mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36632 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2923 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2923 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library converts LLVM code to C code, compilable by GCC and other C
 | 
						|
// compilers.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CTargetMachine.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/ParameterAttributes.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/TypeSymbolTable.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Analysis/ConstantsScanner.h"
 | 
						|
#include "llvm/Analysis/FindUsedTypes.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/CodeGen/IntrinsicLowering.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Target/TargetMachineRegistry.h"
 | 
						|
#include "llvm/Target/TargetAsmInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Support/Mangler.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Config/config.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <sstream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Register the target.
 | 
						|
  RegisterTarget<CTargetMachine> X("c", "  C backend");
 | 
						|
 | 
						|
  /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
 | 
						|
  /// any unnamed structure types that are used by the program, and merges
 | 
						|
  /// external functions with the same name.
 | 
						|
  ///
 | 
						|
  class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
 | 
						|
  public:
 | 
						|
    static const int ID;
 | 
						|
    CBackendNameAllUsedStructsAndMergeFunctions() 
 | 
						|
      : ModulePass((intptr_t)&ID) {}
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<FindUsedTypes>();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "C backend type canonicalizer";
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnModule(Module &M);
 | 
						|
  };
 | 
						|
 | 
						|
  const int CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
 | 
						|
 | 
						|
  /// CWriter - This class is the main chunk of code that converts an LLVM
 | 
						|
  /// module to a C translation unit.
 | 
						|
  class CWriter : public FunctionPass, public InstVisitor<CWriter> {
 | 
						|
    std::ostream &Out;
 | 
						|
    IntrinsicLowering *IL;
 | 
						|
    Mangler *Mang;
 | 
						|
    LoopInfo *LI;
 | 
						|
    const Module *TheModule;
 | 
						|
    const TargetAsmInfo* TAsm;
 | 
						|
    const TargetData* TD;
 | 
						|
    std::map<const Type *, std::string> TypeNames;
 | 
						|
    std::map<const ConstantFP *, unsigned> FPConstantMap;
 | 
						|
    std::set<Function*> intrinsicPrototypesAlreadyGenerated;
 | 
						|
 | 
						|
  public:
 | 
						|
    static const int ID;
 | 
						|
    CWriter(std::ostream &o) 
 | 
						|
      : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0), 
 | 
						|
        TheModule(0), TAsm(0), TD(0) {}
 | 
						|
 | 
						|
    virtual const char *getPassName() const { return "C backend"; }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.setPreservesAll();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool doInitialization(Module &M);
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) {
 | 
						|
      LI = &getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
      // Get rid of intrinsics we can't handle.
 | 
						|
      lowerIntrinsics(F);
 | 
						|
 | 
						|
      // Output all floating point constants that cannot be printed accurately.
 | 
						|
      printFloatingPointConstants(F);
 | 
						|
 | 
						|
      printFunction(F);
 | 
						|
      FPConstantMap.clear();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool doFinalization(Module &M) {
 | 
						|
      // Free memory...
 | 
						|
      delete Mang;
 | 
						|
      TypeNames.clear();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    std::ostream &printType(std::ostream &Out, const Type *Ty, 
 | 
						|
                            bool isSigned = false,
 | 
						|
                            const std::string &VariableName = "",
 | 
						|
                            bool IgnoreName = false);
 | 
						|
    std::ostream &printSimpleType(std::ostream &Out, const Type *Ty, 
 | 
						|
                                     bool isSigned, 
 | 
						|
                                     const std::string &NameSoFar = "");
 | 
						|
 | 
						|
    void printStructReturnPointerFunctionType(std::ostream &Out,
 | 
						|
                                              const PointerType *Ty);
 | 
						|
    
 | 
						|
    void writeOperand(Value *Operand);
 | 
						|
    void writeOperandRaw(Value *Operand);
 | 
						|
    void writeOperandInternal(Value *Operand);
 | 
						|
    void writeOperandWithCast(Value* Operand, unsigned Opcode);
 | 
						|
    void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate);
 | 
						|
    bool writeInstructionCast(const Instruction &I);
 | 
						|
 | 
						|
  private :
 | 
						|
    std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
 | 
						|
 | 
						|
    void lowerIntrinsics(Function &F);
 | 
						|
 | 
						|
    void printModule(Module *M);
 | 
						|
    void printModuleTypes(const TypeSymbolTable &ST);
 | 
						|
    void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
 | 
						|
    void printFloatingPointConstants(Function &F);
 | 
						|
    void printFunctionSignature(const Function *F, bool Prototype);
 | 
						|
 | 
						|
    void printFunction(Function &);
 | 
						|
    void printBasicBlock(BasicBlock *BB);
 | 
						|
    void printLoop(Loop *L);
 | 
						|
 | 
						|
    void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
 | 
						|
    void printConstant(Constant *CPV);
 | 
						|
    void printConstantWithCast(Constant *CPV, unsigned Opcode);
 | 
						|
    bool printConstExprCast(const ConstantExpr *CE);
 | 
						|
    void printConstantArray(ConstantArray *CPA);
 | 
						|
    void printConstantVector(ConstantVector *CP);
 | 
						|
 | 
						|
    // isInlinableInst - Attempt to inline instructions into their uses to build
 | 
						|
    // trees as much as possible.  To do this, we have to consistently decide
 | 
						|
    // what is acceptable to inline, so that variable declarations don't get
 | 
						|
    // printed and an extra copy of the expr is not emitted.
 | 
						|
    //
 | 
						|
    static bool isInlinableInst(const Instruction &I) {
 | 
						|
      // Always inline cmp instructions, even if they are shared by multiple
 | 
						|
      // expressions.  GCC generates horrible code if we don't.
 | 
						|
      if (isa<CmpInst>(I)) 
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Must be an expression, must be used exactly once.  If it is dead, we
 | 
						|
      // emit it inline where it would go.
 | 
						|
      if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
 | 
						|
          isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
 | 
						|
          isa<LoadInst>(I) || isa<VAArgInst>(I))
 | 
						|
        // Don't inline a load across a store or other bad things!
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Must not be used in inline asm
 | 
						|
      if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
 | 
						|
 | 
						|
      // Only inline instruction it if it's use is in the same BB as the inst.
 | 
						|
      return I.getParent() == cast<Instruction>(I.use_back())->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    // isDirectAlloca - Define fixed sized allocas in the entry block as direct
 | 
						|
    // variables which are accessed with the & operator.  This causes GCC to
 | 
						|
    // generate significantly better code than to emit alloca calls directly.
 | 
						|
    //
 | 
						|
    static const AllocaInst *isDirectAlloca(const Value *V) {
 | 
						|
      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
 | 
						|
      if (!AI) return false;
 | 
						|
      if (AI->isArrayAllocation())
 | 
						|
        return 0;   // FIXME: we can also inline fixed size array allocas!
 | 
						|
      if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
 | 
						|
        return 0;
 | 
						|
      return AI;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // isInlineAsm - Check if the instruction is a call to an inline asm chunk
 | 
						|
    static bool isInlineAsm(const Instruction& I) {
 | 
						|
      if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
 | 
						|
        return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Instruction visitation functions
 | 
						|
    friend class InstVisitor<CWriter>;
 | 
						|
 | 
						|
    void visitReturnInst(ReturnInst &I);
 | 
						|
    void visitBranchInst(BranchInst &I);
 | 
						|
    void visitSwitchInst(SwitchInst &I);
 | 
						|
    void visitInvokeInst(InvokeInst &I) {
 | 
						|
      assert(0 && "Lowerinvoke pass didn't work!");
 | 
						|
    }
 | 
						|
 | 
						|
    void visitUnwindInst(UnwindInst &I) {
 | 
						|
      assert(0 && "Lowerinvoke pass didn't work!");
 | 
						|
    }
 | 
						|
    void visitUnreachableInst(UnreachableInst &I);
 | 
						|
 | 
						|
    void visitPHINode(PHINode &I);
 | 
						|
    void visitBinaryOperator(Instruction &I);
 | 
						|
    void visitICmpInst(ICmpInst &I);
 | 
						|
    void visitFCmpInst(FCmpInst &I);
 | 
						|
 | 
						|
    void visitCastInst (CastInst &I);
 | 
						|
    void visitSelectInst(SelectInst &I);
 | 
						|
    void visitCallInst (CallInst &I);
 | 
						|
    void visitInlineAsm(CallInst &I);
 | 
						|
 | 
						|
    void visitMallocInst(MallocInst &I);
 | 
						|
    void visitAllocaInst(AllocaInst &I);
 | 
						|
    void visitFreeInst  (FreeInst   &I);
 | 
						|
    void visitLoadInst  (LoadInst   &I);
 | 
						|
    void visitStoreInst (StoreInst  &I);
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &I);
 | 
						|
    void visitVAArgInst (VAArgInst &I);
 | 
						|
 | 
						|
    void visitInstruction(Instruction &I) {
 | 
						|
      cerr << "C Writer does not know about " << I;
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
 | 
						|
    void outputLValue(Instruction *I) {
 | 
						|
      Out << "  " << GetValueName(I) << " = ";
 | 
						|
    }
 | 
						|
 | 
						|
    bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
 | 
						|
    void printPHICopiesForSuccessor(BasicBlock *CurBlock,
 | 
						|
                                    BasicBlock *Successor, unsigned Indent);
 | 
						|
    void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
 | 
						|
                            unsigned Indent);
 | 
						|
    void printIndexingExpression(Value *Ptr, gep_type_iterator I,
 | 
						|
                                 gep_type_iterator E);
 | 
						|
 | 
						|
    std::string GetValueName(const Value *Operand);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
const int CWriter::ID = 0;
 | 
						|
 | 
						|
/// This method inserts names for any unnamed structure types that are used by
 | 
						|
/// the program, and removes names from structure types that are not used by the
 | 
						|
/// program.
 | 
						|
///
 | 
						|
bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
 | 
						|
  // Get a set of types that are used by the program...
 | 
						|
  std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
 | 
						|
 | 
						|
  // Loop over the module symbol table, removing types from UT that are
 | 
						|
  // already named, and removing names for types that are not used.
 | 
						|
  //
 | 
						|
  TypeSymbolTable &TST = M.getTypeSymbolTable();
 | 
						|
  for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
 | 
						|
       TI != TE; ) {
 | 
						|
    TypeSymbolTable::iterator I = TI++;
 | 
						|
    
 | 
						|
    // If this isn't a struct type, remove it from our set of types to name.
 | 
						|
    // This simplifies emission later.
 | 
						|
    if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
 | 
						|
      TST.remove(I);
 | 
						|
    } else {
 | 
						|
      // If this is not used, remove it from the symbol table.
 | 
						|
      std::set<const Type *>::iterator UTI = UT.find(I->second);
 | 
						|
      if (UTI == UT.end())
 | 
						|
        TST.remove(I);
 | 
						|
      else
 | 
						|
        UT.erase(UTI);    // Only keep one name for this type.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // UT now contains types that are not named.  Loop over it, naming
 | 
						|
  // structure types.
 | 
						|
  //
 | 
						|
  bool Changed = false;
 | 
						|
  unsigned RenameCounter = 0;
 | 
						|
  for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (const StructType *ST = dyn_cast<StructType>(*I)) {
 | 
						|
      while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
 | 
						|
        ++RenameCounter;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
      
