cerr); }
 | |
| 
 | |
| 
 | |
| /// remapLinks - Change all of the Links in the current node according to the
 | |
| /// specified mapping.
 | |
| ///
 | |
| void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) {
 | |
|   for (unsigned i = 0, e = Links.size(); i != e; ++i) {
 | |
|     DSNodeHandle &H = OldNodeMap[Links[i].getNode()];
 | |
|     Links[i].setNode(H.getNode());
 | |
|     Links[i].setOffset(Links[i].getOffset()+H.getOffset());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// cloneInto - Clone the specified DSGraph into the current graph.  The
 | |
| /// translated ScalarMap for the old function is filled into the OldValMap
 | |
| /// member, and the translated ReturnNodes map is returned into ReturnNodes.
 | |
| ///
 | |
| /// The CloneFlags member controls various aspects of the cloning process.
 | |
| ///
 | |
| void DSGraph::cloneInto(const DSGraph &G, ScalarMapTy &OldValMap,
 | |
|                         ReturnNodesTy &OldReturnNodes, NodeMapTy &OldNodeMap,
 | |
|                         unsigned CloneFlags) {
 | |
|   assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
 | |
|   assert(&G != this && "Cannot clone graph into itself!");
 | |
| 
 | |
|   unsigned FN = Nodes.size();           // First new node...
 | |
| 
 | |
|   // Duplicate all of the nodes, populating the node map...
 | |
|   Nodes.reserve(FN+G.Nodes.size());
 | |
| 
 | |
|   // Remove alloca or mod/ref bits as specified...
 | |
|   unsigned BitsToClear =((CloneFlags & StripAllocaBit) ? DSNode::AllocaNode : 0)
 | |
|     | ((CloneFlags & StripModRefBits) ? (DSNode::Modified | DSNode::Read) : 0);
 | |
|   BitsToClear |= DSNode::DEAD;  // Clear dead flag...
 | |
|   for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
 | |
|     DSNode *Old = G.Nodes[i];
 | |
|     DSNode *New = new DSNode(*Old, this);
 | |
|     New->maskNodeTypes(~BitsToClear);
 | |
|     OldNodeMap[Old] = New;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   Timer::addPeakMemoryMeasurement();
 | |
| #endif
 | |
| 
 | |
|   // Rewrite the links in the new nodes to point into the current graph now.
 | |
|   for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
 | |
|     Nodes[i]->remapLinks(OldNodeMap);
 | |
| 
 | |
|   // Copy the scalar map... merging all of the global nodes...
 | |
|   for (ScalarMapTy::const_iterator I = G.ScalarMap.begin(),
 | |
|          E = G.ScalarMap.end(); I != E; ++I) {
 | |
|     DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
 | |
|     DSNodeHandle &H = OldValMap[I->first];
 | |
|     H.mergeWith(DSNodeHandle(MappedNode.getNode(),
 | |
|                              I->second.getOffset()+MappedNode.getOffset()));
 | |
| 
 | |
|     // If this is a global, add the global to this fn or merge if already exists
 | |
|     if (isa<GlobalValue>(I->first))
 | |
|       ScalarMap[I->first].mergeWith(H);
 | |
|   }
 | |
| 
 | |
|   if (!(CloneFlags & DontCloneCallNodes)) {
 | |
|     // Copy the function calls list...
 | |
|     unsigned FC = FunctionCalls.size();  // FirstCall
 | |
|     FunctionCalls.reserve(FC+G.FunctionCalls.size());
 | |
|     for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i)
 | |
|       FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap));
 | |
|   }
 | |
| 
 | |
|   if (!(CloneFlags & DontCloneAuxCallNodes)) {
 | |
|     // Copy the auxillary function calls list...
 | |
|     unsigned FC = AuxFunctionCalls.size();  // FirstCall
 | |
|     AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size());
 | |
|     for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i)
 | |
|       AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap));
 | |
|   }
 | |
| 
 | |
|   // Map the return node pointers over...
