mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6938 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			973 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			973 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
 | |
| //
 | |
| // This library implements the functionality defined in llvm/Assembly/Writer.h
 | |
| //
 | |
| // Note that these routines must be extremely tolerant of various errors in the
 | |
| // LLVM code, because it can be used for debugging transformations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Assembly/CachedWriter.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Assembly/PrintModulePass.h"
 | |
| #include "llvm/SlotCalculator.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instruction.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/iMemory.h"
 | |
| #include "llvm/iTerminators.h"
 | |
| #include "llvm/iPHINode.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "Support/StringExtras.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| static RegisterPass<PrintModulePass>
 | |
| X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
 | |
| static RegisterPass<PrintFunctionPass>
 | |
| Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
 | |
| 
 | |
| static void WriteAsOperandInternal(std::ostream &Out, const Value *V, 
 | |
|                                    bool PrintName,
 | |
|                                  std::map<const Type *, std::string> &TypeTable,
 | |
|                                    SlotCalculator *Table);
 | |
| 
 | |
| static const Module *getModuleFromVal(const Value *V) {
 | |
|   if (const Argument *MA = dyn_cast<const Argument>(V))
 | |
|     return MA->getParent() ? MA->getParent()->getParent() : 0;
 | |
|   else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
 | |
|     return BB->getParent() ? BB->getParent()->getParent() : 0;
 | |
|   else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
 | |
|     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
 | |
|     return M ? M->getParent() : 0;
 | |
|   } else if (const GlobalValue *GV = dyn_cast<const GlobalValue>(V))
 | |
|     return GV->getParent();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static SlotCalculator *createSlotCalculator(const Value *V) {
 | |
|   assert(!isa<Type>(V) && "Can't create an SC for a type!");
 | |
|   if (const Argument *FA = dyn_cast<const Argument>(V)) {
 | |
|     return new SlotCalculator(FA->getParent(), true);
 | |
|   } else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
 | |
|     return new SlotCalculator(I->getParent()->getParent(), true);
 | |
|   } else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
 | |
|     return new SlotCalculator(BB->getParent(), true);
 | |
|   } else if (const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V)){
 | |
|     return new SlotCalculator(GV->getParent(), true);
 | |
|   } else if (const Function *Func = dyn_cast<const Function>(V)) {
 | |
|     return new SlotCalculator(Func, true);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If the module has a symbol table, take all global types and stuff their
 | |
| // names into the TypeNames map.
 | |
| //
 | |
| static void fillTypeNameTable(const Module *M,
 | |
|                               std::map<const Type *, std::string> &TypeNames) {
 | |
|   if (!M) return;
 | |
|   const SymbolTable &ST = M->getSymbolTable();
 | |
|   SymbolTable::const_iterator PI = ST.find(Type::TypeTy);
 | |
|   if (PI != ST.end()) {
 | |
|     SymbolTable::type_const_iterator I = PI->second.begin();
 | |
|     for (; I != PI->second.end(); ++I) {
 | |
|       // As a heuristic, don't insert pointer to primitive types, because
 | |
|       // they are used too often to have a single useful name.
 | |
|       //
 | |
|       const Type *Ty = cast<const Type>(I->second);
 | |
|       if (!isa<PointerType>(Ty) ||
 | |
|           !cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
 | |
|         TypeNames.insert(std::make_pair(Ty, "%"+I->first));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static std::string calcTypeName(const Type *Ty, 
 | |
|                                 std::vector<const Type *> &TypeStack,
 | |
|                                 std::map<const Type *, std::string> &TypeNames){
 | |
|   if (Ty->isPrimitiveType()) return Ty->getDescription();  // Base case
 | |
| 
 | |
|   // Check to see if the type is named.
 | |
|   std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | |
|   if (I != TypeNames.end()) return I->second;
 | |
| 
 | |
|   // Check to see if the Type is already on the stack...
 | |
|   unsigned Slot = 0, CurSize = TypeStack.size();
 | |
|   while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
 | |
| 
 | |
|   // This is another base case for the recursion.  In this case, we know 
 | |
|   // that we have looped back to a type that we have previously visited.
 | |
|   // Generate the appropriate upreference to handle this.