 | 
						|
      
 | 
						|
  // Loop over all external functions and globals.  If we have two with
 | 
						|
  // identical names, merge them.
 | 
						|
  // FIXME: This code should disappear when we don't allow values with the same
 | 
						|
  // names when they have different types!
 | 
						|
  std::map<std::string, GlobalValue*> ExtSymbols;
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
 | 
						|
    Function *GV = I++;
 | 
						|
    if (GV->isDeclaration() && GV->hasName()) {
 | 
						|
      std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
 | 
						|
        = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
 | 
						|
      if (!X.second) {
 | 
						|
        // Found a conflict, replace this global with the previous one.
 | 
						|
        GlobalValue *OldGV = X.first->second;
 | 
						|
        GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
 | 
						|
        GV->eraseFromParent();
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Do the same for globals.
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
       I != E;) {
 | 
						|
    GlobalVariable *GV = I++;
 | 
						|
    if (GV->isDeclaration() && GV->hasName()) {
 | 
						|
      std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
 | 
						|
        = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
 | 
						|
      if (!X.second) {
 | 
						|
        // Found a conflict, replace this global with the previous one.
 | 
						|
        GlobalValue *OldGV = X.first->second;
 | 
						|
        GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
 | 
						|
        GV->eraseFromParent();
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// printStructReturnPointerFunctionType - This is like printType for a struct
 | 
						|
/// return type, except, instead of printing the type as void (*)(Struct*, ...)
 | 
						|
/// print it as "Struct (*)(...)", for struct return functions.
 | 
						|
void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
 | 
						|
                                                   const PointerType *TheTy) {
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
 | 
						|
  std::stringstream FunctionInnards;
 | 
						|
  FunctionInnards << " (*) (";
 | 
						|
  bool PrintedType = false;
 | 
						|
 | 
						|
  FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
 | 
						|
  const Type *RetTy = cast<PointerType>(I->get())->getElementType();
 | 
						|
  unsigned Idx = 1;
 | 
						|
  const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | 
						|
  for (++I; I != E; ++I) {
 | 
						|
    if (PrintedType)
 | 
						|
      FunctionInnards << ", ";
 | 
						|
    printType(FunctionInnards, *I, 
 | 
						|
        /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
 | 
						|
    PrintedType = true;
 | 
						|
  }
 | 
						|
  if (FTy->isVarArg()) {
 | 
						|
    if (PrintedType)
 | 
						|
      FunctionInnards << ", ...";
 | 
						|
  } else if (!PrintedType) {
 | 
						|
    FunctionInnards << "void";
 | 
						|
  }
 | 
						|
  FunctionInnards << ')';
 | 
						|
  std::string tstr = FunctionInnards.str();
 | 
						|
  printType(Out, RetTy, 
 | 
						|
      /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
 | 
						|
}
 | 
						|
 | 
						|
std::ostream &
 | 
						|
CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
 | 
						|
                            const std::string &NameSoFar) {
 | 
						|
  assert((Ty->isPrimitiveType() || Ty->isInteger()) && 
 | 
						|
         "Invalid type for printSimpleType");
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::VoidTyID:   return Out << "void " << NameSoFar;
 | 
						|
  case Type::IntegerTyID: {
 | 
						|
    unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
    if (NumBits == 1) 
 | 
						|
      return Out << "bool " << NameSoFar;
 | 
						|
    else if (NumBits <= 8)
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
 | 
						|
    else if (NumBits <= 16)
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
 | 
						|
    else if (NumBits <= 32)
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
 | 
						|
    else { 
 | 
						|
      assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
 | 
						|
      return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case Type::FloatTyID:  return Out << "float "   << NameSoFar;
 | 
						|
  case Type::DoubleTyID: return Out << "double "  << NameSoFar;
 | 
						|
  default :
 | 
						|
    cerr << "Unknown primitive type: " << *Ty << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Pass the Type* and the variable name and this prints out the variable
 | 
						|
// declaration.
 | 
						|
//
 | 
						|
std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
 | 
						|
                                 bool isSigned, const std::string &NameSoFar,
 | 
						|
                                 bool IgnoreName) {
 | 
						|
  if (Ty->isPrimitiveType() || Ty->isInteger()) {
 | 
						|
    printSimpleType(Out, Ty, isSigned, NameSoFar);
 | 
						|
    return Out;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if the type is named.
 | 
						|
  if (!IgnoreName || isa<OpaqueType>(Ty)) {
 | 
						|
    std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | 
						|
    if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const FunctionType *FTy = cast<FunctionType>(Ty);
 | 
						|
    std::stringstream FunctionInnards;
 | 
						|
    FunctionInnards << " (" << NameSoFar << ") (";
 | 
						|
    const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | 
						|
    unsigned Idx = 1;
 | 
						|
    for (FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
           E = FTy->param_end(); I != E; ++I) {
 | 
						|
      if (I != FTy->param_begin())
 | 
						|
        FunctionInnards << ", ";
 | 
						|
      printType(FunctionInnards, *I, 
 | 
						|
         /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (FTy->getNumParams())
 | 
						|
        FunctionInnards << ", ...";
 | 
						|
    } else if (!FTy->getNumParams()) {
 | 
						|
      FunctionInnards << "void";
 | 
						|
    }
 | 
						|
    FunctionInnards << ')';
 | 
						|
    std::string tstr = FunctionInnards.str();
 | 
						|
    printType(Out, FTy->getReturnType(), 
 | 
						|
        /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
 | 
						|
    return Out;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *STy = cast<StructType>(Ty);
 | 
						|
    Out << NameSoFar + " {\n";
 | 
						|
    unsigned Idx = 0;
 | 
						|
    for (StructType::element_iterator I = STy->element_begin(),
 | 
						|
           E = STy->element_end(); I != E; ++I) {
 | 
						|
      Out << "  ";
 | 
						|
      printType(Out, *I, false, "field" + utostr(Idx++));
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
    return Out << '}';
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    const PointerType *PTy = cast<PointerType>(Ty);
 | 
						|
    std::string ptrName = "*" + NameSoFar;
 | 
						|
 | 
						|
    if (isa<ArrayType>(PTy->getElementType()) ||
 | 
						|
        isa<VectorType>(PTy->getElementType()))
 | 
						|
      ptrName = "(" + ptrName + ")";
 | 
						|
 | 
						|
    return printType(Out, PTy->getElementType(), false, ptrName);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *ATy = cast<ArrayType>(Ty);
 | 
						|
    unsigned NumElements = ATy->getNumElements();
 | 
						|
    if (NumElements == 0) NumElements = 1;
 | 
						|
    return printType(Out, ATy->getElementType(), false,
 | 
						|
                     NameSoFar + "[" + utostr(NumElements) + "]");
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::VectorTyID: {
 | 
						|
    const VectorType *PTy = cast<VectorType>(Ty);
 | 
						|
    unsigned NumElements = PTy->getNumElements();
 | 
						|
    if (NumElements == 0) NumElements = 1;
 | 
						|
    return printType(Out, PTy->getElementType(), false,
 | 
						|
                     NameSoFar + "[" + utostr(NumElements) + "]");
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::OpaqueTyID: {
 | 
						|
    static int Count = 0;
 | 
						|
    std::string TyName = "struct opaque_" + itostr(Count++);
 | 
						|
    assert(TypeNames.find(Ty) == TypeNames.end());
 | 
						|
    TypeNames[Ty] = TyName;
 | 
						|
    return Out << TyName << ' ' << NameSoFar;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    assert(0 && "Unhandled case in getTypeProps!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printConstantArray(ConstantArray *CPA) {
 | 
						|
 | 
						|
  // As a special case, print the array as a string if it is an array of
 | 
						|
  // ubytes or an array of sbytes with positive values.
 | 
						|
  //
 | 
						|
  const Type *ETy = CPA->getType()->getElementType();
 | 
						|
  bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
 | 
						|
 | 
						|
  // Make sure the last character is a null char, as automatically added by C
 | 
						|
  if (isString && (CPA->getNumOperands() == 0 ||
 | 
						|
                   !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
 | 
						|
    isString = false;
 | 
						|
 | 
						|
  if (isString) {
 | 
						|
    Out << '\"';
 | 
						|
    // Keep track of whether the last number was a hexadecimal escape
 | 
						|
    bool LastWasHex = false;
 | 
						|
 | 
						|
    // Do not include the last character, which we know is null
 | 
						|
    for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
 | 
						|
      unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
 | 
						|
 | 
						|
      // Print it out literally if it is a printable character.  The only thing
 | 
						|
      // to be careful about is when the last letter output was a hex escape
 | 
						|
      // code, in which case we have to be careful not to print out hex digits
 | 
						|
      // explicitly (the C compiler thinks it is a continuation of the previous
 | 
						|
      // character, sheesh...)
 | 
						|
      //
 | 
						|
      if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
 | 
						|
        LastWasHex = false;
 | 
						|
        if (C == '"' || C == '\\')
 | 
						|
          Out << "\\" << C;
 | 
						|
        else
 | 
						|
          Out << C;
 | 
						|
      } else {
 | 
						|
        LastWasHex = false;
 | 
						|
        switch (C) {
 | 
						|
        case '\n': Out << "\\n"; break;
 | 
						|
        case '\t': Out << "\\t"; break;
 | 
						|
        case '\r': Out << "\\r"; break;
 | 
						|
        case '\v': Out << "\\v"; break;
 | 
						|
        case '\a': Out << "\\a"; break;
 | 
						|
        case '\"': Out << "\\\""; break;
 | 
						|
        case '\'': Out << "\\\'"; break;
 | 
						|
        default:
 | 
						|
          Out << "\\x";
 | 
						|
          Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
 | 
						|
          Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | 
						|
          LastWasHex = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Out << '\"';
 | 
						|
  } else {
 | 
						|
    Out << '{';
 | 
						|
    if (CPA->getNumOperands()) {
 | 
						|
      Out << ' ';
 | 
						|
      printConstant(cast<Constant>(CPA->getOperand(0)));
 | 
						|
      for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
 | 
						|
        Out << ", ";
 | 
						|
        printConstant(cast<Constant>(CPA->getOperand(i)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Out << " }";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printConstantVector(ConstantVector *CP) {
 | 
						|
  Out << '{';
 | 
						|
  if (CP->getNumOperands()) {
 | 
						|
    Out << ' ';
 | 
						|
    printConstant(cast<Constant>(CP->getOperand(0)));
 | 
						|
    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
 | 
						|
      Out << ", ";
 | 
						|
      printConstant(cast<Constant>(CP->getOperand(i)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << " }";
 | 
						|
}
 | 
						|
 | 
						|
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
 | 
						|
// textually as a double (rather than as a reference to a stack-allocated
 | 
						|
// variable). We decide this by converting CFP to a string and back into a
 | 
						|
// double, and then checking whether the conversion results in a bit-equal
 | 
						|
// double to the original value of CFP. This depends on us and the target C
 | 
						|
// compiler agreeing on the conversion process (which is pretty likely since we
 | 
						|
// only deal in IEEE FP).
 | 
						|
//
 | 
						|
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
 | 
						|
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
 | 
						|
  char Buffer[100];
 | 
						|
  sprintf(Buffer, "%a", CFP->getValue());
 | 
						|
 | 
						|
  if (!strncmp(Buffer, "0x", 2) ||
 | 
						|
      !strncmp(Buffer, "-0x", 3) ||
 | 
						|
      !strncmp(Buffer, "+0x", 3))
 | 
						|
    return atof(Buffer) == CFP->getValue();
 | 
						|
  return false;
 | 
						|
#else
 | 
						|
  std::string StrVal = ftostr(CFP->getValue());
 | 
						|
 | 
						|
  while (StrVal[0] == ' ')
 | 
						|
    StrVal.erase(StrVal.begin());
 | 
						|
 | 
						|
  // Check to make sure that the stringized number is not some string like "Inf"
 | 
						|
  // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
 | 
						|
  if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | 
						|
      ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | 
						|
       (StrVal[1] >= '0' && StrVal[1] <= '9')))
 | 
						|
    // Reparse stringized version!
 | 
						|
    return atof(StrVal.c_str()) == CFP->getValue();
 | 
						|
  return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// Print out the casting for a cast operation. This does the double casting
 | 
						|
/// necessary for conversion to the destination type, if necessary. 
 | 
						|
/// @brief Print a cast
 | 
						|
void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
 | 
						|
  // Print the destination type cast
 | 
						|
  switch (opc) {
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
 | 
						|
      Out << '(';
 | 
						|
      printType(Out, DstTy);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::FPToUI: // For these, make sure we get an unsigned dest
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, DstTy, false);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::SExt: 
 | 
						|
    case Instruction::FPToSI: // For these, make sure we get a signed dest
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, DstTy, true);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Invalid cast opcode");
 | 
						|
  }
 | 
						|
 | 
						|
  // Print the source type cast
 | 
						|
  switch (opc) {
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::ZExt:
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, SrcTy, false);
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::SExt:
 | 
						|
      Out << '(';
 | 
						|
      printSimpleType(Out, SrcTy, true); 
 | 
						|
      Out << ')';
 | 
						|
      break;
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
      // Avoid "cast to pointer from integer of different size" warnings
 | 
						|
      Out << "(unsigned long)";
 | 
						|
      break;
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::BitCast:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
      break; // These don't need a source cast.
 | 
						|
    default:
 | 
						|
      assert(0 && "Invalid cast opcode");
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// printConstant - The LLVM Constant to C Constant converter.
 | 
						|
void CWriter::printConstant(Constant *CPV) {
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::BitCast:
 | 
						|
      Out << "(";
 | 
						|
      printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
 | 
						|
      if (CE->getOpcode() == Instruction::SExt &&
 | 
						|
          CE->getOperand(0)->getType() == Type::Int1Ty) {
 | 
						|
        // Make sure we really sext from bool here by subtracting from 0
 | 
						|
        Out << "0-";
 | 
						|
      }
 | 
						|
      printConstant(CE->getOperand(0));
 | 
						|
      if (CE->getType() == Type::Int1Ty &&
 | 
						|
          (CE->getOpcode() == Instruction::Trunc ||
 | 
						|
           CE->getOpcode() == Instruction::FPToUI ||
 | 
						|
           CE->getOpcode() == Instruction::FPToSI ||
 | 
						|
           CE->getOpcode() == Instruction::PtrToInt)) {
 | 
						|
        // Make sure we really truncate to bool here by anding with 1
 | 
						|
        Out << "&1u";
 | 
						|
      }
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      Out << "(&(";
 | 
						|
      printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
 | 
						|
                              gep_type_end(CPV));
 | 
						|
      Out << "))";
 | 
						|
      return;
 | 
						|
    case Instruction::Select:
 | 
						|
      Out << '(';
 | 
						|
      printConstant(CE->getOperand(0));
 | 
						|
      Out << '?';
 | 
						|
      printConstant(CE->getOperand(1));
 | 
						|
      Out << ':';
 | 
						|
      printConstant(CE->getOperand(2));
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    {
 | 
						|
      Out << '(';
 | 
						|
      bool NeedsClosingParens = printConstExprCast(CE); 
 | 
						|
      printConstantWithCast(CE->getOperand(0), CE->getOpcode());
 | 
						|
      switch (CE->getOpcode()) {
 | 
						|
      case Instruction::Add: Out << " + "; break;
 | 
						|
      case Instruction::Sub: Out << " - "; break;
 | 
						|
      case Instruction::Mul: Out << " * "; break;
 | 
						|
      case Instruction::URem:
 | 
						|
      case Instruction::SRem: 
 | 
						|
      case Instruction::FRem: Out << " % "; break;
 | 
						|
      case Instruction::UDiv: 
 | 
						|
      case Instruction::SDiv: 
 | 
						|
      case Instruction::FDiv: Out << " / "; break;
 | 
						|
      case Instruction::And: Out << " & "; break;
 | 
						|
      case Instruction::Or:  Out << " | "; break;
 | 
						|
      case Instruction::Xor: Out << " ^ "; break;
 | 
						|
      case Instruction::Shl: Out << " << "; break;
 | 
						|
      case Instruction::LShr:
 | 
						|
      case Instruction::AShr: Out << " >> "; break;
 | 
						|
      case Instruction::ICmp:
 | 
						|
        switch (CE->getPredicate()) {
 | 
						|
          case ICmpInst::ICMP_EQ: Out << " == "; break;
 | 
						|
          case ICmpInst::ICMP_NE: Out << " != "; break;
 | 
						|
          case ICmpInst::ICMP_SLT: 
 | 
						|
          case ICmpInst::ICMP_ULT: Out << " < "; break;
 | 
						|
          case ICmpInst::ICMP_SLE:
 | 
						|
          case ICmpInst::ICMP_ULE: Out << " <= "; break;
 | 
						|
          case ICmpInst::ICMP_SGT:
 | 
						|
          case ICmpInst::ICMP_UGT: Out << " > "; break;
 | 
						|
          case ICmpInst::ICMP_SGE:
 | 
						|
          case ICmpInst::ICMP_UGE: Out << " >= "; break;
 | 
						|
          default: assert(0 && "Illegal ICmp predicate");
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      default: assert(0 && "Illegal opcode here!");
 | 
						|
      }
 | 
						|
      printConstantWithCast(CE->getOperand(1), CE->getOpcode());
 | 
						|
      if (NeedsClosingParens)
 | 
						|
        Out << "))";
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Instruction::FCmp: {
 | 
						|
      Out << '('; 
 | 
						|
      bool NeedsClosingParens = printConstExprCast(CE); 
 | 
						|
      if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
 | 
						|
        Out << "0";
 | 
						|
      else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
 | 
						|
        Out << "1";
 | 
						|
      else {
 | 
						|
        const char* op = 0;
 | 
						|
        switch (CE->getPredicate()) {
 | 
						|
        default: assert(0 && "Illegal FCmp predicate");
 | 
						|
        case FCmpInst::FCMP_ORD: op = "ord"; break;
 | 
						|
        case FCmpInst::FCMP_UNO: op = "uno"; break;
 | 
						|
        case FCmpInst::FCMP_UEQ: op = "ueq"; break;
 | 
						|
        case FCmpInst::FCMP_UNE: op = "une"; break;
 | 
						|
        case FCmpInst::FCMP_ULT: op = "ult"; break;
 | 
						|
        case FCmpInst::FCMP_ULE: op = "ule"; break;
 | 
						|
        case FCmpInst::FCMP_UGT: op = "ugt"; break;