 | |
|   for (ReturnNodesTy::const_iterator I = G.getReturnNodes().begin(),
 | |
|          E = G.getReturnNodes().end(); I != E; ++I) {
 | |
|     const DSNodeHandle &Ret = I->second;
 | |
|     DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()];
 | |
|     OldReturnNodes.insert(std::make_pair(I->first,
 | |
|                           DSNodeHandle(MappedRet.getNode(),
 | |
|                                        MappedRet.getOffset()+Ret.getOffset())));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// mergeInGraph - The method is used for merging graphs together.  If the
 | |
| /// argument graph is not *this, it makes a clone of the specified graph, then
 | |
| /// merges the nodes specified in the call site with the formal arguments in the
 | |
| /// graph.
 | |
| ///
 | |
| void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F,
 | |
|                            const DSGraph &Graph, unsigned CloneFlags) {
 | |
|   ScalarMapTy OldValMap, *ScalarMap;
 | |
|   DSNodeHandle RetVal;
 | |
| 
 | |
|   // If this is not a recursive call, clone the graph into this graph...
 | |
|   if (&Graph != this) {
 | |
|     // Clone the callee's graph into the current graph, keeping
 | |
|     // track of where scalars in the old graph _used_ to point,
 | |
|     // and of the new nodes matching nodes of the old graph.
 | |
|     NodeMapTy OldNodeMap;
 | |
|     
 | |
|     // The clone call may invalidate any of the vectors in the data
 | |
|     // structure graph.  Strip locals and don't copy the list of callers
 | |
|     ReturnNodesTy OldRetNodes;
 | |
|     cloneInto(Graph, OldValMap, OldRetNodes, OldNodeMap, CloneFlags);
 | |
|     RetVal = OldRetNodes[&F];
 | |
|     ScalarMap = &OldValMap;
 | |
|   } else {
 | |
|     RetVal = getReturnNodeFor(F);
 | |
|     ScalarMap = &getScalarMap();
 | |
|   }
 | |
| 
 | |
|   // Merge the return value with the return value of the context...
 | |
|   RetVal.mergeWith(CS.getRetVal());
 | |
| 
 | |
|   // Resolve all of the function arguments...
 | |
|   Function::aiterator AI = F.abegin();
 | |
| 
 | |
|   for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
 | |
|     // Advance the argument iterator to the first pointer argument...
 | |
|     while (AI != F.aend() && !isPointerType(AI->getType())) {
 | |
|       ++AI;
 | |
| #ifndef NDEBUG
 | |
|       if (AI == F.aend())
 | |
|         std::cerr << "Bad call to Function: " << F.getName() << "\n";
 | |
| #endif
 | |
|     }
 | |
|     if (AI == F.aend()) break;
 | |
|     
 | |
|     // Add the link from the argument scalar to the provided value
 | |
|     assert(ScalarMap->count(AI) && "Argument not in scalar map?");
 | |
|     DSNodeHandle &NH = (*ScalarMap)[AI];
 | |
|     assert(NH.getNode() && "Pointer argument without scalarmap entry?");
 | |
|     NH.mergeWith(CS.getPtrArg(i));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // markIncompleteNodes - Mark the specified node as having contents that are not
 | |
| // known with the current analysis we have performed.  Because a node makes all
 | |
| // of the nodes it can reach incomplete if the node itself is incomplete, we
 | |
| // must recursively traverse the data structure graph, marking all reachable
 | |
| // nodes as incomplete.
 | |
| //
 | |
| static void markIncompleteNode(DSNode *N) {
 | |
|   // Stop recursion if no node, or if node already marked...
 | |
|   if (N == 0 || N->isIncomplete()) return;
 | |
| 
 | |
|   // Actually mark the node
 | |
|   N->setIncompleteMarker();
 | |
| 
 | |
|   // Recusively process children...
 | |
|   for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|     if (DSNode *DSN = N->getLink(i).getNode())
 | |
|       markIncompleteNode(DSN);
 | |
| }
 | |
| 
 | |
| static void markIncomplete(DSCallSite &Call) {
 | |
|   // Then the return value is certainly incomplete!
 | |
|   markIncompleteNode(Call.getRetVal().getNode());
 | |
| 
 | |
|   // All objects pointed to by function arguments are incomplete!
