mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6881 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			327 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			327 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
 | |
| //
 | |
| // This pass performs a limited form of tail duplication, intended to simplify
 | |
| // CFGs by removing some unconditional branches.  This pass is necessary to
 | |
| // straighten out loops created by the C front-end, but also is capable of
 | |
| // making other code nicer.  After this pass is run, the CFG simplify pass
 | |
| // should be run to clean up the mess.
 | |
| //
 | |
| // This pass could be enhanced in the future to use profile information to be
 | |
| // more aggressive.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iPHINode.h"
 | |
| #include "llvm/iTerminators.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "Support/Statistic.h"
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumEliminated("tailduplicate",
 | |
|                             "Number of unconditional branches eliminated");
 | |
|   Statistic<> NumPHINodes("tailduplicate", "Number of phi nodes inserted");
 | |
| 
 | |
|   class TailDup : public FunctionPass {
 | |
|     bool runOnFunction(Function &F);
 | |
|   private:
 | |
|     inline bool shouldEliminateUnconditionalBranch(TerminatorInst *TI);
 | |
|     inline void eliminateUnconditionalBranch(BranchInst *BI);
 | |
|     inline void InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst,
 | |
|                                           BasicBlock *NewBlock);
 | |
|     inline Value *GetValueInBlock(BasicBlock *BB, Value *OrigVal,
 | |
|                                   std::map<BasicBlock*, Value*> &ValueMap,
 | |
|                                   std::map<BasicBlock*, Value*> &OutValueMap);
 | |
|     inline Value *GetValueOutBlock(BasicBlock *BB, Value *OrigVal,
 | |
|                                    std::map<BasicBlock*, Value*> &ValueMap,
 | |
|                                    std::map<BasicBlock*, Value*> &OutValueMap);
 | |
|   };
 | |
|   RegisterOpt<TailDup> X("tailduplicate", "Tail Duplication");
 | |
| }
 | |
| 
 | |
| Pass *createTailDuplicationPass() { return new TailDup(); }
 | |
| 
 | |
| /// runOnFunction - Top level algorithm - Loop over each unconditional branch in
 | |
| /// the function, eliminating it if it looks attractive enough.
 | |
| ///
 | |
| bool TailDup::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; )
 | |
|     if (shouldEliminateUnconditionalBranch(I->getTerminator())) {
 | |
|       eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       ++I;
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// shouldEliminateUnconditionalBranch - Return true if this branch looks
 | |
| /// attractive to eliminate.  We eliminate the branch if the destination basic
 | |
| /// block has <= 5 instructions in it, not counting PHI nodes.  In practice,
 | |
| /// since one of these is a terminator instruction, this means that we will add
 | |
| /// up to 4 instructions to the new block.
 | |
| ///
 | |
| /// We don't count PHI nodes in the count since they will be removed when the
 | |
| /// contents of the block are copied over.
 | |
| ///
 | |
| bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI) {
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(TI);
 | |
|   if (!BI || !BI->isUnconditional()) return false;  // Not an uncond branch!
 | |
| 
 | |
|   BasicBlock *Dest = BI->getSuccessor(0);
 | |
|   if (Dest == BI->getParent()) return false;        // Do not loop infinitely!
 | |
| 
 | |
|   // Do not bother working on dead blocks...
 | |
|   pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
 | |
|   if (PI == PE && Dest != Dest->getParent()->begin())
 | |
|     return false;   // It's just a dead block, ignore it...
 | |
| 
 | |
|   // Also, do not bother with blocks with only a single predecessor: simplify
 | |
|   // CFG will fold these two blocks together!
 | |
|   ++PI;
 | |
|   if (PI == PE) return false;  // Exactly one predecessor!
 | |
| 
 | |
|   BasicBlock::iterator I = Dest->begin();
 | |
|   while (isa<PHINode>(*I)) ++I;
 | |
| 
 | |
|   for (unsigned Size = 0; I != Dest->end(); ++Size, ++I)
 | |
|     if (Size == 6) return false;  // The block is too large...