 | |
|   // 
 | |
|   if (Slot < CurSize)
 | |
|     return "\\" + utostr(CurSize-Slot);       // Here's the upreference
 | |
| 
 | |
|   TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
 | |
|   
 | |
|   std::string Result;
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *FTy = cast<const FunctionType>(Ty);
 | |
|     Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " (";
 | |
|     for (FunctionType::ParamTypes::const_iterator
 | |
|            I = FTy->getParamTypes().begin(),
 | |
|            E = FTy->getParamTypes().end(); I != E; ++I) {
 | |
|       if (I != FTy->getParamTypes().begin())
 | |
|         Result += ", ";
 | |
|       Result += calcTypeName(*I, TypeStack, TypeNames);
 | |
|     }
 | |
|     if (FTy->isVarArg()) {
 | |
|       if (!FTy->getParamTypes().empty()) Result += ", ";
 | |
|       Result += "...";
 | |
|     }
 | |
|     Result += ")";
 | |
|     break;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *STy = cast<const StructType>(Ty);
 | |
|     Result = "{ ";
 | |
|     for (StructType::ElementTypes::const_iterator
 | |
|            I = STy->getElementTypes().begin(),
 | |
|            E = STy->getElementTypes().end(); I != E; ++I) {
 | |
|       if (I != STy->getElementTypes().begin())
 | |
|         Result += ", ";
 | |
|       Result += calcTypeName(*I, TypeStack, TypeNames);
 | |
|     }
 | |
|     Result += " }";
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID:
 | |
|     Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(), 
 | |
|                           TypeStack, TypeNames) + "*";
 | |
|     break;
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<const ArrayType>(Ty);
 | |
|     Result = "[" + utostr(ATy->getNumElements()) + " x ";
 | |
|     Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
 | |
|     break;
 | |
|   }
 | |
|   case Type::OpaqueTyID:
 | |
|     Result = "opaque";
 | |
|     break;
 | |
|   default:
 | |
|     Result = "<unrecognized-type>";
 | |
|   }
 | |
| 
 | |
|   TypeStack.pop_back();       // Remove self from stack...
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| // printTypeInt - The internal guts of printing out a type that has a
 | |
| // potentially named portion.
 | |
| //
 | |
| static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
 | |
|                               std::map<const Type *, std::string> &TypeNames) {
 | |
|   // Primitive types always print out their description, regardless of whether
 | |
|   // they have been named or not.
 | |
|   //
 | |
|   if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
 | |
| 
 | |
|   // Check to see if the type is named.
 | |
|   std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | |
|   if (I != TypeNames.end()) return Out << I->second;
 | |
| 
 | |
|   // Otherwise we have a type that has not been named but is a derived type.
 | |
|   // Carefully recurse the type hierarchy to print out any contained symbolic
 | |
|   // names.
 | |
|   //
 | |
|   std::vector<const Type *> TypeStack;
 | |
|   std::string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
 | |
|   TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
 | |
|   return Out << TypeName;
 | |
| }
 | |
| 
 | |
| 
 | |
| // WriteTypeSymbolic - This attempts to write the specified type as a symbolic
 | |
| // type, iff there is an entry in the modules symbol table for the specified
 | |
| // type or one of it's component types.  This is slower than a simple x << Type;
 | |
| //
 | |
| std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
 | |
|                                 const Module *M) {
 | |
|   Out << " "; 
 | |
| 
 | |
|   // If they want us to print out a type, attempt to make it symbolic if there
 | |
|   // is a symbol table in the module...
 | |
|   if (M) {
 | |
|     std::map<const Type *, std::string> TypeNames;
 | |
|     fillTypeNameTable(M, TypeNames);
 | |
|     
 | |
|     return printTypeInt(Out, Ty, TypeNames);
 | |
|   } else {
 | |
|     return Out << Ty->getDescription();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void WriteConstantInt(std::ostream &Out, const Constant *CV, 
 | |
|                              bool PrintName,
 | |
|                              std::map<const Type *, std::string> &TypeTable,
 | |
|                              SlotCalculator *Table) {
 | |
|   if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
 | |
|     Out << (CB == ConstantBool::True ? "true" : "false");
 | |
|   } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
 | |
|     Out << CI->getValue();
 | |
|   } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
 | |
|     Out << CI->getValue();
 | |
|   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | |
|     // We would like to output the FP constant value in exponential notation,
 | |
|     // but we cannot do this if doing so will lose precision.  Check here to
 | |
|     // make sure that we only output it in exponential format if we can parse
 | |
|     // the value back and get the same value.
 | |
|     //
 | |
|     std::string StrVal = ftostr(CFP->getValue());
 | |
| 
 | |
|     // Check to make sure that the stringized number is not some string like
 | |
|     // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
 | |
|     // the string matches the "[-+]?[0-9]" regex.
 | |
|     //
 | |
|     if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | |
|         ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | |
|          (StrVal[1] >= '0' && StrVal[1] <= '9')))
 | |
|       // Reparse stringized version!