 | |
|   for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
 | |
|     markIncompleteNode(Call.getPtrArg(i).getNode());
 | |
| }
 | |
| 
 | |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be
 | |
| // modified by other functions that have not been resolved yet.  This marks
 | |
| // nodes that are reachable through three sources of "unknownness":
 | |
| //
 | |
| //  Global Variables, Function Calls, and Incoming Arguments
 | |
| //
 | |
| // For any node that may have unknown components (because something outside the
 | |
| // scope of current analysis may have modified it), the 'Incomplete' flag is
 | |
| // added to the NodeType.
 | |
| //
 | |
| void DSGraph::markIncompleteNodes(unsigned Flags) {
 | |
|   // Mark any incoming arguments as incomplete...
 | |
|   if (Flags & DSGraph::MarkFormalArgs)
 | |
|     for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end();
 | |
|          FI != E; ++FI) {
 | |
|       Function &F = *FI->first;
 | |
|       if (F.getName() != "main")
 | |
|         for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
 | |
|           if (isPointerType(I->getType()) &&
 | |
|               ScalarMap.find(I) != ScalarMap.end())
 | |
|             markIncompleteNode(ScalarMap[I].getNode());
 | |
|     }
 | |
| 
 | |
|   // Mark stuff passed into functions calls as being incomplete...
 | |
|   if (!shouldPrintAuxCalls())
 | |
|     for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|       markIncomplete(FunctionCalls[i]);
 | |
|   else
 | |
|     for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|       markIncomplete(AuxFunctionCalls[i]);
 | |
|     
 | |
| 
 | |
|   // Mark all global nodes as incomplete...
 | |
|   if ((Flags & DSGraph::IgnoreGlobals) == 0)
 | |
|     for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|       if (Nodes[i]->isGlobalNode() && Nodes[i]->getNumLinks())
 | |
|         markIncompleteNode(Nodes[i]);
 | |
| }
 | |
| 
 | |
| static inline void killIfUselessEdge(DSNodeHandle &Edge) {
 | |
|   if (DSNode *N = Edge.getNode())  // Is there an edge?
 | |
|     if (N->getNumReferrers() == 1)  // Does it point to a lonely node?
 | |
|       // No interesting info?
 | |
|       if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 &&
 | |
|           N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
 | |
|         Edge.setNode(0);  // Kill the edge!
 | |
| }
 | |
| 
 | |
| static inline bool nodeContainsExternalFunction(const DSNode *N) {
 | |
|   const std::vector<GlobalValue*> &Globals = N->getGlobals();
 | |
|   for (unsigned i = 0, e = Globals.size(); i != e; ++i)
 | |
|     if (Globals[i]->isExternal())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void removeIdenticalCalls(std::vector<DSCallSite> &Calls) {
 | |
| 
 | |
|   // Remove trivially identical function calls
 | |
|   unsigned NumFns = Calls.size();
 | |
|   std::sort(Calls.begin(), Calls.end());  // Sort by callee as primary key!
 | |
| 
 | |
|   // Scan the call list cleaning it up as necessary...
 | |
|   DSNode   *LastCalleeNode = 0;
 | |
|   Function *LastCalleeFunc = 0;
 | |
|   unsigned NumDuplicateCalls = 0;
 | |
|   bool LastCalleeContainsExternalFunction = false;
 | |
|   for (unsigned i = 0; i != Calls.size(); ++i) {
 | |
|     DSCallSite &CS = Calls[i];
 | |
| 
 | |
|     // If the Callee is a useless edge, this must be an unreachable call site,
 | |
|     // eliminate it.
 | |
|     if (CS.isIndirectCall() && CS.getCalleeNode()->getNumReferrers() == 1 &&
 | |
|         CS.getCalleeNode()->getNodeFlags() == 0) {  // No useful info?
 | |
|       std::cerr << "WARNING: Useless call site found??\n";
 | |
|       CS.swap(Calls.back());
 | |
|       Calls.pop_back();
 | |
|       --i;
 | |
|     } else {
 | |
|       // If the return value or any arguments point to a void node with no
 | |
|       // information at all in it, and the call node is the only node to point
 | |
|       // to it, remove the edge to the node (killing the node).