 | 
						|
        case FCmpInst::FCMP_UGE: op = "uge"; break;
 | 
						|
        case FCmpInst::FCMP_OEQ: op = "oeq"; break;
 | 
						|
        case FCmpInst::FCMP_ONE: op = "one"; break;
 | 
						|
        case FCmpInst::FCMP_OLT: op = "olt"; break;
 | 
						|
        case FCmpInst::FCMP_OLE: op = "ole"; break;
 | 
						|
        case FCmpInst::FCMP_OGT: op = "ogt"; break;
 | 
						|
        case FCmpInst::FCMP_OGE: op = "oge"; break;
 | 
						|
        }
 | 
						|
        Out << "llvm_fcmp_" << op << "(";
 | 
						|
        printConstantWithCast(CE->getOperand(0), CE->getOpcode());
 | 
						|
        Out << ", ";
 | 
						|
        printConstantWithCast(CE->getOperand(1), CE->getOpcode());
 | 
						|
        Out << ")";
 | 
						|
      }
 | 
						|
      if (NeedsClosingParens)
 | 
						|
        Out << "))";
 | 
						|
      Out << ')';
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      cerr << "CWriter Error: Unhandled constant expression: "
 | 
						|
           << *CE << "\n";
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
  } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
 | 
						|
    Out << "((";
 | 
						|
    printType(Out, CPV->getType()); // sign doesn't matter
 | 
						|
    Out << ")/*UNDEF*/0)";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
 | 
						|
    const Type* Ty = CI->getType();
 | 
						|
    if (Ty == Type::Int1Ty)
 | 
						|
      Out << (CI->getZExtValue() ? '1' : '0') ;
 | 
						|
    else {
 | 
						|
      Out << "((";
 | 
						|
      printSimpleType(Out, Ty, false) << ')';
 | 
						|
      if (CI->isMinValue(true)) 
 | 
						|
        Out << CI->getZExtValue() << 'u';
 | 
						|
      else
 | 
						|
        Out << CI->getSExtValue();
 | 
						|
      if (Ty->getPrimitiveSizeInBits() > 32)
 | 
						|
        Out << "ll";
 | 
						|
      Out << ')';
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  } 
 | 
						|
 | 
						|
  switch (CPV->getType()->getTypeID()) {
 | 
						|
  case Type::FloatTyID:
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    ConstantFP *FPC = cast<ConstantFP>(CPV);
 | 
						|
    std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
 | 
						|
    if (I != FPConstantMap.end()) {
 | 
						|
      // Because of FP precision problems we must load from a stack allocated
 | 
						|
      // value that holds the value in hex.
 | 
						|
      Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
 | 
						|
          << "*)&FPConstant" << I->second << ')';
 | 
						|
    } else {
 | 
						|
      if (IsNAN(FPC->getValue())) {
 | 
						|
        // The value is NaN
 | 
						|
 | 
						|
        // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
 | 
						|
        // it's 0x7ff4.
 | 
						|
        const unsigned long QuietNaN = 0x7ff8UL;
 | 
						|
        //const unsigned long SignalNaN = 0x7ff4UL;
 | 
						|
 | 
						|
        // We need to grab the first part of the FP #
 | 
						|
        char Buffer[100];
 | 
						|
 | 
						|
        uint64_t ll = DoubleToBits(FPC->getValue());
 | 
						|
        sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
 | 
						|
 | 
						|
        std::string Num(&Buffer[0], &Buffer[6]);
 | 
						|
        unsigned long Val = strtoul(Num.c_str(), 0, 16);
 | 
						|
 | 
						|
        if (FPC->getType() == Type::FloatTy)
 | 
						|
          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
 | 
						|
              << Buffer << "\") /*nan*/ ";
 | 
						|
        else
 | 
						|
          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
 | 
						|
              << Buffer << "\") /*nan*/ ";
 | 
						|
      } else if (IsInf(FPC->getValue())) {
 | 
						|
        // The value is Inf
 | 
						|
        if (FPC->getValue() < 0) Out << '-';
 | 
						|
        Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
 | 
						|
            << " /*inf*/ ";
 | 
						|
      } else {
 | 
						|
        std::string Num;
 | 
						|
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
 | 
						|
        // Print out the constant as a floating point number.
 | 
						|
        char Buffer[100];
 | 
						|
        sprintf(Buffer, "%a", FPC->getValue());
 | 
						|
        Num = Buffer;
 | 
						|
#else
 | 
						|
        Num = ftostr(FPC->getValue());
 | 
						|
#endif
 | 
						|
        Out << Num;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ArrayTyID:
 | 
						|
    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
 | 
						|
      const ArrayType *AT = cast<ArrayType>(CPV->getType());
 | 
						|
      Out << '{';
 | 
						|
      if (AT->getNumElements()) {
 | 
						|
        Out << ' ';
 | 
						|
        Constant *CZ = Constant::getNullValue(AT->getElementType());
 | 
						|
        printConstant(CZ);
 | 
						|
        for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printConstant(CZ);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    } else {
 | 
						|
      printConstantArray(cast<ConstantArray>(CPV));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::VectorTyID:
 | 
						|
    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
 | 
						|
      const VectorType *AT = cast<VectorType>(CPV->getType());
 | 
						|
      Out << '{';
 | 
						|
      if (AT->getNumElements()) {
 | 
						|
        Out << ' ';
 | 
						|
        Constant *CZ = Constant::getNullValue(AT->getElementType());
 | 
						|
        printConstant(CZ);
 | 
						|
        for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printConstant(CZ);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    } else {
 | 
						|
      printConstantVector(cast<ConstantVector>(CPV));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::StructTyID:
 | 
						|
    if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
 | 
						|
      const StructType *ST = cast<StructType>(CPV->getType());
 | 
						|
      Out << '{';
 | 
						|
      if (ST->getNumElements()) {
 | 
						|
        Out << ' ';
 | 
						|
        printConstant(Constant::getNullValue(ST->getElementType(0)));
 | 
						|
        for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printConstant(Constant::getNullValue(ST->getElementType(i)));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    } else {
 | 
						|
      Out << '{';
 | 
						|
      if (CPV->getNumOperands()) {
 | 
						|
        Out << ' ';
 | 
						|
        printConstant(cast<Constant>(CPV->getOperand(0)));
 | 
						|
        for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printConstant(cast<Constant>(CPV->getOperand(i)));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " }";
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::PointerTyID:
 | 
						|
    if (isa<ConstantPointerNull>(CPV)) {
 | 
						|
      Out << "((";
 | 
						|
      printType(Out, CPV->getType()); // sign doesn't matter
 | 
						|
      Out << ")/*NULL*/0)";
 | 
						|
      break;
 | 
						|
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
 | 
						|
      writeOperand(GV);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // FALL THROUGH
 | 
						|
  default:
 | 
						|
    cerr << "Unknown constant type: " << *CPV << "\n";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Some constant expressions need to be casted back to the original types
 | 
						|
// because their operands were casted to the expected type. This function takes
 | 
						|
// care of detecting that case and printing the cast for the ConstantExpr.
 | 
						|
bool CWriter::printConstExprCast(const ConstantExpr* CE) {
 | 
						|
  bool NeedsExplicitCast = false;
 | 
						|
  const Type *Ty = CE->getOperand(0)->getType();
 | 
						|
  bool TypeIsSigned = false;
 | 
						|
  switch (CE->getOpcode()) {
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::URem: 
 | 
						|
  case Instruction::UDiv: NeedsExplicitCast = true; break;
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::SRem: 
 | 
						|
  case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
 | 
						|
  case Instruction::SExt:
 | 
						|
    Ty = CE->getType();
 | 
						|
    NeedsExplicitCast = true;
 | 
						|
    TypeIsSigned = true;
 | 
						|
    break;
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    Ty = CE->getType();
 | 
						|
    NeedsExplicitCast = true;
 | 
						|
    break;
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
  if (NeedsExplicitCast) {
 | 
						|
    Out << "((";
 | 
						|
    if (Ty->isInteger() && Ty != Type::Int1Ty)
 | 
						|
      printSimpleType(Out, Ty, TypeIsSigned);
 | 
						|
    else
 | 
						|
      printType(Out, Ty); // not integer, sign doesn't matter
 | 
						|
    Out << ")(";
 | 
						|
  }
 | 
						|
  return NeedsExplicitCast;
 | 
						|
}
 | 
						|
 | 
						|
//  Print a constant assuming that it is the operand for a given Opcode. The
 | 
						|
//  opcodes that care about sign need to cast their operands to the expected
 | 
						|
//  type before the operation proceeds. This function does the casting.
 | 
						|
void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
 | 
						|
 | 
						|
  // Extract the operand's type, we'll need it.
 | 
						|
  const Type* OpTy = CPV->getType();
 | 
						|
 | 
						|
  // Indicate whether to do the cast or not.
 | 
						|
  bool shouldCast = false;
 | 
						|
  bool typeIsSigned = false;
 | 
						|
 | 
						|
  // Based on the Opcode for which this Constant is being written, determine
 | 
						|
  // the new type to which the operand should be casted by setting the value
 | 
						|
  // of OpTy. If we change OpTy, also set shouldCast to true so it gets
 | 
						|
  // casted below.
 | 
						|
  switch (Opcode) {
 | 
						|
    default:
 | 
						|
      // for most instructions, it doesn't matter
 | 
						|
      break; 
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
      shouldCast = true;
 | 
						|
      break;
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::SRem:
 | 
						|
      shouldCast = true;
 | 
						|
      typeIsSigned = true;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Write out the casted constant if we should, otherwise just write the
 | 
						|
  // operand.
 | 
						|
  if (shouldCast) {
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, OpTy, typeIsSigned);
 | 
						|
    Out << ")";
 | 
						|
    printConstant(CPV);
 | 
						|
    Out << ")";
 | 
						|
  } else 
 | 
						|
    printConstant(CPV);
 | 
						|
}
 | 
						|
 | 
						|
std::string CWriter::GetValueName(const Value *Operand) {
 | 
						|
  std::string Name;
 | 
						|
 | 
						|
  if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
 | 
						|
    std::string VarName;
 | 
						|
 | 
						|
    Name = Operand->getName();
 | 
						|
    VarName.reserve(Name.capacity());
 | 
						|
 | 
						|
    for (std::string::iterator I = Name.begin(), E = Name.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      char ch = *I;
 | 
						|
 | 
						|
      if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
 | 
						|
            (ch >= '0' && ch <= '9') || ch == '_'))
 | 
						|
        VarName += '_';
 | 
						|
      else
 | 
						|
        VarName += ch;
 | 
						|
    }
 | 
						|
 | 
						|
    Name = "llvm_cbe_" + VarName;
 | 
						|
  } else {
 | 
						|
    Name = Mang->getValueName(Operand);
 | 
						|
  }
 | 
						|
 | 
						|
  return Name;
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::writeOperandInternal(Value *Operand) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Operand))
 | 
						|
    if (isInlinableInst(*I) && !isDirectAlloca(I)) {
 | 
						|
      // Should we inline this instruction to build a tree?
 | 
						|
      Out << '(';
 | 
						|
      visit(*I);
 | 
						|
      Out << ')';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  Constant* CPV = dyn_cast<Constant>(Operand);
 | 
						|
 | 
						|
  if (CPV && !isa<GlobalValue>(CPV))
 | 
						|
    printConstant(CPV);
 | 
						|
  else
 | 
						|
    Out << GetValueName(Operand);
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::writeOperandRaw(Value *Operand) {
 | 
						|
  Constant* CPV = dyn_cast<Constant>(Operand);
 | 
						|
  if (CPV && !isa<GlobalValue>(CPV)) {
 | 
						|
    printConstant(CPV);
 | 
						|
  } else {
 | 
						|
    Out << GetValueName(Operand);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::writeOperand(Value *Operand) {
 | 
						|
  if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
 | 
						|
    Out << "(&";  // Global variables are referenced as their addresses by llvm
 | 
						|
 | 
						|
  writeOperandInternal(Operand);
 | 
						|
 | 
						|
  if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
 | 
						|
    Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
// Some instructions need to have their result value casted back to the 
 | 
						|
// original types because their operands were casted to the expected type. 
 | 
						|
// This function takes care of detecting that case and printing the cast 
 | 
						|
// for the Instruction.
 | 
						|
bool CWriter::writeInstructionCast(const Instruction &I) {
 | 
						|
  const Type *Ty = I.getOperand(0)->getType();
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::URem: 
 | 
						|
  case Instruction::UDiv: 
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, Ty, false);
 | 
						|
    Out << ")(";
 | 
						|
    return true;
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::SRem: 
 | 
						|
  case Instruction::SDiv: 
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, Ty, true);
 | 
						|
    Out << ")(";
 | 
						|
    return true;
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Write the operand with a cast to another type based on the Opcode being used.
 | 
						|
// This will be used in cases where an instruction has specific type
 | 
						|
// requirements (usually signedness) for its operands. 
 | 
						|
void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
 | 
						|
 | 
						|
  // Extract the operand's type, we'll need it.
 | 
						|
  const Type* OpTy = Operand->getType();
 | 
						|
 | 
						|
  // Indicate whether to do the cast or not.
 | 
						|
  bool shouldCast = false;
 | 
						|
 | 
						|
  // Indicate whether the cast should be to a signed type or not.
 | 
						|
  bool castIsSigned = false;
 | 
						|
 | 
						|
  // Based on the Opcode for which this Operand is being written, determine
 | 
						|
  // the new type to which the operand should be casted by setting the value
 | 
						|
  // of OpTy. If we change OpTy, also set shouldCast to true.
 | 
						|
  switch (Opcode) {
 | 
						|
    default:
 | 
						|
      // for most instructions, it doesn't matter
 | 
						|
      break; 
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::URem: // Cast to unsigned first
 | 
						|
      shouldCast = true;
 | 
						|
      castIsSigned = false;
 | 
						|
      break;
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::SRem: // Cast to signed first
 | 
						|
      shouldCast = true;
 | 
						|
      castIsSigned = true;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Write out the casted operand if we should, otherwise just write the
 | 
						|
  // operand.
 | 
						|
  if (shouldCast) {
 | 
						|
    Out << "((";
 | 
						|
    printSimpleType(Out, OpTy, castIsSigned);
 | 
						|
    Out << ")";
 | 
						|
    writeOperand(Operand);
 | 
						|
    Out << ")";
 | 
						|
  } else 
 | 
						|
    writeOperand(Operand);
 | 
						|
}
 | 
						|
 | 
						|
// Write the operand with a cast to another type based on the icmp predicate 
 | 
						|
// being used. 
 | 
						|
void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) {
 | 
						|
 | 
						|
  // Extract the operand's type, we'll need it.
 | 
						|
  const Type* OpTy = Operand->getType();
 | 
						|
 | 
						|
  // Indicate whether to do the cast or not.
 | 
						|
  bool shouldCast = false;
 | 
						|
 | 
						|
  // Indicate whether the cast should be to a signed type or not.
 | 
						|
  bool castIsSigned = false;
 | 
						|
 | 
						|
  // Based on the Opcode for which this Operand is being written, determine
 | 
						|
  // the new type to which the operand should be casted by setting the value
 | 
						|
  // of OpTy. If we change OpTy, also set shouldCast to true.
 | 
						|
  switch (predicate) {
 | 
						|
    default:
 | 
						|
      // for eq and ne, it doesn't matter
 | 
						|
      break; 
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
    case ICmpInst::ICMP_ULT:
 | 
						|
    case ICmpInst::ICMP_ULE:
 | 
						|
      shouldCast = true;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
    case ICmpInst::ICMP_SGE:
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
    case ICmpInst::ICMP_SLE:
 | 
						|
      shouldCast = true;
 | 
						|
      castIsSigned = true;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Write out the casted operand if we should, otherwise just write the
 | 
						|
  // operand.
 | 
						|
  if (shouldCast) {
 | 
						|
    Out << "((";
 | 
						|
    if (OpTy->isInteger() && OpTy != Type::Int1Ty)
 | 
						|
      printSimpleType(Out, OpTy, castIsSigned);
 | 
						|
    else
 | 
						|
      printType(Out, OpTy); // not integer, sign doesn't matter
 | 
						|
    Out << ")";
 | 
						|
    writeOperand(Operand);
 | 
						|
    Out << ")";
 | 
						|
  } else 
 | 
						|
    writeOperand(Operand);
 | 
						|
}
 | 
						|
 | 
						|
// generateCompilerSpecificCode - This is where we add conditional compilation
 | 
						|
// directives to cater to specific compilers as need be.
 | 
						|
//
 | 
						|
static void generateCompilerSpecificCode(std::ostream& Out) {
 | 
						|
  // Alloca is hard to get, and we don't want to include stdlib.h here.
 | 
						|
  Out << "/* get a declaration for alloca */\n"
 | 
						|
      << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
 | 
						|
      << "#define  alloca(x) __builtin_alloca((x))\n"
 | 
						|
      << "#define _alloca(x) __builtin_alloca((x))\n"    
 | 
						|
      << "#elif defined(__APPLE__)\n"
 | 
						|
      << "extern void *__builtin_alloca(unsigned long);\n"
 | 
						|
      << "#define alloca(x) __builtin_alloca(x)\n"
 | 
						|
      << "#define longjmp _longjmp\n"
 | 
						|
      << "#define setjmp _setjmp\n"
 | 
						|
      << "#elif defined(__sun__)\n"
 | 
						|
      << "#if defined(__sparcv9)\n"
 | 
						|
      << "extern void *__builtin_alloca(unsigned long);\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "extern void *__builtin_alloca(unsigned int);\n"
 | 
						|
      << "#endif\n"
 | 
						|
      << "#define alloca(x) __builtin_alloca(x)\n"
 | 
						|
      << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
 | 
						|
      << "#define alloca(x) __builtin_alloca(x)\n"
 | 
						|
      << "#elif defined(_MSC_VER)\n"
 | 
						|
      << "#define inline _inline\n"
 | 
						|
      << "#define alloca(x) _alloca(x)\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#include <alloca.h>\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // We output GCC specific attributes to preserve 'linkonce'ness on globals.
 | 
						|
  // If we aren't being compiled with GCC, just drop these attributes.
 | 
						|
  Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
 | 
						|
      << "#define __attribute__(X)\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
 | 
						|
  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
 | 
						|
      << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
 | 
						|
      << "#elif defined(__GNUC__)\n"
 | 
						|
      << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#define __EXTERNAL_WEAK__\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
 | 
						|
  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
 | 
						|
      << "#define __ATTRIBUTE_WEAK__\n"
 | 
						|
      << "#elif defined(__GNUC__)\n"
 | 
						|
      << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#define __ATTRIBUTE_WEAK__\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // Add hidden visibility support. FIXME: APPLE_CC?
 | 
						|
  Out << "#if defined(__GNUC__)\n"
 | 
						|
      << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
    