 | |
|       if (atof(StrVal.c_str()) == CFP->getValue()) {
 | |
|         Out << StrVal; return;
 | |
|       }
 | |
|     
 | |
|     // Otherwise we could not reparse it to exactly the same value, so we must
 | |
|     // output the string in hexadecimal format!
 | |
|     //
 | |
|     // Behave nicely in the face of C TBAA rules... see:
 | |
|     // http://www.nullstone.com/htmls/category/aliastyp.htm
 | |
|     //
 | |
|     double Val = CFP->getValue();
 | |
|     char *Ptr = (char*)&Val;
 | |
|     assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
 | |
|            "assuming that double is 64 bits!");
 | |
|     Out << "0x" << utohexstr(*(uint64_t*)Ptr);
 | |
| 
 | |
|   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
 | |
|     if (CA->getNumOperands() > 5 && CA->isNullValue()) {
 | |
|       Out << "zeroinitializer";
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // As a special case, print the array as a string if it is an array of
 | |
|     // ubytes or an array of sbytes with positive values.
 | |
|     // 
 | |
|     const Type *ETy = CA->getType()->getElementType();
 | |
|     bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
 | |
| 
 | |
|     if (ETy == Type::SByteTy)
 | |
|       for (unsigned i = 0; i < CA->getNumOperands(); ++i)
 | |
|         if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
 | |
|           isString = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|     if (isString) {
 | |
|       Out << "c\"";
 | |
|       for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
 | |
|         unsigned char C = (ETy == Type::SByteTy) ?
 | |
|           (unsigned char)cast<ConstantSInt>(CA->getOperand(i))->getValue() :
 | |
|           (unsigned char)cast<ConstantUInt>(CA->getOperand(i))->getValue();
 | |
|         
 | |
|         if (isprint(C) && C != '"' && C != '\\') {
 | |
|           Out << C;
 | |
|         } else {
 | |
|           Out << '\\'
 | |
|               << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
 | |
|               << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | |
|         }
 | |
|       }
 | |
|       Out << "\"";
 | |
| 
 | |
|     } else {                // Cannot output in string format...
 | |
|       Out << "[";
 | |
|       if (CA->getNumOperands()) {
 | |
|         Out << " ";
 | |
|         printTypeInt(Out, ETy, TypeTable);
 | |
|         WriteAsOperandInternal(Out, CA->getOperand(0),
 | |
|                                PrintName, TypeTable, Table);
 | |
|         for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
 | |
|           Out << ", ";
 | |
|           printTypeInt(Out, ETy, TypeTable);
 | |
|           WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
 | |
|                                  TypeTable, Table);
 | |
|         }
 | |
|       }
 | |
|       Out << " ]";
 | |
|     }
 | |
|   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
 | |
|     if (CS->getNumOperands() > 5 && CS->isNullValue()) {
 | |
|       Out << "zeroinitializer";
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Out << "{";
 | |
|     if (CS->getNumOperands()) {
 | |
|       Out << " ";
 | |
|       printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
 | |
| 
 | |
|       WriteAsOperandInternal(Out, CS->getOperand(0),
 | |
|                              PrintName, TypeTable, Table);
 | |
| 
 | |
|       for (unsigned i = 1; i < CS->getNumOperands(); i++) {
 | |
|         Out << ", ";
 | |
|         printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
 | |
| 
 | |
|         WriteAsOperandInternal(Out, CS->getOperand(i),
 | |
|                                PrintName, TypeTable, Table);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Out << " }";
 | |
|   } else if (isa<ConstantPointerNull>(CV)) {
 | |
|     Out << "null";
 | |
| 
 | |
|   } else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
 | |
|     const GlobalValue *V = PR->getValue();
 | |
|     if (V->hasName()) {
 | |
|       Out << "%" << V->getName();
 | |
|     } else if (Table) {
 | |
|       int Slot = Table->getValSlot(V);
 | |
|       if (Slot >= 0)
 | |
|         Out << "%" << Slot;
 | |
|       else
 | |
|         Out << "<pointer reference badref>";
 | |
|     } else {
 | |
|       Out << "<pointer reference without context info>";
 | |
|     }
 | |
| 
 | |
|   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | |
|     Out << CE->getOpcodeName() << " (";
 | |
|     
 | |
|     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
 | |
|       printTypeInt(Out, (*OI)->getType(), TypeTable);
 | |
|       WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table);
 | |
|       if (OI+1 != CE->op_end())
 | |
|         Out << ", ";
 | |
|     }
 | |
|     
 | |
|     if (CE->getOpcode() == Instruction::Cast) {
 | |
|       Out << " to ";
 | |
|       printTypeInt(Out, CE->getType(), TypeTable);
 | |
|     }
 | |
|     Out << ")";
 | |
| 
 | |
|   } else {
 | |
|     Out << "<placeholder or erroneous Constant>";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // WriteAsOperand - Write the name of the specified value out to the specified
 | |
| // ostream.  This can be useful when you just want to print int %reg126, not the
 | |
| // whole instruction that generated it.