 | |
|   return true;  
 | |
| }
 | |
| 
 | |
| 
 | |
| /// eliminateUnconditionalBranch - Clone the instructions from the destination
 | |
| /// block into the source block, eliminating the specified unconditional branch.
 | |
| /// If the destination block defines values used by successors of the dest
 | |
| /// block, we may need to insert PHI nodes.
 | |
| ///
 | |
| void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
 | |
|   BasicBlock *SourceBlock = Branch->getParent();
 | |
|   BasicBlock *DestBlock = Branch->getSuccessor(0);
 | |
|   assert(SourceBlock != DestBlock && "Our predicate is broken!");
 | |
| 
 | |
|   DEBUG(std::cerr << "TailDuplication[" << SourceBlock->getParent()->getName()
 | |
|                   << "]: Eliminating branch: " << *Branch);
 | |
| 
 | |
|   // We are going to have to map operands from the original block B to the new
 | |
|   // copy of the block B'.  If there are PHI nodes in the DestBlock, these PHI
 | |
|   // nodes also define part of this mapping.  Loop over these PHI nodes, adding
 | |
|   // them to our mapping.
 | |
|   //
 | |
|   std::map<Value*, Value*> ValueMapping;
 | |
| 
 | |
|   BasicBlock::iterator BI = DestBlock->begin();
 | |
|   bool HadPHINodes = isa<PHINode>(BI);
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|     ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
 | |
| 
 | |
|   // Clone the non-phi instructions of the dest block into the source block,
 | |
|   // keeping track of the mapping...
 | |
|   //
 | |
|   for (; BI != DestBlock->end(); ++BI) {
 | |
|     Instruction *New = BI->clone();
 | |
|     New->setName(BI->getName());
 | |
|     SourceBlock->getInstList().push_back(New);
 | |
|     ValueMapping[BI] = New;
 | |
|   }
 | |
| 
 | |
|   // Now that we have built the mapping information and cloned all of the
 | |
|   // instructions (giving us a new terminator, among other things), walk the new
 | |
|   // instructions, rewriting references of old instructions to use new
 | |
|   // instructions.
 | |
|   //
 | |
|   BI = Branch; ++BI;  // Get an iterator to the first new instruction
 | |
|   for (; BI != SourceBlock->end(); ++BI)
 | |
|     for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i)
 | |
|       if (Value *Remapped = ValueMapping[BI->getOperand(i)])
 | |
|         BI->setOperand(i, Remapped);
 | |
| 
 | |
|   // Next we check to see if any of the successors of DestBlock had PHI nodes.
 | |
|   // If so, we need to add entries to the PHI nodes for SourceBlock now.
 | |
|   for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
 | |
|        SI != SE; ++SI) {
 | |
|     BasicBlock *Succ = *SI;
 | |
|     for (BasicBlock::iterator PNI = Succ->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
 | |
|       // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | |
|       // DestBlock.
 | |
|       Value *IV = PN->getIncomingValueForBlock(DestBlock);
 | |
|       
 | |
|       // Remap the value if necessary...
 | |
|       if (Value *MappedIV = ValueMapping[IV])
 | |
|         IV = MappedIV;
 | |
|       PN->addIncoming(IV, SourceBlock);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Now that all of the instructions are correctly copied into the SourceBlock,
 | |
|   // we have one more minor problem: the successors of the original DestBB may
 | |
|   // use the values computed in DestBB either directly (if DestBB dominated the
 | |
|   // block), or through a PHI node.  In either case, we need to insert PHI nodes
 | |
|   // into any successors of DestBB (which are now our successors) for each value
 | |
|   // that is computed in DestBB, but is used outside of it.  All of these uses
 | |
|   // we have to rewrite with the new PHI node.
 | |
|   //
 | |
|   if (succ_begin(SourceBlock) != succ_end(SourceBlock)) // Avoid wasting time...
 | |
|     for (BI = DestBlock->begin(); BI != DestBlock->end(); ++BI)
 | |
|       if (BI->getType() != Type::VoidTy)
 | |
|         InsertPHINodesIfNecessary(BI, ValueMapping[BI], SourceBlock);
 | |
| 
 | |
|   // Final step: now that we have finished everything up, walk the cloned
 | |
|   // instructions one last time, constant propagating and DCE'ing them, because
 | |
|   // they may not be needed anymore.