 | 
						|
  // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
 | 
						|
  // From the GCC documentation:
 | 
						|
  //
 | 
						|
  //   double __builtin_nan (const char *str)
 | 
						|
  //
 | 
						|
  // This is an implementation of the ISO C99 function nan.
 | 
						|
  //
 | 
						|
  // Since ISO C99 defines this function in terms of strtod, which we do
 | 
						|
  // not implement, a description of the parsing is in order. The string is
 | 
						|
  // parsed as by strtol; that is, the base is recognized by leading 0 or
 | 
						|
  // 0x prefixes. The number parsed is placed in the significand such that
 | 
						|
  // the least significant bit of the number is at the least significant
 | 
						|
  // bit of the significand. The number is truncated to fit the significand
 | 
						|
  // field provided. The significand is forced to be a quiet NaN.
 | 
						|
  //
 | 
						|
  // This function, if given a string literal, is evaluated early enough
 | 
						|
  // that it is considered a compile-time constant.
 | 
						|
  //
 | 
						|
  //   float __builtin_nanf (const char *str)
 | 
						|
  //
 | 
						|
  // Similar to __builtin_nan, except the return type is float.
 | 
						|
  //
 | 
						|
  //   double __builtin_inf (void)
 | 
						|
  //
 | 
						|
  // Similar to __builtin_huge_val, except a warning is generated if the
 | 
						|
  // target floating-point format does not support infinities. This
 | 
						|
  // function is suitable for implementing the ISO C99 macro INFINITY.
 | 
						|
  //
 | 
						|
  //   float __builtin_inff (void)
 | 
						|
  //
 | 
						|
  // Similar to __builtin_inf, except the return type is float.
 | 
						|
  Out << "#ifdef __GNUC__\n"
 | 
						|
      << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
 | 
						|
      << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
 | 
						|
      << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
 | 
						|
      << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
 | 
						|
      << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
 | 
						|
      << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
 | 
						|
      << "#define LLVM_PREFETCH(addr,rw,locality) "
 | 
						|
                              "__builtin_prefetch(addr,rw,locality)\n"
 | 
						|
      << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
 | 
						|
      << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
 | 
						|
      << "#define LLVM_ASM           __asm__\n"
 | 
						|
      << "#else\n"
 | 
						|
      << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
 | 
						|
      << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
 | 
						|
      << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
 | 
						|
      << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
 | 
						|
      << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
 | 
						|
      << "#define LLVM_INFF          0.0F                    /* Float */\n"
 | 
						|
      << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n"
 | 
						|
      << "#define __ATTRIBUTE_CTOR__\n"
 | 
						|
      << "#define __ATTRIBUTE_DTOR__\n"
 | 
						|
      << "#define LLVM_ASM(X)\n"
 | 
						|
      << "#endif\n\n";
 | 
						|
 | 
						|
  // Output target-specific code that should be inserted into main.
 | 
						|
  Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
 | 
						|
  // On X86, set the FP control word to 64-bits of precision instead of 80 bits.
 | 
						|
  Out << "#if defined(__GNUC__) && !defined(__llvm__)\n"
 | 
						|
      << "#if defined(i386) || defined(__i386__) || defined(__i386) || "
 | 
						|
      << "defined(__x86_64__)\n"
 | 
						|
      << "#undef CODE_FOR_MAIN\n"
 | 
						|
      << "#define CODE_FOR_MAIN() \\\n"
 | 
						|
      << "  {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n"
 | 
						|
      << "  F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n"
 | 
						|
      << "#endif\n#endif\n";
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
 | 
						|
/// the StaticTors set.
 | 
						|
static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
 | 
						|
  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | 
						|
  if (!InitList) return;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | 
						|
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
 | 
						|
      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
 | 
						|
      