 | |
| //
 | |
| static void WriteAsOperandInternal(std::ostream &Out, const Value *V, 
 | |
|                                    bool PrintName,
 | |
|                                   std::map<const Type*, std::string> &TypeTable,
 | |
|                                    SlotCalculator *Table) {
 | |
|   Out << " ";
 | |
|   if (PrintName && V->hasName()) {
 | |
|     Out << "%" << V->getName();
 | |
|   } else {
 | |
|     if (const Constant *CV = dyn_cast<const Constant>(V)) {
 | |
|       WriteConstantInt(Out, CV, PrintName, TypeTable, Table);
 | |
|     } else {
 | |
|       int Slot;
 | |
|       if (Table) {
 | |
| 	Slot = Table->getValSlot(V);
 | |
|       } else {
 | |
|         if (const Type *Ty = dyn_cast<const Type>(V)) {
 | |
|           Out << Ty->getDescription();
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         Table = createSlotCalculator(V);
 | |
|         if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
 | |
| 
 | |
| 	Slot = Table->getValSlot(V);
 | |
| 	delete Table;
 | |
|       }
 | |
|       if (Slot >= 0)  Out << "%" << Slot;
 | |
|       else if (PrintName)
 | |
|         Out << "<badref>";     // Not embeded into a location?
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // WriteAsOperand - Write the name of the specified value out to the specified
 | |
| // ostream.  This can be useful when you just want to print int %reg126, not the
 | |
| // whole instruction that generated it.
 | |
| //
 | |
| std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType, 
 | |
|                              bool PrintName, const Module *Context) {
 | |
|   std::map<const Type *, std::string> TypeNames;
 | |
|   if (Context == 0) Context = getModuleFromVal(V);
 | |
| 
 | |
|   if (Context)
 | |
|     fillTypeNameTable(Context, TypeNames);
 | |
| 
 | |
|   if (PrintType)
 | |
|     printTypeInt(Out, V->getType(), TypeNames);
 | |
|   
 | |
|   WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| class AssemblyWriter {
 | |
|   std::ostream &Out;
 | |
|   SlotCalculator &Table;
 | |
|   const Module *TheModule;
 | |
|   std::map<const Type *, std::string> TypeNames;
 | |
| public:
 | |
|   inline AssemblyWriter(std::ostream &o, SlotCalculator &Tab, const Module *M)
 | |
|     : Out(o), Table(Tab), TheModule(M) {
 | |
| 
 | |
|     // If the module has a symbol table, take all global types and stuff their
 | |
|     // names into the TypeNames map.
 | |
|     //
 | |
|     fillTypeNameTable(M, TypeNames);
 | |
|   }
 | |
| 
 | |
|   inline void write(const Module *M)         { printModule(M);      }
 | |
|   inline void write(const GlobalVariable *G) { printGlobal(G);      }
 | |
|   inline void write(const Function *F)       { printFunction(F);    }
 | |
|   inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
 | |
|   inline void write(const Instruction *I)    { printInstruction(*I); }
 | |
|   inline void write(const Constant *CPV)     { printConstant(CPV);  }
 | |
|   inline void write(const Type *Ty)          { printType(Ty);       }
 | |
| 
 | |
|   void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
 | |
| 
 | |
| private :
 | |
|   void printModule(const Module *M);
 | |
|   void printSymbolTable(const SymbolTable &ST);
 | |
|   void printConstant(const Constant *CPV);
 | |
|   void printGlobal(const GlobalVariable *GV);
 | |
|   void printFunction(const Function *F);
 | |
|   void printArgument(const Argument *FA);
 | |
|   void printBasicBlock(const BasicBlock *BB);
 | |
|   void printInstruction(const Instruction &I);
 | |
| 
 | |
|   // printType - Go to extreme measures to attempt to print out a short,
 | |
|   // symbolic version of a type name.
 | |
|   //
 | |
|   std::ostream &printType(const Type *Ty) {
 | |
|     return printTypeInt(Out, Ty, TypeNames);
 | |
|   }
 | |
| 
 | |
|   // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | |
|   // without considering any symbolic types that we may have equal to it.
 | |
|   //
 | |
|   std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
 | |
| 
 | |
|   // printInfoComment - Print a little comment after the instruction indicating
 | |
|   // which slot it occupies.