 | |
|       //
 | |
|       killIfUselessEdge(CS.getRetVal());
 | |
|       for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
 | |
|         killIfUselessEdge(CS.getPtrArg(a));
 | |
|       
 | |
|       // If this call site calls the same function as the last call site, and if
 | |
|       // the function pointer contains an external function, this node will
 | |
|       // never be resolved.  Merge the arguments of the call node because no
 | |
|       // information will be lost.
 | |
|       //
 | |
|       if ((CS.isDirectCall()   && CS.getCalleeFunc() == LastCalleeFunc) ||
 | |
|           (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) {
 | |
|         ++NumDuplicateCalls;
 | |
|         if (NumDuplicateCalls == 1) {
 | |
|           if (LastCalleeNode)
 | |
|             LastCalleeContainsExternalFunction =
 | |
|               nodeContainsExternalFunction(LastCalleeNode);
 | |
|           else
 | |
|             LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal();
 | |
|         }
 | |
|         
 | |
| #if 0
 | |
|         if (LastCalleeContainsExternalFunction ||
 | |
|             // This should be more than enough context sensitivity!
 | |
|             // FIXME: Evaluate how many times this is tripped!
 | |
|             NumDuplicateCalls > 20) {
 | |
|           DSCallSite &OCS = Calls[i-1];
 | |
|           OCS.mergeWith(CS);
 | |
|           
 | |
|           // The node will now be eliminated as a duplicate!
 | |
|           if (CS.getNumPtrArgs() < OCS.getNumPtrArgs())
 | |
|             CS = OCS;
 | |
|           else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs())
 | |
|             OCS = CS;
 | |
|         }
 | |
| #endif
 | |
|       } else {
 | |
|         if (CS.isDirectCall()) {
 | |
|           LastCalleeFunc = CS.getCalleeFunc();
 | |
|           LastCalleeNode = 0;
 | |
|         } else {
 | |
|           LastCalleeNode = CS.getCalleeNode();
 | |
|           LastCalleeFunc = 0;
 | |
|         }
 | |
|         NumDuplicateCalls = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Calls.erase(std::unique(Calls.begin(), Calls.end()),
 | |
|               Calls.end());
 | |
| 
 | |
|   // Track the number of call nodes merged away...
 | |
|   NumCallNodesMerged += NumFns-Calls.size();
 | |
| 
 | |
|   DEBUG(if (NumFns != Calls.size())
 | |
|           std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes.\n";);
 | |
| }
 | |
| 
 | |
| 
 | |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method
 | |
| // removes all unreachable nodes that are created because they got merged with
 | |
| // other nodes in the graph.  These nodes will all be trivially unreachable, so
 | |
| // we don't have to perform any non-trivial analysis here.
 | |
| //
 | |
| void DSGraph::removeTriviallyDeadNodes() {
 | |
|   removeIdenticalCalls(FunctionCalls);
 | |
|   removeIdenticalCalls(AuxFunctionCalls);
 | |
| 
 | |
|   for (unsigned i = 0; i != Nodes.size(); ++i) {
 | |
|     DSNode *Node = Nodes[i];
 | |
|     if (Node->isComplete() && !Node->isModified() && !Node->isRead()) {
 | |
|       // This is a useless node if it has no mod/ref info (checked above),
 | |
|       // outgoing edges (which it cannot, as it is not modified in this
 | |
|       // context), and it has no incoming edges.  If it is a global node it may
 | |
|       // have all of these properties and still have incoming edges, due to the
 | |
|       // scalar map, so we check those now.
 | |
|       //
 | |
|       if (Node->getNumReferrers() == Node->getGlobals().size()) {
 | |
|         const std::vector<GlobalValue*> &Globals = Node->getGlobals();
 | |
| 
 | |
|         // Loop through and make sure all of the globals are referring directly
 | |
|         // to the node...
 | |
|         for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
 | |
|           DSNode *N = ScalarMap.find(Globals[j])->second.getNode();
 | |
|           assert(N == Node && "ScalarMap doesn't match globals list!");
 | |
|         }
 | |
| 
 | |
|         // Make sure NumReferrers still agrees, if so, the node is truly dead.
 | |
|         if (Node->getNumReferrers() == Globals.size()) {
 | |
|           for (unsigned j = 0, e = Globals.size(); j != e; ++j)
 | |
|             ScalarMap.erase(Globals[j]);
 | |
|           Node->makeNodeDead();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Node->getNodeFlags() == 0 && Node->hasNoReferrers()) {
 | |
|       // This node is dead!
 | |
|       delete Node;                        // Free memory...
 | |
|       Nodes[i--] = Nodes.back();
 | |
|       Nodes.pop_back();                   // Remove from node list...