 | 
						|
      if (CS->getOperand(1)->isNullValue())
 | 
						|
        return;  // Found a null terminator, exit printing.
 | 
						|
      Constant *FP = CS->getOperand(1);
 | 
						|
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | 
						|
        if (CE->isCast())
 | 
						|
          FP = CE->getOperand(0);
 | 
						|
      if (Function *F = dyn_cast<Function>(FP))
 | 
						|
        StaticTors.insert(F);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
enum SpecialGlobalClass {
 | 
						|
  NotSpecial = 0,
 | 
						|
  GlobalCtors, GlobalDtors,
 | 
						|
  NotPrinted
 | 
						|
};
 | 
						|
 | 
						|
/// getGlobalVariableClass - If this is a global that is specially recognized
 | 
						|
/// by LLVM, return a code that indicates how we should handle it.
 | 
						|
static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
 | 
						|
  // If this is a global ctors/dtors list, handle it now.
 | 
						|
  if (GV->hasAppendingLinkage() && GV->use_empty()) {
 | 
						|
    if (GV->getName() == "llvm.global_ctors")
 | 
						|
      return GlobalCtors;
 | 
						|
    else if (GV->getName() == "llvm.global_dtors")
 | 
						|
      return GlobalDtors;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, it it is other metadata, don't print it.  This catches things
 | 
						|
  // like debug information.
 | 
						|
  if (GV->getSection() == "llvm.metadata")
 | 
						|
    return NotPrinted;
 | 
						|
  
 | 
						|
  return NotSpecial;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool CWriter::doInitialization(Module &M) {
 | 
						|
  // Initialize
 | 
						|
  TheModule = &M;
 | 
						|
 | 
						|
  TD = new TargetData(&M);
 | 
						|
  IL = new IntrinsicLowering(*TD);
 | 
						|
  IL->AddPrototypes(M);
 | 
						|
 | 
						|
  // Ensure that all structure types have names...
 | 
						|
  Mang = new Mangler(M);
 | 
						|
  Mang->markCharUnacceptable('.');
 | 
						|
 | 
						|
  // Keep track of which functions are static ctors/dtors so they can have
 | 
						|
  // an attribute added to their prototypes.
 | 
						|
  std::set<Function*> StaticCtors, StaticDtors;
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    switch (getGlobalVariableClass(I)) {
 | 
						|
    default: break;
 | 
						|
    case GlobalCtors:
 | 
						|
      FindStaticTors(I, StaticCtors);
 | 
						|
      break;
 | 
						|
    case GlobalDtors:
 | 
						|
      FindStaticTors(I, StaticDtors);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // get declaration for alloca
 | 
						|
  Out << "/* Provide Declarations */\n";
 | 
						|
  Out << "#include <stdarg.h>\n";      // Varargs support
 | 
						|
  Out << "#include <setjmp.h>\n";      // Unwind support
 | 
						|
  generateCompilerSpecificCode(Out);
 | 
						|
 | 
						|
  // Provide a definition for `bool' if not compiling with a C++ compiler.
 | 
						|
  Out << "\n"
 | 
						|
      << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
 | 
						|
 | 
						|
      << "\n\n/* Support for floating point constants */\n"
 | 
						|
      << "typedef unsigned long long ConstantDoubleTy;\n"
 | 
						|
      << "typedef unsigned int        ConstantFloatTy;\n"
 | 
						|
 | 
						|
      << "\n\n/* Global Declarations */\n";
 | 
						|
 | 
						|
  // First output all the declarations for the program, because C requires
 | 
						|
  // Functions & globals to be declared before they are used.
 | 
						|
  //
 | 
						|
 | 
						|
  // Loop over the symbol table, emitting all named constants...
 | 
						|
  printModuleTypes(M.getTypeSymbolTable());
 | 
						|
 | 
						|
  // Global variable declarations...
 | 
						|
  if (!M.global_empty()) {
 | 
						|
    Out << "\n/* External Global Variable Declarations */\n";
 | 
						|
    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I) {
 | 
						|
 | 
						|
      if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
 | 
						|
        Out << "extern ";
 | 
						|
      else if (I->hasDLLImportLinkage())
 | 
						|
        Out << "__declspec(dllimport) ";
 | 
						|
      else
 | 
						|
        continue; // Internal Global
 | 
						|
 | 
						|
      // Thread Local Storage
 | 
						|
      if (I->isThreadLocal())
 | 
						|
        Out << "__thread ";
 | 
						|
 | 
						|
      printType(Out, I->getType()->getElementType(), false, GetValueName(I));
 | 
						|
 | 
						|
      if (I->hasExternalWeakLinkage())
 | 
						|
         Out << " __EXTERNAL_WEAK__";
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Function declarations
 | 
						|
  Out << "\n/* Function Declarations */\n";
 | 
						|
  Out << "double fmod(double, double);\n";   // Support for FP rem
 | 
						|
  Out << "float fmodf(float, float);\n";
 | 
						|
  
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | 
						|
    // Don't print declarations for intrinsic functions.
 | 
						|
    if (!I->getIntrinsicID() && I->getName() != "setjmp" && 
 | 
						|
        I->getName() != "longjmp" && I->getName() != "_setjmp") {
 | 
						|
      if (I->hasExternalWeakLinkage())
 | 
						|
        Out << "extern ";
 | 
						|
      printFunctionSignature(I, true);
 | 
						|
      if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) 
 | 
						|
        Out << " __ATTRIBUTE_WEAK__";
 | 
						|
      if (I->hasExternalWeakLinkage())
 | 
						|
        Out << " __EXTERNAL_WEAK__";
 | 
						|
      if (StaticCtors.count(I))
 | 
						|
        Out << " __ATTRIBUTE_CTOR__";
 | 
						|
      if (StaticDtors.count(I))
 | 
						|
        Out << " __ATTRIBUTE_DTOR__";
 | 
						|
      if (I->hasHiddenVisibility())
 | 
						|
        Out << " __HIDDEN__";
 | 
						|
      
 | 
						|
      if (I->hasName() && I->getName()[0] == 1)
 | 
						|
        Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
 | 
						|
          