 | |
|   void printInfoComment(const Value &V);
 | |
| };
 | |
| 
 | |
| 
 | |
| // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | |
| // without considering any symbolic types that we may have equal to it.
 | |
| //
 | |
| std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
 | |
|   if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
 | |
|     printType(FTy->getReturnType()) << " (";
 | |
|     for (FunctionType::ParamTypes::const_iterator
 | |
|            I = FTy->getParamTypes().begin(),
 | |
|            E = FTy->getParamTypes().end(); I != E; ++I) {
 | |
|       if (I != FTy->getParamTypes().begin())
 | |
|         Out << ", ";
 | |
|       printType(*I);
 | |
|     }
 | |
|     if (FTy->isVarArg()) {
 | |
|       if (!FTy->getParamTypes().empty()) Out << ", ";
 | |
|       Out << "...";
 | |
|     }
 | |
|     Out << ")";
 | |
|   } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     Out << "{ ";
 | |
|     for (StructType::ElementTypes::const_iterator
 | |
|            I = STy->getElementTypes().begin(),
 | |
|            E = STy->getElementTypes().end(); I != E; ++I) {
 | |
|       if (I != STy->getElementTypes().begin())
 | |
|         Out << ", ";
 | |
|       printType(*I);
 | |
|     }
 | |
|     Out << " }";
 | |
|   } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | |
|     printType(PTy->getElementType()) << "*";
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Out << "[" << ATy->getNumElements() << " x ";
 | |
|     printType(ATy->getElementType()) << "]";
 | |
|   } else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
 | |
|     Out << "opaque";
 | |
|   } else {
 | |
|     if (!Ty->isPrimitiveType())
 | |
|       Out << "<unknown derived type>";
 | |
|     printType(Ty);
 | |
|   }
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| 
 | |
| void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, 
 | |
| 				  bool PrintName) {
 | |
|   if (PrintType) { Out << " "; printType(Operand->getType()); }
 | |
|   WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table);
 | |
| }
 | |
| 
 | |
| 
 | |
| void AssemblyWriter::printModule(const Module *M) {
 | |
|   Out << "target endian = " << (M->isLittleEndian() ? "little" : "big") << "\n";
 | |
|   Out << "target pointersize = " << (M->has32BitPointers() ? 32 : 64) << "\n";
 | |
| 
 | |
|   // Loop over the symbol table, emitting all named constants...
 | |
|   printSymbolTable(M->getSymbolTable());
 | |
|   
 | |
|   for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
 | |
|     printGlobal(I);
 | |
| 
 | |
|   Out << "\nimplementation   ; Functions:\n";
 | |
|   
 | |
|   // Output all of the functions...
 | |
|   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | |
|     printFunction(I);
 | |
| }
 | |
| 
 | |
| void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
 | |
|   if (GV->hasName()) Out << "%" << GV->getName() << " = ";
 | |
| 
 | |
|   if (!GV->hasInitializer()) 
 | |
|     Out << "external ";
 | |
|   else
 | |
|     switch (GV->getLinkage()) {
 | |
|     case GlobalValue::InternalLinkage: Out << "internal "; break;
 | |
|     case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
 | |
|     case GlobalValue::AppendingLinkage: Out << "appending "; break;
 | |
|     case GlobalValue::ExternalLinkage: break;
 | |
|     }
 | |
| 
 | |
|   Out << (GV->isConstant() ? "constant " : "global ");
 | |
|   printType(GV->getType()->getElementType());
 | |
| 
 | |
|   if (GV->hasInitializer())
 | |
|     writeOperand(GV->getInitializer(), false, false);
 | |
| 
 | |
|   printInfoComment(*GV);
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| // printSymbolTable - Run through symbol table looking for named constants
 | |
| // if a named constant is found, emit it's declaration...
 | |
| //
 | |
| void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
 | |
|   for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
 | |
|     SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
 | |
|     SymbolTable::type_const_iterator End = ST.type_end(TI->first);
 | |
|     
 | |
|     for (; I != End; ++I) {
 | |
|       const Value *V = I->second;
 | |
|       if (const Constant *CPV = dyn_cast<const Constant>(V)) {
 | |
| 	printConstant(CPV);
 | |
|       } else if (const Type *Ty = dyn_cast<const Type>(V)) {
 | |
| 	Out << "\t%" << I->first << " = type ";
 | |
| 
 | |
|         // Make sure we print out at least one level of the type structure, so
 | |
|         // that we do not get %FILE = type %FILE
 | |
|         //
 | |
|         printTypeAtLeastOneLevel(Ty) << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // printConstant - Print out a constant pool entry...