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// markReachableNodes - This method recursively traverses the specified
 | |
| /// DSNodes, marking any nodes which are reachable.  All reachable nodes it adds
 | |
| /// to the set, which allows it to only traverse visited nodes once.
 | |
| ///
 | |
| void DSNode::markReachableNodes(hash_set<DSNode*> &ReachableNodes) {
 | |
|   if (this == 0) return;
 | |
|   assert(getForwardNode() == 0 && "Cannot mark a forwarded node!");
 | |
|   if (ReachableNodes.count(this)) return;          // Already marked reachable
 | |
|   ReachableNodes.insert(this);                     // Is reachable now
 | |
| 
 | |
|   for (unsigned i = 0, e = getSize(); i < e; i += DS::PointerSize)
 | |
|     getLink(i).getNode()->markReachableNodes(ReachableNodes);
 | |
| }
 | |
| 
 | |
| void DSCallSite::markReachableNodes(hash_set<DSNode*> &Nodes) {
 | |
|   getRetVal().getNode()->markReachableNodes(Nodes);
 | |
|   if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes);
 | |
|   
 | |
|   for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
 | |
|     getPtrArg(i).getNode()->markReachableNodes(Nodes);
 | |
| }
 | |
| 
 | |
| // CanReachAliveNodes - Simple graph walker that recursively traverses the graph
 | |
| // looking for a node that is marked alive.  If an alive node is found, return
 | |
| // true, otherwise return false.  If an alive node is reachable, this node is
 | |
| // marked as alive...
 | |
| //
 | |
| static bool CanReachAliveNodes(DSNode *N, hash_set<DSNode*> &Alive,
 | |
|                                hash_set<DSNode*> &Visited) {
 | |
|   if (N == 0) return false;
 | |
|   assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!");
 | |
| 
 | |
|   // If we know that this node is alive, return so!
 | |
|   if (Alive.count(N)) return true;
 | |
| 
 | |
|   // Otherwise, we don't think the node is alive yet, check for infinite
 | |
|   // recursion.
 | |
|   if (Visited.count(N)) return false;  // Found a cycle
 | |
|   Visited.insert(N);   // No recursion, insert into Visited...
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|     if (CanReachAliveNodes(N->getLink(i).getNode(), Alive, Visited)) {
 | |
|       N->markReachableNodes(Alive);
 | |
|       return true;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // CallSiteUsesAliveArgs - Return true if the specified call site can reach any
 | |
| // alive nodes.
 | |
| //
 | |
| static bool CallSiteUsesAliveArgs(DSCallSite &CS, hash_set<DSNode*> &Alive,
 | |
|                                   hash_set<DSNode*> &Visited) {
 | |
|   if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited))
 | |
|     return true;
 | |
|   if (CS.isIndirectCall() &&
 | |
|       CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited))
 | |
|     return true;
 | |
|   for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
 | |
|     if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate
 | |
| // subgraphs that are unreachable.  This often occurs because the data
 | |
| // structure doesn't "escape" into it's caller, and thus should be eliminated
 | |
| // from the caller's graph entirely.  This is only appropriate to use when
 | |
| // inlining graphs.
 | |
| //
 | |
| void DSGraph::removeDeadNodes(unsigned Flags) {
 | |
|   // Reduce the amount of work we have to do... remove dummy nodes left over by
 | |
|   // merging...
 | |
|   removeTriviallyDeadNodes();
 | |
| 
 | |
|   // FIXME: Merge nontrivially identical call nodes...
 | |
| 
 | |
|   // Alive - a set that holds all nodes found to be reachable/alive.
 | |
|   hash_set<DSNode*> Alive;
 | |
|   std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
 | |
| 
 | |
|   // Mark all nodes reachable by (non-global) scalar nodes as alive...