 | |
|   //
 | |
|   BI = Branch; ++BI;  // Get an iterator to the first new instruction
 | |
|   if (HadPHINodes)
 | |
|     while (BI != SourceBlock->end())
 | |
|       if (!dceInstruction(BI) && !doConstantPropagation(BI))
 | |
|         ++BI;
 | |
| 
 | |
|   DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
 | |
|   SourceBlock->getInstList().erase(Branch);  // Destroy the uncond branch...
 | |
|   
 | |
|   ++NumEliminated;  // We just killed a branch!
 | |
| }
 | |
| 
 | |
| /// InsertPHINodesIfNecessary - So at this point, we cloned the OrigInst
 | |
| /// instruction into the NewBlock with the value of NewInst.  If OrigInst was
 | |
| /// used outside of its defining basic block, we need to insert a PHI nodes into
 | |
| /// the successors.
 | |
| ///
 | |
| void TailDup::InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst,
 | |
|                                         BasicBlock *NewBlock) {
 | |
|   // Loop over all of the uses of OrigInst, rewriting them to be newly inserted
 | |
|   // PHI nodes, unless they are in the same basic block as OrigInst.
 | |
|   BasicBlock *OrigBlock = OrigInst->getParent();
 | |
|   std::vector<Instruction*> Users;
 | |
|   Users.reserve(OrigInst->use_size());
 | |
|   for (Value::use_iterator I = OrigInst->use_begin(), E = OrigInst->use_end();
 | |
|        I != E; ++I) {
 | |
|     Instruction *In = cast<Instruction>(*I);
 | |
|     if (In->getParent() != OrigBlock ||  // Don't modify uses in the orig block!
 | |
|         isa<PHINode>(In))
 | |
|       Users.push_back(In);
 | |
|   }
 | |
| 
 | |
|   // The common case is that the instruction is only used within the block that
 | |
|   // defines it.  If we have this case, quick exit.
 | |
|   //
 | |
|   if (Users.empty()) return; 
 | |
| 
 | |
|   // Otherwise, we have a more complex case, handle it now.  This requires the
 | |
|   // construction of a mapping between a basic block and the value to use when
 | |
|   // in the scope of that basic block.  This map will map to the original and
 | |
|   // new values when in the original or new block, but will map to inserted PHI
 | |
|   // nodes when in other blocks.
 | |
|   //
 | |
|   std::map<BasicBlock*, Value*> ValueMap;
 | |
|   std::map<BasicBlock*, Value*> OutValueMap;   // The outgoing value map
 | |
|   OutValueMap[OrigBlock] = OrigInst;
 | |
|   OutValueMap[NewBlock ] = NewInst;    // Seed the initial values...
 | |
| 
 | |
|   DEBUG(std::cerr << "  ** Inserting PHI nodes for " << OrigInst);
 | |
|   while (!Users.empty()) {
 | |
|     Instruction *User = Users.back(); Users.pop_back();
 | |
| 
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       // PHI nodes must be handled specially here, because their operands are
 | |
|       // actually defined in predecessor basic blocks, NOT in the block that the
 | |
|       // PHI node lives in.  Note that we have already added entries to PHI nods
 | |
|       // which are in blocks that are immediate successors of OrigBlock, so
 | |
|       // don't modify them again.
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingValue(i) == OrigInst &&
 | |
|             PN->getIncomingBlock(i) != OrigBlock) {
 | |
|           Value *V = GetValueOutBlock(PN->getIncomingBlock(i), OrigInst,
 | |
|                                       ValueMap, OutValueMap);
 | |
|           PN->setIncomingValue(i, V);
 | |
|         }
 | |
|       
 | |
|     } else {
 | |
|       // Any other user of the instruction can just replace any uses with the
 | |
|       // new value defined in the block it resides in.
 | |
|       Value *V = GetValueInBlock(User->getParent(), OrigInst, ValueMap,
 | |
|                                  OutValueMap);
 | |
|       User->replaceUsesOfWith(OrigInst, V);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetValueInBlock - This is a recursive method which inserts PHI nodes into
 | |
| /// the function until there is a value available in basic block BB.