 | |
| //
 | |
| void AssemblyWriter::printConstant(const Constant *CPV) {
 | |
|   // Don't print out unnamed constants, they will be inlined
 | |
|   if (!CPV->hasName()) return;
 | |
| 
 | |
|   // Print out name...
 | |
|   Out << "\t%" << CPV->getName() << " =";
 | |
| 
 | |
|   // Write the value out now...
 | |
|   writeOperand(CPV, true, false);
 | |
| 
 | |
|   printInfoComment(*CPV);
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| // printFunction - Print all aspects of a function.
 | |
| //
 | |
| void AssemblyWriter::printFunction(const Function *F) {
 | |
|   // Print out the return type and name...
 | |
|   Out << "\n";
 | |
| 
 | |
|   if (F->isExternal())
 | |
|     Out << "declare ";
 | |
|   else
 | |
|     switch (F->getLinkage()) {
 | |
|     case GlobalValue::InternalLinkage: Out << "internal "; break;
 | |
|     case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
 | |
|     case GlobalValue::AppendingLinkage: Out << "appending "; break;
 | |
|     case GlobalValue::ExternalLinkage: break;
 | |
|     }
 | |
| 
 | |
|   printType(F->getReturnType()) << " %" << F->getName() << "(";
 | |
|   Table.incorporateFunction(F);
 | |
| 
 | |
|   // Loop over the arguments, printing them...
 | |
|   const FunctionType *FT = F->getFunctionType();
 | |
| 
 | |
|   for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | |
|     printArgument(I);
 | |
| 
 | |
|   // Finish printing arguments...
 | |
|   if (FT->isVarArg()) {
 | |
|     if (FT->getParamTypes().size()) Out << ", ";
 | |
|     Out << "...";  // Output varargs portion of signature!
 | |
|   }
 | |
|   Out << ")";
 | |
| 
 | |
|   if (F->isExternal()) {
 | |
|     Out << "\n";
 | |
|   } else {
 | |
|     Out << " {";
 | |
|   
 | |
|     // Output all of its basic blocks... for the function
 | |
|     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|       printBasicBlock(I);
 | |
| 
 | |
|     Out << "}\n";
 | |
|   }
 | |
| 
 | |
|   Table.purgeFunction();
 | |
| }
 | |
| 
 | |
| // printArgument - This member is called for every argument that 
 | |
| // is passed into the function.  Simply print it out
 | |
| //
 | |
| void AssemblyWriter::printArgument(const Argument *Arg) {
 | |
|   // Insert commas as we go... the first arg doesn't get a comma
 | |
|   if (Arg != &Arg->getParent()->afront()) Out << ", ";
 | |
| 
 | |
|   // Output type...
 | |
|   printType(Arg->getType());
 | |
|   
 | |
|   // Output name, if available...
 | |
|   if (Arg->hasName())
 | |
|     Out << " %" << Arg->getName();
 | |
|   else if (Table.getValSlot(Arg) < 0)
 | |
|     Out << "<badref>";
 | |
| }
 | |
| 
 | |
| // printBasicBlock - This member is called for each basic block in a methd.
 | |
| //
 | |
| void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
 | |
|   if (BB->hasName()) {              // Print out the label if it exists...
 | |
|     Out << "\n" << BB->getName() << ":";
 | |
|   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
 | |
|     int Slot = Table.getValSlot(BB);
 | |
|     Out << "\n; <label>:";
 | |
|     if (Slot >= 0) 
 | |
|       Out << Slot;         // Extra newline seperates out label's
 | |
|     else 
 | |
|       Out << "<badref>"; 
 | |
|   }
 | |
|   
 | |
|   // Output predecessors for the block...
 | |
|   Out << "\t\t;";
 | |
|   pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
| 
 | |
|   if (PI == PE) {
 | |
|     Out << " No predecessors!";
 | |
|   } else {
 | |
|     Out << " preds =";
 | |
|     writeOperand(*PI, false, true);
 | |
|     for (++PI; PI != PE; ++PI) {
 | |
|       Out << ",";
 | |
|       writeOperand(*PI, false, true);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Out << "\n";
 | |
| 
 | |
|   // Output all of the instructions in the basic block...
 | |
|   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     printInstruction(*I);
 | |
| }
 | |
| 
 | |
| 
 | |
| // printInfoComment - Print a little comment after the instruction indicating
 | |
| // which slot it occupies.
 | |
| //
 | |
| void AssemblyWriter::printInfoComment(const Value &V) {
 | |
|   if (V.getType() != Type::VoidTy) {
 | |
|     Out << "\t\t; <";
 | |
|     printType(V.getType()) << ">";
 | |
| 
 | |
|     if (!V.hasName()) {
 | |
|       int Slot = Table.getValSlot(&V); // Print out the def slot taken...