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Output the global variable declarations
 | 
						|
  if (!M.global_empty()) {
 | 
						|
    Out << "\n\n/* Global Variable Declarations */\n";
 | 
						|
    for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I)
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        // Ignore special globals, such as debug info.
 | 
						|
        if (getGlobalVariableClass(I))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (I->hasInternalLinkage())
 | 
						|
          Out << "static ";
 | 
						|
        else
 | 
						|
          Out << "extern ";
 | 
						|
 | 
						|
        // Thread Local Storage
 | 
						|
        if (I->isThreadLocal())
 | 
						|
          Out << "__thread ";
 | 
						|
 | 
						|
        printType(Out, I->getType()->getElementType(), false, 
 | 
						|
                  GetValueName(I));
 | 
						|
 | 
						|
        if (I->hasLinkOnceLinkage())
 | 
						|
          Out << " __attribute__((common))";
 | 
						|
        else if (I->hasWeakLinkage())
 | 
						|
          Out << " __ATTRIBUTE_WEAK__";
 | 
						|
        else if (I->hasExternalWeakLinkage())
 | 
						|
          Out << " __EXTERNAL_WEAK__";
 | 
						|
        if (I->hasHiddenVisibility())
 | 
						|
          Out << " __HIDDEN__";
 | 
						|
        Out << ";\n";
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Output the global variable definitions and contents...
 | 
						|
  if (!M.global_empty()) {
 | 
						|
    Out << "\n\n/* Global Variable Definitions and Initialization */\n";
 | 
						|
    for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
 | 
						|
         I != E; ++I)
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        // Ignore special globals, such as debug info.
 | 
						|
        if (getGlobalVariableClass(I))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (I->hasInternalLinkage())
 | 
						|
          Out << "static ";
 | 
						|
        else if (I->hasDLLImportLinkage())
 | 
						|
          Out << "__declspec(dllimport) ";
 | 
						|
        else if (I->hasDLLExportLinkage())
 | 
						|
          Out << "__declspec(dllexport) ";
 | 
						|
 | 
						|
        // Thread Local Storage
 | 
						|
        if (I->isThreadLocal())
 | 
						|
          Out << "__thread ";
 | 
						|
 | 
						|
        printType(Out, I->getType()->getElementType(), false, 
 | 
						|
                  GetValueName(I));
 | 
						|
        if (I->hasLinkOnceLinkage())
 | 
						|
          Out << " __attribute__((common))";
 | 
						|
        else if (I->hasWeakLinkage())
 | 
						|
          Out << " __ATTRIBUTE_WEAK__";
 | 
						|
 | 
						|
        if (I->hasHiddenVisibility())
 | 
						|
          Out << " __HIDDEN__";
 | 
						|
        
 | 
						|
        // If the initializer is not null, emit the initializer.  If it is null,
 | 
						|
        // we try to avoid emitting large amounts of zeros.  The problem with
 | 
						|
        // this, however, occurs when the variable has weak linkage.  In this
 | 
						|
        // case, the assembler will complain about the variable being both weak
 | 
						|
        // and common, so we disable this optimization.
 | 
						|
        if (!I->getInitializer()->isNullValue()) {
 | 
						|
          Out << " = " ;
 | 
						|
          writeOperand(I->getInitializer());
 | 
						|
        } else if (I->hasWeakLinkage()) {
 | 
						|
          // We have to specify an initializer, but it doesn't have to be
 | 
						|
          // complete.  If the value is an aggregate, print out { 0 }, and let
 | 
						|
          // the compiler figure out the rest of the zeros.
 | 
						|
          Out << " = " ;
 | 
						|
          if (isa<StructType>(I->getInitializer()->getType()) ||
 | 
						|
              isa<ArrayType>(I->getInitializer()->getType()) ||
 | 
						|
              isa<VectorType>(I->getInitializer()->getType())) {
 | 
						|
            Out << "{ 0 }";
 | 
						|
          } else {
 | 
						|
            // Just print it out normally.
 | 
						|
            writeOperand(I->getInitializer());
 | 
						|
          }
 | 
						|
        }
 | 
						|
        Out << ";\n";
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!M.empty())
 | 
						|
    Out << "\n\n/* Function Bodies */\n";
 | 
						|
 | 
						|
  // Emit some helper functions for dealing with FCMP instruction's 
 | 
						|
  // predicates
 | 
						|
  Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
 | 
						|
  Out << "return X == X && Y == Y; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
 | 
						|
  Out << "return X != X || Y != Y; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
 | 
						|
  Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
 | 
						|
  Out << "return X != Y; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
 | 
						|
  Out << "return X <  Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
 | 
						|
  Out << "return X >  Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
 | 
						|
  Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
 | 
						|
  Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
 | 
						|
  Out << "return X == Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
 | 
						|
  Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
 | 
						|
  Out << "return X <  Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
 | 
						|
  Out << "return X >  Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
 | 
						|
  Out << "return X <= Y ; }\n";
 | 
						|
  Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
 | 
						|
  Out << "return X >= Y ; }\n";
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Output all floating point constants that cannot be printed accurately...
 | 
						|
void CWriter::printFloatingPointConstants(Function &F) {
 | 
						|
  // Scan the module for floating point constants.  If any FP constant is used
 | 
						|
  // in the function, we want to redirect it here so that we do not depend on
 | 
						|
  // the precision of the printed form, unless the printed form preserves
 | 
						|
  // precision.
 | 
						|
  //
 | 
						|
  static unsigned FPCounter = 0;
 | 
						|
  for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
 | 
						|
       I != E; ++I)
 | 
						|
    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
 | 
						|
      if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
 | 
						|
          !FPConstantMap.count(FPC)) {
 | 
						|
        double Val = FPC->getValue();
 | 
						|
 | 
						|
        FPConstantMap[FPC] = FPCounter;  // Number the FP constants
 | 
						|
 | 
						|
        if (FPC->getType() == Type::DoubleTy) {
 | 
						|
          Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
 | 
						|
              << " = 0x" << std::hex << DoubleToBits(Val) << std::dec
 | 
						|
              << "ULL;    /* " << Val << " */\n";
 | 
						|
        } else if (FPC->getType() == Type::FloatTy) {
 | 
						|
          Out << "static const ConstantFloatTy FPConstant" << FPCounter++
 | 
						|
              << " = 0x" << std::hex << FloatToBits(Val) << std::dec
 | 
						|
              << "U;    /* " << Val << " */\n";
 | 
						|
        } else
 | 
						|
          assert(0 && "Unknown float type!");
 | 
						|
      }
 | 
						|
 | 
						|
  Out << '\n';
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// printSymbolTable - Run through symbol table looking for type names.  If a
 | 
						|
/// type name is found, emit its declaration...
 | 
						|
///
 | 
						|
void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
 | 
						|
  Out << "/* Helper union for bitcasts */\n";
 | 
						|
  Out << "typedef union {\n";
 | 
						|
  Out << "  unsigned int Int32;\n";
 | 
						|
  Out << "  unsigned long long Int64;\n";
 | 
						|
  Out << "  float Float;\n";
 | 
						|
  Out << "  double Double;\n";
 | 
						|
  Out << "} llvmBitCastUnion;\n";
 | 
						|
 | 
						|
  // We are only interested in the type plane of the symbol table.
 | 
						|
  TypeSymbolTable::const_iterator I   = TST.begin();
 | 
						|
  TypeSymbolTable::const_iterator End = TST.end();
 | 
						|
 | 
						|
  // If there are no type names, exit early.
 | 
						|
  if (I == End) return;
 | 
						|
 | 
						|
  // Print out forward declarations for structure types before anything else!
 | 
						|
  Out << "/* Structure forward decls */\n";
 | 
						|
  for (; I != End; ++I) {
 | 
						|
    std::string Name = "struct l_" + Mang->makeNameProper(I->first);
 | 
						|
    Out << Name << ";\n";
 | 
						|
    TypeNames.insert(std::make_pair(I->second, Name));
 | 
						|
  }
 | 
						|
 | 
						|
  Out << '\n';
 | 
						|
 | 
						|
  // Now we can print out typedefs.  Above, we guaranteed that this can only be
 | 
						|
  // for struct or opaque types.
 | 
						|
  Out << "/* Typedefs */\n";
 | 
						|
  for (I = TST.begin(); I != End; ++I) {
 | 
						|
    std::string Name = "l_" + Mang->makeNameProper(I->first);
 | 
						|
    Out << "typedef ";
 | 
						|
    printType(Out, I->second, false, Name);
 | 
						|
    Out << ";\n";
 | 
						|
  }
 | 
						|
 | 
						|
  Out << '\n';
 | 
						|
 | 
						|
  // Keep track of which structures have been printed so far...
 | 
						|
  std::set<const StructType *> StructPrinted;
 | 
						|
 | 
						|
  // Loop over all structures then push them into the stack so they are
 | 
						|
  // printed in the correct order.
 | 
						|
  //
 | 
						|
  Out << "/* Structure contents */\n";
 | 
						|
  for (I = TST.begin(); I != End; ++I)
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(I->second))
 | 
						|
      // Only print out used types!
 | 
						|
      printContainedStructs(STy, StructPrinted);
 | 
						|
}
 | 
						|
 | 
						|
// Push the struct onto the stack and recursively push all structs
 | 
						|
// this one depends on.
 | 
						|
//
 | 
						|
// TODO:  Make this work properly with vector types
 | 
						|
//
 | 
						|
void CWriter::printContainedStructs(const Type *Ty,
 | 
						|
                                    std::set<const StructType*> &StructPrinted){
 | 
						|
  // Don't walk through pointers.
 | 
						|
  if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
 | 
						|
  
 | 
						|
  // Print all contained types first.
 | 
						|
  for (Type::subtype_iterator I = Ty->subtype_begin(),
 | 
						|
       E = Ty->subtype_end(); I != E; ++I)
 | 
						|
    printContainedStructs(*I, StructPrinted);
 | 
						|
  
 | 
						|
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    // Check to see if we have already printed this struct.
 | 
						|
    if (StructPrinted.insert(STy).second) {
 | 
						|
      // Print structure type out.
 | 
						|
      std::string Name = TypeNames[STy];
 | 
						|
      printType(Out, STy, false, Name, true);
 | 
						|
      Out << ";\n\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
 | 
						|
  /// isStructReturn - Should this function actually return a struct by-value?
 | 
						|
  bool isStructReturn = F->getFunctionType()->isStructReturn();
 | 
						|
  
 | 
						|
  if (F->hasInternalLinkage()) Out << "static ";
 | 
						|
  if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
 | 
						|
  if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";  
 | 
						|
  switch (F->getCallingConv()) {
 | 
						|
   case CallingConv::X86_StdCall:
 | 
						|
    Out << "__stdcall ";
 | 
						|
    break;
 | 
						|
   case CallingConv::X86_FastCall:
 | 
						|
    Out << "__fastcall ";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Loop over the arguments, printing them...
 | 
						|
  const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
 | 
						|
  const ParamAttrsList *Attrs = FT->getParamAttrs();
 | 
						|
 | 
						|
  std::stringstream FunctionInnards;
 | 
						|
 | 
						|
  // Print out the name...
 | 
						|
  FunctionInnards << GetValueName(F) << '(';
 | 
						|
 | 
						|
  bool PrintedArg = false;
 | 
						|
  if (!F->isDeclaration()) {
 | 
						|
    if (!F->arg_empty()) {
 | 
						|
      Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
      
 | 
						|
      // If this is a struct-return function, don't print the hidden
 | 
						|
      // struct-return argument.
 | 
						|
      if (isStructReturn) {
 | 
						|
        assert(I != E && "Invalid struct return function!");
 | 
						|
        ++I;
 | 
						|
      }
 | 
						|
      
 | 
						|
      std::string ArgName;
 | 
						|
      unsigned Idx = 1;
 | 
						|
      for (; I != E; ++I) {
 | 
						|
        if (PrintedArg) FunctionInnards << ", ";
 | 
						|
        if (I->hasName() || !Prototype)
 | 
						|
          ArgName = GetValueName(I);
 | 
						|
        else
 | 
						|
          ArgName = "";
 | 
						|
        printType(FunctionInnards, I->getType(), 
 | 
						|
            /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), 
 | 
						|
            ArgName);
 | 
						|
        PrintedArg = true;
 | 
						|
        ++Idx;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Loop over the arguments, printing them.
 | 
						|
    FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
 | 
						|
    