 | |
|   for (ScalarMapTy::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I !=E;)
 | |
|     if (isa<GlobalValue>(I->first)) {             // Keep track of global nodes
 | |
|       assert(I->second.getNode() && "Null global node?");
 | |
|       GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
 | |
|       ++I;
 | |
|     } else {
 | |
|       // Check to see if this is a worthless node generated for non-pointer
 | |
|       // values, such as integers.  Consider an addition of long types: A+B.
 | |
|       // Assuming we can track all uses of the value in this context, and it is
 | |
|       // NOT used as a pointer, we can delete the node.  We will be able to
 | |
|       // detect this situation if the node pointed to ONLY has Unknown bit set
 | |
|       // in the node.  In this case, the node is not incomplete, does not point
 | |
|       // to any other nodes (no mod/ref bits set), and is therefore
 | |
|       // uninteresting for data structure analysis.  If we run across one of
 | |
|       // these, prune the scalar pointing to it.
 | |
|       //
 | |
|       DSNode *N = I->second.getNode();
 | |
|       if (N->isUnknownNode() && !isa<Argument>(I->first)) {
 | |
|         ScalarMap.erase(I++);
 | |
|       } else {
 | |
|         I->second.getNode()->markReachableNodes(Alive);
 | |
|         ++I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // The return value is alive as well...
 | |
|   for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end();
 | |
|        I != E; ++I)
 | |
|     I->second.getNode()->markReachableNodes(Alive);
 | |
| 
 | |
|   // Mark any nodes reachable by primary calls as alive...
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|     FunctionCalls[i].markReachableNodes(Alive);
 | |
| 
 | |
|   bool Iterate;
 | |
|   hash_set<DSNode*> Visited;
 | |
|   std::vector<unsigned char> AuxFCallsAlive(AuxFunctionCalls.size());
 | |
|   do {
 | |
|     Visited.clear();
 | |
|     // If any global nodes points to a non-global that is "alive", the global is
 | |
|     // "alive" as well...  Remove it from the GlobalNodes list so we only have
 | |
|     // unreachable globals in the list.
 | |
|     //
 | |
|     Iterate = false;
 | |
|     for (unsigned i = 0; i != GlobalNodes.size(); ++i)
 | |
|       if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited)) {
 | |
|         std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to erase
 | |
|         GlobalNodes.pop_back();                          // Erase efficiently
 | |
|         Iterate = true;
 | |
|       }
 | |
| 
 | |
|     for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|       if (!AuxFCallsAlive[i] &&
 | |
|           CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited)) {
 | |
|         AuxFunctionCalls[i].markReachableNodes(Alive);
 | |
|         AuxFCallsAlive[i] = true;
 | |
|         Iterate = true;
 | |
|       }
 | |
|   } while (Iterate);
 | |
| 
 | |
|   // Remove all dead aux function calls...
 | |
|   unsigned CurIdx = 0;
 | |
|   for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|     if (AuxFCallsAlive[i])
 | |
|       AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]);
 | |
|   if (!(Flags & DSGraph::RemoveUnreachableGlobals)) {
 | |
|     assert(GlobalsGraph && "No globals graph available??");
 | |
|     // Move the unreachable call nodes to the globals graph...
 | |
|     GlobalsGraph->AuxFunctionCalls.insert(GlobalsGraph->AuxFunctionCalls.end(),
 | |
|                                           AuxFunctionCalls.begin()+CurIdx,
 | |
|                                           AuxFunctionCalls.end());
 | |
|   }
 | |
|   // Crop all the useless ones out...
 | |
|   AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx,
 | |
|                          AuxFunctionCalls.end());
 | |
| 
 | |
|   // At this point, any nodes which are visited, but not alive, are nodes which
 | |
|   // should be moved to the globals graph.  Loop over all nodes, eliminating
 | |
|   // completely unreachable nodes, and moving visited nodes to the globals graph
 | |
|   //
 | |
|   std::vector<DSNode*> DeadNodes;
 | |
|   DeadNodes.reserve(Nodes.size());
 | |
|   for (unsigned i = 0; i != Nodes.size(); ++i)
 | |
|     if (!Alive.count(Nodes[i])) {
 | |
|       DSNode *N = Nodes[i];
 | |
|       Nodes[i--] = Nodes.back();            // move node to end of vector
 | |
|       Nodes.pop_back();                     // Erase node from alive list.