 | |
|       if (Slot >= 0) Out << ":" << Slot;
 | |
|       else Out << ":<badref>";
 | |
|     }
 | |
|     Out << " [#uses=" << V.use_size() << "]";  // Output # uses
 | |
|   }
 | |
| }
 | |
| 
 | |
| // printInstruction - This member is called for each Instruction in a methd.
 | |
| //
 | |
| void AssemblyWriter::printInstruction(const Instruction &I) {
 | |
|   Out << "\t";
 | |
| 
 | |
|   // Print out name if it exists...
 | |
|   if (I.hasName())
 | |
|     Out << "%" << I.getName() << " = ";
 | |
| 
 | |
|   // Print out the opcode...
 | |
|   Out << I.getOpcodeName();
 | |
| 
 | |
|   // Print out the type of the operands...
 | |
|   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
 | |
| 
 | |
|   // Special case conditional branches to swizzle the condition out to the front
 | |
|   if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
 | |
|     writeOperand(I.getOperand(2), true);
 | |
|     Out << ",";
 | |
|     writeOperand(Operand, true);
 | |
|     Out << ",";
 | |
|     writeOperand(I.getOperand(1), true);
 | |
| 
 | |
|   } else if (isa<SwitchInst>(I)) {
 | |
|     // Special case switch statement to get formatting nice and correct...
 | |
|     writeOperand(Operand        , true); Out << ",";
 | |
|     writeOperand(I.getOperand(1), true); Out << " [";
 | |
| 
 | |
|     for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | |
|       Out << "\n\t\t";
 | |
|       writeOperand(I.getOperand(op  ), true); Out << ",";
 | |
|       writeOperand(I.getOperand(op+1), true);
 | |
|     }
 | |
|     Out << "\n\t]";
 | |
|   } else if (isa<PHINode>(I)) {
 | |
|     Out << " ";
 | |
|     printType(I.getType());
 | |
|     Out << " ";
 | |
| 
 | |
|     for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | |
|       if (op) Out << ", ";
 | |
|       Out << "[";  
 | |
|       writeOperand(I.getOperand(op  ), false); Out << ",";
 | |
|       writeOperand(I.getOperand(op+1), false); Out << " ]";
 | |
|     }
 | |
|   } else if (isa<ReturnInst>(I) && !Operand) {
 | |
|     Out << " void";
 | |
|   } else if (isa<CallInst>(I)) {
 | |
|     const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
 | |
|     const FunctionType*MTy = PTy ? dyn_cast<FunctionType>(PTy->getElementType()):0;
 | |
|     const Type      *RetTy = MTy ? MTy->getReturnType() : 0;
 | |
| 
 | |
|     // If possible, print out the short form of the call instruction, but we can
 | |
|     // only do this if the first argument is a pointer to a nonvararg function,
 | |
|     // and if the value returned is not a pointer to a function.
 | |
|     //
 | |
|     if (RetTy && MTy && !MTy->isVarArg() &&
 | |
|         (!isa<PointerType>(RetTy) || 
 | |
|          !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | |
|       Out << " "; printType(RetTy);
 | |
|       writeOperand(Operand, false);
 | |
|     } else {
 | |
|       writeOperand(Operand, true);
 | |
|     }
 | |
|     Out << "(";
 | |
|     if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
 | |
|     for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
 | |
|       Out << ",";
 | |
|       writeOperand(I.getOperand(op), true);
 | |
|     }
 | |
| 
 | |
|     Out << " )";
 | |
|   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | |
|     // TODO: Should try to print out short form of the Invoke instruction
 | |
|     writeOperand(Operand, true);
 | |
|     Out << "(";
 | |
|     if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
 | |
|     for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
 | |
|       Out << ",";
 | |
|       writeOperand(I.getOperand(op), true);
 | |
|     }
 | |
| 
 | |
|     Out << " )\n\t\t\tto";
 | |
|     writeOperand(II->getNormalDest(), true);
 | |
|     Out << " except";
 | |
|     writeOperand(II->getExceptionalDest(), true);
 | |
| 
 | |
|   } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
 | |
|     Out << " ";
 | |
|     printType(AI->getType()->getElementType());
 | |
|     if (AI->isArrayAllocation()) {
 | |
|       Out << ",";
 | |
|       writeOperand(AI->getArraySize(), true);
 | |
|     }
 | |
|   } else if (isa<CastInst>(I)) {
 | |
|     writeOperand(Operand, true);
 | |
|     Out << " to ";
 | |
|     printType(I.getType());
 | |
|   } else if (isa<VarArgInst>(I)) {
 | |
|     writeOperand(Operand, true);
 | |
|     Out << ", ";
 | |
|     printType(I.getType());
 | |
|   } else if (Operand) {   // Print the normal way...