 | 
						|
    // If this is a struct-return function, don't print the hidden
 | 
						|
    // struct-return argument.
 | 
						|
    if (isStructReturn) {
 | 
						|
      assert(I != E && "Invalid struct return function!");
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned Idx = 1;
 | 
						|
    for (; I != E; ++I) {
 | 
						|
      if (PrintedArg) FunctionInnards << ", ";
 | 
						|
      printType(FunctionInnards, *I,
 | 
						|
             /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
 | 
						|
      PrintedArg = true;
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finish printing arguments... if this is a vararg function, print the ...,
 | 
						|
  // unless there are no known types, in which case, we just emit ().
 | 
						|
  //
 | 
						|
  if (FT->isVarArg() && PrintedArg) {
 | 
						|
    if (PrintedArg) FunctionInnards << ", ";
 | 
						|
    FunctionInnards << "...";  // Output varargs portion of signature!
 | 
						|
  } else if (!FT->isVarArg() && !PrintedArg) {
 | 
						|
    FunctionInnards << "void"; // ret() -> ret(void) in C.
 | 
						|
  }
 | 
						|
  FunctionInnards << ')';
 | 
						|
  
 | 
						|
  // Get the return tpe for the function.
 | 
						|
  const Type *RetTy;
 | 
						|
  if (!isStructReturn)
 | 
						|
    RetTy = F->getReturnType();
 | 
						|
  else {
 | 
						|
    // If this is a struct-return function, print the struct-return type.
 | 
						|
    RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Print out the return type and the signature built above.
 | 
						|
  printType(Out, RetTy, 
 | 
						|
            /*isSigned=*/ Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), 
 | 
						|
            FunctionInnards.str());
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isFPIntBitCast(const Instruction &I) {
 | 
						|
  if (!isa<BitCastInst>(I))
 | 
						|
    return false;
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DstTy = I.getType();
 | 
						|
  return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
 | 
						|
         (DstTy->isFloatingPoint() && SrcTy->isInteger());
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printFunction(Function &F) {
 | 
						|
  /// isStructReturn - Should this function actually return a struct by-value?
 | 
						|
  bool isStructReturn = F.getFunctionType()->isStructReturn();
 | 
						|
 | 
						|
  printFunctionSignature(&F, false);
 | 
						|
  Out << " {\n";
 | 
						|
  
 | 
						|
  // If this is a struct return function, handle the result with magic.
 | 
						|
  if (isStructReturn) {
 | 
						|
    const Type *StructTy =
 | 
						|
      cast<PointerType>(F.arg_begin()->getType())->getElementType();
 | 
						|
    Out << "  ";
 | 
						|
    printType(Out, StructTy, false, "StructReturn");
 | 
						|
    Out << ";  /* Struct return temporary */\n";
 | 
						|
 | 
						|
    Out << "  ";
 | 
						|
    printType(Out, F.arg_begin()->getType(), false, 
 | 
						|
              GetValueName(F.arg_begin()));
 | 
						|
    Out << " = &StructReturn;\n";
 | 
						|
  }
 | 
						|
 | 
						|
  bool PrintedVar = false;
 | 
						|
  