 | |
| ///
 | |
| Value *TailDup::GetValueInBlock(BasicBlock *BB, Value *OrigVal,
 | |
|                                 std::map<BasicBlock*, Value*> &ValueMap,
 | |
|                                 std::map<BasicBlock*, Value*> &OutValueMap) {
 | |
|   Value*& BBVal = ValueMap[BB];
 | |
|   if (BBVal) return BBVal;       // Value already computed for this block?
 | |
| 
 | |
|   assert(pred_begin(BB) != pred_end(BB) &&
 | |
|          "Propagating PHI nodes to unreachable blocks?");
 | |
| 
 | |
|   // If there is no value already available in this basic block, we need to
 | |
|   // either reuse a value from an incoming, dominating, basic block, or we need
 | |
|   // to create a new PHI node to merge in different incoming values.  Because we
 | |
|   // don't know if we're part of a loop at this point or not, we create a PHI
 | |
|   // node, even if we will ultimately eliminate it.
 | |
|   PHINode *PN = new PHINode(OrigVal->getType(), OrigVal->getName()+".pn",
 | |
|                             BB->begin());
 | |
|   BBVal = PN;   // Insert this into the BBVal slot in case of cycles...
 | |
| 
 | |
|   Value*& BBOutVal = OutValueMap[BB];
 | |
|   if (BBOutVal == 0) BBOutVal = PN;
 | |
| 
 | |
|   // Now that we have created the PHI node, loop over all of the predecessors of
 | |
|   // this block, computing an incoming value for the predecessor.
 | |
|   std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | |
|   for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | |
|     PN->addIncoming(GetValueOutBlock(Preds[i], OrigVal, ValueMap, OutValueMap),
 | |
|                     Preds[i]);
 | |
| 
 | |
|   // The PHI node is complete.  In many cases, however the PHI node was
 | |
|   // ultimately unnecessary: we could have just reused a dominating incoming
 | |
|   // value.  If this is the case, nuke the PHI node and replace the map entry
 | |
|   // with the dominating value.
 | |
|   //
 | |
|   assert(PN->getNumIncomingValues() > 0 && "No predecessors?");
 | |
| 
 | |
|   // Check to see if all of the elements in the PHI node are either the PHI node
 | |
|   // itself or ONE particular value.
 | |
|   unsigned i = 0;
 | |
|   Value *ReplVal = PN->getIncomingValue(i);
 | |
|   for (; ReplVal == PN && i != PN->getNumIncomingValues(); ++i)
 | |
|     ReplVal = PN->getIncomingValue(i);  // Skip values equal to the PN
 | |
| 
 | |
|   for (; i != PN->getNumIncomingValues(); ++i)
 | |
|     if (PN->getIncomingValue(i) != PN && PN->getIncomingValue(i) != ReplVal) {
 | |
|       ReplVal = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Found a value to replace the PHI node with?
 | |
|   if (ReplVal && ReplVal != PN) {
 | |
|     PN->replaceAllUsesWith(ReplVal);
 | |
|     BBVal = ReplVal;
 | |
|     if (BBOutVal == PN) BBOutVal = ReplVal;
 | |
|     BB->getInstList().erase(PN);   // Erase the PHI node...
 | |
|   } else {
 | |
|     ++NumPHINodes;
 | |
|   }
 | |
| 
 | |
|   return BBVal;
 | |
| }
 | |
| 
 | |
| Value *TailDup::GetValueOutBlock(BasicBlock *BB, Value *OrigVal,
 | |
|                                  std::map<BasicBlock*, Value*> &ValueMap,
 | |
|                                  std::map<BasicBlock*, Value*> &OutValueMap) {
 | |
|   Value*& BBVal = OutValueMap[BB];
 | |
|   if (BBVal) return BBVal;       // Value already computed for this block?
 | |
| 
 | |
|   return BBVal = GetValueInBlock(BB, OrigVal, ValueMap, OutValueMap);
 | |
| }
 |