 | |
| 
 | |
|     // PrintAllTypes - Instructions who have operands of all the same type 
 | |
|     // omit the type from all but the first operand.  If the instruction has
 | |
|     // different type operands (for example br), then they are all printed.
 | |
|     bool PrintAllTypes = false;
 | |
|     const Type *TheType = Operand->getType();
 | |
| 
 | |
|     // Shift Left & Right print both types even for Ubyte LHS
 | |
|     if (isa<ShiftInst>(I)) {
 | |
|       PrintAllTypes = true;
 | |
|     } else {
 | |
|       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
 | |
|         Operand = I.getOperand(i);
 | |
|         if (Operand->getType() != TheType) {
 | |
|           PrintAllTypes = true;    // We have differing types!  Print them all!
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!PrintAllTypes) {
 | |
|       Out << " ";
 | |
|       printType(TheType);
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
 | |
|       if (i) Out << ",";
 | |
|       writeOperand(I.getOperand(i), PrintAllTypes);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   printInfoComment(I);
 | |
|   Out << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       External Interface declarations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| void Module::print(std::ostream &o) const {
 | |
|   SlotCalculator SlotTable(this, true);
 | |
|   AssemblyWriter W(o, SlotTable, this);
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void GlobalVariable::print(std::ostream &o) const {
 | |
|   SlotCalculator SlotTable(getParent(), true);
 | |
|   AssemblyWriter W(o, SlotTable, getParent());
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void Function::print(std::ostream &o) const {
 | |
|   SlotCalculator SlotTable(getParent(), true);
 | |
|   AssemblyWriter W(o, SlotTable, getParent());
 | |
| 
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void BasicBlock::print(std::ostream &o) const {
 | |
|   SlotCalculator SlotTable(getParent(), true);
 | |
|   AssemblyWriter W(o, SlotTable, 
 | |
|                    getParent() ? getParent()->getParent() : 0);
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void Instruction::print(std::ostream &o) const {
 | |
|   const Function *F = getParent() ? getParent()->getParent() : 0;
 | |
|   SlotCalculator SlotTable(F, true);
 | |
|   AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0);
 | |
| 
 | |
|   W.write(this);
 | |
| }
 | |
| 
 | |
| void Constant::print(std::ostream &o) const {
 | |
|   if (this == 0) { o << "<null> constant value\n"; return; }
 | |
| 
 | |
|   // Handle CPR's special, because they have context information...
 | |
|   if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
 | |
|     CPR->getValue()->print(o);  // Print as a global value, with context info.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   o << " " << getType()->getDescription() << " ";
 | |
| 
 | |
|   std::map<const Type *, std::string> TypeTable;
 | |
|   WriteConstantInt(o, this, false, TypeTable, 0);
 | |
| }
 | |
| 
 | |
| void Type::print(std::ostream &o) const { 
 | |
|   if (this == 0)
 | |
|     o << "<null Type>";
 | |
|   else
 | |
|     o << getDescription();
 | |
| }
 | |
| 
 | |
| void Argument::print(std::ostream &o) const {
 | |
|   o << getType() << " " << getName();
 | |
| }
 | |
| 
 | |
| void Value::dump() const { print(std::cerr); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  CachedWriter Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void CachedWriter::setModule(const Module *M) {
 | |
|   delete SC; delete AW;
 | |
|   if (M) {
 | |
|     SC = new SlotCalculator(M, true);
 | |
|     AW = new AssemblyWriter(Out, *SC, M);
 | |
|   } else {
 | |
|     SC = 0; AW = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CachedWriter::~CachedWriter() {
 | |
|   delete AW;
 | |
|   delete SC;
 | |
| }
 | |
| 
 | |
| CachedWriter &CachedWriter::operator<<(const Value *V) {
 | |
|   assert(AW && SC && "CachedWriter does not have a current module!");
 | |
|   switch (V->getValueType()) {
 | |
|   case Value::ConstantVal:
 | |
|   case Value::ArgumentVal:       AW->writeOperand(V, true, true); break;
 | |
|   case Value::TypeVal:           AW->write(cast<const Type>(V)); break;
 | |
|   case Value::InstructionVal:    AW->write(cast<Instruction>(V)); break;
 | |
|   case Value::BasicBlockVal:     AW->write(cast<BasicBlock>(V)); break;
 | |
|   case Value::FunctionVal:       AW->write(cast<Function>(V)); break;
 | |
|   case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
 | |
|   default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
 | |
|   }
 | |
|   return *this;
 | |
| }
 |