 | |
|       if (!(Flags & DSGraph::RemoveUnreachableGlobals) &&  // Not in TD pass
 | |
|           Visited.count(N)) {                    // Visited but not alive?
 | |
|         GlobalsGraph->Nodes.push_back(N);        // Move node to globals graph
 | |
|         N->setParentGraph(GlobalsGraph);
 | |
|       } else {                                 // Otherwise, delete the node
 | |
|         assert((!N->isGlobalNode() ||
 | |
|                 (Flags & DSGraph::RemoveUnreachableGlobals))
 | |
|                && "Killing a global?");
 | |
|         //std::cerr << "[" << i+1 << "/" << DeadNodes.size()
 | |
|         //          << "] Node is dead: "; N->dump();
 | |
|         DeadNodes.push_back(N);
 | |
|         N->dropAllReferences();
 | |
|       }
 | |
|     } else {
 | |
|       assert(Nodes[i]->getForwardNode() == 0 && "Alive forwarded node?");
 | |
|     }
 | |
| 
 | |
|   // Now that the nodes have either been deleted or moved to the globals graph,
 | |
|   // loop over the scalarmap, updating the entries for globals...
 | |
|   //
 | |
|   if (!(Flags & DSGraph::RemoveUnreachableGlobals)) {  // Not in the TD pass?
 | |
|     // In this array we start the remapping, which can cause merging.  Because
 | |
|     // of this, the DSNode pointers in GlobalNodes may be invalidated, so we
 | |
|     // must always go through the ScalarMap (which contains DSNodeHandles [which
 | |
|     // cannot be invalidated by merging]).
 | |
|     //
 | |
|     for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) {
 | |
|       Value *G = GlobalNodes[i].first;
 | |
|       ScalarMapTy::iterator I = ScalarMap.find(G);
 | |
|       assert(I != ScalarMap.end() && "Global not in scalar map anymore?");
 | |
|       assert(I->second.getNode() && "Global not pointing to anything?");
 | |
|       assert(!Alive.count(I->second.getNode()) && "Node is alive??");
 | |
|       GlobalsGraph->ScalarMap[G].mergeWith(I->second);
 | |
|       assert(GlobalsGraph->ScalarMap[G].getNode() &&
 | |
|              "Global not pointing to anything?");
 | |
|       ScalarMap.erase(I);
 | |
|     }
 | |
| 
 | |
|     // Merging leaves behind silly nodes, we remove them to avoid polluting the
 | |
|     // globals graph.
 | |
|     if (!GlobalNodes.empty())
 | |
|       GlobalsGraph->removeTriviallyDeadNodes();
 | |
|   } else {
 | |
|     // If we are in the top-down pass, remove all unreachable globals from the
 | |
|     // ScalarMap...
 | |
|     for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
 | |
|       ScalarMap.erase(GlobalNodes[i].first);
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the dead nodes now, deleting them since their referrer
 | |
|   // count is zero.
 | |
|   for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i)
 | |
|     delete DeadNodes[i];
 | |
| 
 | |
|   DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
 | |
| }
 | |
| 
 | |
| void DSGraph::AssertGraphOK() const {
 | |
|   for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|     Nodes[i]->assertOK();
 | |
|   return;  // FIXME: remove
 | |
|   for (ScalarMapTy::const_iterator I = ScalarMap.begin(),
 | |
|          E = ScalarMap.end(); I != E; ++I) {
 | |
|     assert(I->second.getNode() && "Null node in scalarmap!");
 | |
|     AssertNodeInGraph(I->second.getNode());
 | |
|     if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
 | |
|       assert(I->second.getNode()->isGlobalNode() &&
 | |
|              "Global points to node, but node isn't global?");
 | |
|       AssertNodeContainsGlobal(I->second.getNode(), GV);
 | |
|     }
 | |
|   }
 | |
|   AssertCallNodesInGraph();
 | |
|   AssertAuxCallNodesInGraph();
 | |
| }
 |