 | 
						|
  // print local variable information for the function
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
 | 
						|
    if (const AllocaInst *AI = isDirectAlloca(&*I)) {
 | 
						|
      Out << "  ";
 | 
						|
      printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
 | 
						|
      Out << ";    /* Address-exposed local */\n";
 | 
						|
      PrintedVar = true;
 | 
						|
    } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
 | 
						|
      Out << "  ";
 | 
						|
      printType(Out, I->getType(), false, GetValueName(&*I));
 | 
						|
      Out << ";\n";
 | 
						|
 | 
						|
      if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
 | 
						|
        Out << "  ";
 | 
						|
        printType(Out, I->getType(), false,
 | 
						|
                  GetValueName(&*I)+"__PHI_TEMPORARY");
 | 
						|
        Out << ";\n";
 | 
						|
      }
 | 
						|
      PrintedVar = true;
 | 
						|
    }
 | 
						|
    // We need a temporary for the BitCast to use so it can pluck a value out
 | 
						|
    // of a union to do the BitCast. This is separate from the need for a
 | 
						|
    // variable to hold the result of the BitCast. 
 | 
						|
    if (isFPIntBitCast(*I)) {
 | 
						|
      Out << "  llvmBitCastUnion " << GetValueName(&*I)
 | 
						|
          << "__BITCAST_TEMPORARY;\n";
 | 
						|
      PrintedVar = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrintedVar)
 | 
						|
    Out << '\n';
 | 
						|
 | 
						|
  if (F.hasExternalLinkage() && F.getName() == "main")
 | 
						|
    Out << "  CODE_FOR_MAIN();\n";
 | 
						|
 | 
						|
  // print the basic blocks
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
    if (Loop *L = LI->getLoopFor(BB)) {
 | 
						|
      if (L->getHeader() == BB && L->getParentLoop() == 0)
 | 
						|
        printLoop(L);
 | 
						|
    } else {
 | 
						|
      printBasicBlock(BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printLoop(Loop *L) {
 | 
						|
  Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
 | 
						|
      << "' to make GCC happy */\n";
 | 
						|
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
 | 
						|
    BasicBlock *BB = L->getBlocks()[i];
 | 
						|
    Loop *BBLoop = LI->getLoopFor(BB);
 | 
						|
    if (BBLoop == L)
 | 
						|
      printBasicBlock(BB);
 | 
						|
    else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
 | 
						|
      printLoop(BBLoop);
 | 
						|
  }
 | 
						|
  Out << "  } while (1); /* end of syntactic loop '"
 | 
						|
      << L->getHeader()->getName() << "' */\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printBasicBlock(BasicBlock *BB) {
 | 
						|
 | 
						|
  // Don't print the label for the basic block if there are no uses, or if
 | 
						|
  // the only terminator use is the predecessor basic block's terminator.
 | 
						|
  // We have to scan the use list because PHI nodes use basic blocks too but
 | 
						|
  // do not require a label to be generated.
 | 
						|
  //
 | 
						|
  bool NeedsLabel = false;
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
    if (isGotoCodeNecessary(*PI, BB)) {
 | 
						|
      NeedsLabel = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  if (NeedsLabel) Out << GetValueName(BB) << ":\n";
 | 
						|
 | 
						|
  // Output all of the instructions in the basic block...
 | 
						|
  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
 | 
						|
       ++II) {
 | 
						|
    if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
 | 
						|
      if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
 | 
						|
        outputLValue(II);
 | 
						|
      else
 | 
						|
        Out << "  ";
 | 
						|
      visit(*II);
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't emit prefix or suffix for the terminator...
 | 
						|
  visit(*BB->getTerminator());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Specific Instruction type classes... note that all of the casts are
 | 
						|
// necessary because we use the instruction classes as opaque types...
 | 
						|
//
 | 
						|
void CWriter::visitReturnInst(ReturnInst &I) {
 | 
						|
  // If this is a struct return function, return the temporary struct.
 | 
						|
  bool isStructReturn = I.getParent()->getParent()->
 | 
						|
    getFunctionType()->isStructReturn();
 | 
						|
 | 
						|
  if (isStructReturn) {
 | 
						|
    Out << "  return StructReturn;\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Don't output a void return if this is the last basic block in the function
 | 
						|
  if (I.getNumOperands() == 0 &&
 | 
						|
      &*--I.getParent()->getParent()->end() == I.getParent() &&
 | 
						|
      !I.getParent()->size() == 1) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "  return";
 | 
						|
  if (I.getNumOperands()) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
  }
 | 
						|
  Out << ";\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitSwitchInst(SwitchInst &SI) {
 | 
						|
 | 
						|
  Out << "  switch (";
 | 
						|
  writeOperand(SI.getOperand(0));
 | 
						|
  Out << ") {\n  default:\n";
 | 
						|
  printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
 | 
						|
  printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
 | 
						|
  Out << ";\n";
 | 
						|
  for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
 | 
						|
    Out << "  case ";
 | 
						|
    writeOperand(SI.getOperand(i));
 | 
						|
    Out << ":\n";
 | 
						|
    BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
 | 
						|
    printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
 | 
						|
    printBranchToBlock(SI.getParent(), Succ, 2);
 | 
						|
    if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
 | 
						|
      Out << "    break;\n";
 | 
						|
  }
 | 
						|
  Out << "  }\n";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitUnreachableInst(UnreachableInst &I) {
 | 
						|
  Out << "  /*UNREACHABLE*/;\n";
 | 
						|
}
 | 
						|
 | 
						|
bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
 | 
						|
  /// FIXME: This should be reenabled, but loop reordering safe!!
 | 
						|
  return true;
 | 
						|
 | 
						|
  if (next(Function::iterator(From)) != Function::iterator(To))
 | 
						|
    return true;  // Not the direct successor, we need a goto.
 | 
						|
 | 
						|
  //isa<SwitchInst>(From->getTerminator())
 | 
						|
 | 
						|
  if (LI->getLoopFor(From) != LI->getLoopFor(To))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
 | 
						|
                                          BasicBlock *Successor,
 | 
						|
                                          unsigned Indent) {
 | 
						|
  for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    // Now we have to do the printing.
 | 
						|
    Value *IV = PN->getIncomingValueForBlock(CurBlock);
 | 
						|
    if (!isa<UndefValue>(IV)) {
 | 
						|
      Out << std::string(Indent, ' ');
 | 
						|
      Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
 | 
						|
      writeOperand(IV);
 | 
						|
      Out << ";   /* for PHI node */\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
 | 
						|
                                 unsigned Indent) {
 | 
						|
  if (isGotoCodeNecessary(CurBB, Succ)) {
 | 
						|
    Out << std::string(Indent, ' ') << "  goto ";
 | 
						|
    writeOperand(Succ);
 | 
						|
    Out << ";\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Branch instruction printing - Avoid printing out a branch to a basic block
 | 
						|
// that immediately succeeds the current one.
 | 
						|
//
 | 
						|
void CWriter::visitBranchInst(BranchInst &I) {
 | 
						|
 | 
						|
  if (I.isConditional()) {
 | 
						|
    if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
 | 
						|
      Out << "  if (";
 | 
						|
      writeOperand(I.getCondition());
 | 
						|
      Out << ") {\n";
 | 
						|
 | 
						|
      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
 | 
						|
      printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
 | 
						|
 | 
						|
      if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
 | 
						|
        Out << "  } else {\n";
 | 
						|
        printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
 | 
						|
        printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // First goto not necessary, assume second one is...
 | 
						|
      Out << "  if (!";
 | 
						|
      writeOperand(I.getCondition());
 | 
						|
      Out << ") {\n";
 | 
						|
 | 
						|
      printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
 | 
						|
      printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << "  }\n";
 | 
						|
  } else {
 | 
						|
    printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
 | 
						|
    printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
 | 
						|
  }
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
// PHI nodes get copied into temporary values at the end of predecessor basic
 | 
						|
// blocks.  We now need to copy these temporary values into the REAL value for
 | 
						|
// the PHI.
 | 
						|
void CWriter::visitPHINode(PHINode &I) {
 | 
						|
  writeOperand(&I);
 | 
						|
  Out << "__PHI_TEMPORARY";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CWriter::visitBinaryOperator(Instruction &I) {
 | 
						|
  // binary instructions, shift instructions, setCond instructions.
 | 
						|
  assert(!isa<PointerType>(I.getType()));
 | 
						|
 | 
						|
  // We must cast the results of binary operations which might be promoted.
 | 
						|
  bool needsCast = false;
 | 
						|
  if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty) 
 | 
						|
      || (I.getType() == Type::FloatTy)) {
 | 
						|
    needsCast = true;
 | 
						|
    Out << "((";
 | 
						|
    printType(Out, I.getType(), false);
 | 
						|
    Out << ")(";
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a negation operation, print it out as such.  For FP, we don't
 | 
						|
  // want to print "-0.0 - X".
 | 
						|
  if (BinaryOperator::isNeg(&I)) {
 | 
						|
    Out << "-(";
 | 
						|
    writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
 | 
						|
    Out << ")";
 | 
						|
  } else if (I.getOpcode() == Instruction::FRem) {
 | 
						|
    // Output a call to fmod/fmodf instead of emitting a%b
 | 
						|
    if (I.getType() == Type::FloatTy)
 | 
						|
      Out << "fmodf(";
 | 
						|
    else
 | 
						|
      Out << "fmod(";
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(I.getOperand(1));
 | 
						|
    Out << ")";
 | 
						|
  } else {
 | 
						|
 | 
						|
    // Write out the cast of the instruction's value back to the proper type
 | 
						|
    // if necessary.
 | 
						|
    bool NeedsClosingParens = writeInstructionCast(I);
 | 
						|
 | 
						|
    // Certain instructions require the operand to be forced to a specific type
 | 
						|
    // so we use writeOperandWithCast here instead of writeOperand. Similarly
 | 
						|
    // below for operand 1
 | 
						|
    writeOperandWithCast(I.getOperand(0), I.getOpcode());
 | 
						|
 | 
						|
    switch (I.getOpcode()) {
 | 
						|
    case Instruction::Add:  Out << " + "; break;
 | 
						|
    case Instruction::Sub:  Out << " - "; break;
 | 
						|
    case Instruction::Mul:  Out << " * "; break;
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem: Out << " % "; break;
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv: 
 | 
						|
    case Instruction::FDiv: Out << " / "; break;
 | 
						|
    case Instruction::And:  Out << " & "; break;
 | 
						|
    case Instruction::Or:   Out << " | "; break;
 | 
						|
    case Instruction::Xor:  Out << " ^ "; break;
 | 
						|
    case Instruction::Shl : Out << " << "; break;
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr: Out << " >> "; break;
 | 
						|
    default: cerr << "Invalid operator type!" << I; abort();
 | 
						|
    }
 | 
						|
 | 
						|
    writeOperandWithCast(I.getOperand(1), I.getOpcode());
 | 
						|
    if (NeedsClosingParens)
 | 
						|
      Out << "))";
 | 
						|
  }
 | 
						|
 | 
						|
  if (needsCast) {
 | 
						|
    Out << "))";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitICmpInst(ICmpInst &I) {
 | 
						|
  // We must cast the results of icmp which might be promoted.
 | 
						|
  bool needsCast = false;
 | 
						|
 | 
						|
  // Write out the cast of the instruction's value back to the proper type
 | 
						|
  // if necessary.
 | 
						|
  bool NeedsClosingParens = writeInstructionCast(I);
 | 
						|
 | 
						|
  // Certain icmp predicate require the operand to be forced to a specific type
 | 
						|
  // so we use writeOperandWithCast here instead of writeOperand. Similarly
 | 
						|
  // below for operand 1
 | 
						|
  writeOperandWithCast(I.getOperand(0), I.getPredicate());
 | 
						|
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  case ICmpInst::ICMP_EQ:  Out << " == "; break;
 | 
						|
  case ICmpInst::ICMP_NE:  Out << " != "; break;
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
  case ICmpInst::ICMP_SLE: Out << " <= "; break;
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
  case ICmpInst::ICMP_SGE: Out << " >= "; break;
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
  case ICmpInst::ICMP_SLT: Out << " < "; break;
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
  case ICmpInst::ICMP_SGT: Out << " > "; break;
 | 
						|
  default: cerr << "Invalid icmp predicate!" << I; abort();
 | 
						|
  }
 | 
						|
 | 
						|
  writeOperandWithCast(I.getOperand(1), I.getPredicate());
 | 
						|
  if (NeedsClosingParens)
 | 
						|
    Out << "))";
 | 
						|
 | 
						|
  if (needsCast) {
 | 
						|
    Out << "))";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitFCmpInst(FCmpInst &I) {
 | 
						|
  if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
 | 
						|
    Out << "0";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
 | 
						|
    Out << "1";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const char* op = 0;
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  default: assert(0 && "Illegal FCmp predicate");
 | 
						|
  case FCmpInst::FCMP_ORD: op = "ord"; break;
 | 
						|
  case FCmpInst::FCMP_UNO: op = "uno"; break;
 | 
						|
  case FCmpInst::FCMP_UEQ: op = "ueq"; break;
 | 
						|
  case FCmpInst::FCMP_UNE: op = "une"; break;
 | 
						|
  case FCmpInst::FCMP_ULT: op = "ult"; break;
 | 
						|
  case FCmpInst::FCMP_ULE: op = "ule"; break;
 | 
						|
  case FCmpInst::FCMP_UGT: op = "ugt"; break;
 | 
						|
  case FCmpInst::FCMP_UGE: op = "uge"; break;
 | 
						|
  case FCmpInst::FCMP_OEQ: op = "oeq"; break;
 | 
						|
  case FCmpInst::FCMP_ONE: op = "one"; break;
 | 
						|
  case FCmpInst::FCMP_OLT: op = "olt"; break;
 | 
						|
  case FCmpInst::FCMP_OLE: op = "ole"; break;
 | 
						|
  case FCmpInst::FCMP_OGT: op = "ogt"; break;
 | 
						|
  case FCmpInst::FCMP_OGE: op = "oge"; break;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "llvm_fcmp_" << op << "(";
 | 
						|
  // Write the first operand
 | 
						|
  writeOperand(I.getOperand(0));
 | 
						|
  Out << ", ";
 | 
						|
  // Write the second operand
 | 
						|
  writeOperand(I.getOperand(1));
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
static const char * getFloatBitCastField(const Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
    default: assert(0 && "Invalid Type");
 | 
						|
    case Type::FloatTyID:  return "Float";
 | 
						|
    case Type::DoubleTyID: return "Double";
 | 
						|
    case Type::IntegerTyID: {
 | 
						|
      unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
      if (NumBits <= 32)
 | 
						|
        return "Int32";
 | 
						|
      else
 | 
						|
        return "Int64";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitCastInst(CastInst &I) {
 | 
						|
  const Type *DstTy = I.getType();
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  Out << '(';
 | 
						|
  if (isFPIntBitCast(I)) {
 | 
						|
    // These int<->float and long<->double casts need to be handled specially
 | 
						|
    Out << GetValueName(&I) << "__BITCAST_TEMPORARY." 
 | 
						|
        << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
    Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
 | 
						|
        << getFloatBitCastField(I.getType());
 | 
						|
  } else {
 | 
						|
    printCast(I.getOpcode(), SrcTy, DstTy);
 | 
						|
    if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
 | 
						|
      // Make sure we really get a sext from bool by subtracing the bool from 0
 | 
						|
      Out << "0-";
 | 
						|
    }
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
    if (DstTy == Type::Int1Ty && 
 | 
						|
        (I.getOpcode() == Instruction::Trunc ||
 | 
						|
         I.getOpcode() == Instruction::FPToUI ||
 | 
						|
         I.getOpcode() == Instruction::FPToSI ||
 | 
						|
         I.getOpcode() == Instruction::PtrToInt)) {
 | 
						|
      // Make sure we really get a trunc to bool by anding the operand with 1 
 | 
						|
      Out << "&1u";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitSelectInst(SelectInst &I) {
 | 
						|
  Out << "((";
 | 
						|
  writeOperand(I.getCondition());
 | 
						|
  Out << ") ? (";
 | 
						|
  writeOperand(I.getTrueValue());
 | 
						|
  Out << ") : (";
 | 
						|
  writeOperand(I.getFalseValue());
 | 
						|
  Out << "))";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CWriter::lowerIntrinsics(Function &F) {
 | 
						|
  // This is used to keep track of intrinsics that get generated to a lowered
 | 
						|
  // function. We must generate the prototypes before the function body which
 | 
						|
  // will only be expanded on first use (by the loop below).
 | 
						|
  std::vector<Function*> prototypesToGen;
 | 
						|
 | 
						|
  // Examine all the instructions in this function to find the intrinsics that
 | 
						|
  // need to be lowered.
 | 
						|
  for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | 
						|
      if (CallInst *CI = dyn_cast<CallInst>(I++))
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          switch (F->getIntrinsicID()) {
 | 
						|
          case Intrinsic::not_intrinsic:
 | 
						|
          case Intrinsic::vastart:
 | 
						|
          case Intrinsic::vacopy:
 | 
						|
          case Intrinsic::vaend:
 | 
						|
          case Intrinsic::returnaddress:
 | 
						|
          case Intrinsic::frameaddress:
 | 
						|
          case Intrinsic::setjmp:
 | 
						|
          case Intrinsic::longjmp:
 | 
						|
          case Intrinsic::prefetch:
 | 
						|
          case Intrinsic::dbg_stoppoint:
 | 
						|
          case Intrinsic::powi_f32:
 | 
						|
          case Intrinsic::powi_f64:
 | 
						|
            // We directly implement these intrinsics
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            // If this is an intrinsic that directly corresponds to a GCC
 | 
						|
            // builtin, we handle it.
 | 
						|
            const char *BuiltinName = "";
 | 
						|
#define GET_GCC_BUILTIN_NAME
 | 
						|
#include "llvm/Intrinsics.gen"
 | 
						|
#undef GET_GCC_BUILTIN_NAME
 | 
						|
            // If we handle it, don't lower it.
 | 
						|
            if (BuiltinName[0]) break;
 | 
						|
            
 | 
						|
            // All other intrinsic calls we must lower.
 | 
						|
            Instruction *Before = 0;
 | 
						|
            if (CI != &BB->front())
 | 
						|
              Before = prior(BasicBlock::iterator(CI));
 | 
						|
 | 
						|
            IL->LowerIntrinsicCall(CI);
 | 
						|
            if (Before) {        // Move iterator to instruction after call
 | 
						|
              I = Before; ++I;
 | 
						|
            } else {
 | 
						|
              I = BB->begin();
 | 
						|
            }
 | 
						|
            // If the intrinsic got lowered to another call, and that call has
 | 
						|
            // a definition then we need to make sure its prototype is emitted
 | 
						|
            // before any calls to it.
 | 
						|
            if (CallInst *Call = dyn_cast<CallInst>(I))
 | 
						|
              if (Function *NewF = Call->getCalledFunction())
 | 
						|
                if (!NewF->isDeclaration())
 | 
						|
                  prototypesToGen.push_back(NewF);
 | 
						|
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
  // We may have collected some prototypes to emit in the loop above. 
 | 
						|
  // Emit them now, before the function that uses them is emitted. But,
 | 
						|
  // be careful not to emit them twice.
 | 
						|
  std::vector<Function*>::iterator I = prototypesToGen.begin();
 | 
						|
  std::vector<Function*>::iterator E = prototypesToGen.end();
 | 
						|
  for ( ; I != E; ++I) {
 | 
						|
    if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
 | 
						|
      Out << '\n';
 | 
						|
      printFunctionSignature(*I, true);
 | 
						|
      Out << ";\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CWriter::visitCallInst(CallInst &I) {
 | 
						|
  //check if we have inline asm
 | 
						|
  if (isInlineAsm(I)) {
 | 
						|
    visitInlineAsm(I);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool WroteCallee = false;
 | 
						|
 | 
						|
  // Handle intrinsic function calls first...
 | 
						|
  if (Function *F = I.getCalledFunction())
 | 
						|
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
 | 
						|
      switch (ID) {
 | 
						|
      default: {
 | 
						|
        // If this is an intrinsic that directly corresponds to a GCC
 | 
						|
        // builtin, we emit it here.
 | 
						|
        const char *BuiltinName = "";
 | 
						|
#define GET_GCC_BUILTIN_NAME
 | 
						|
#include "llvm/Intrinsics.gen"
 | 
						|
#undef GET_GCC_BUILTIN_NAME
 | 
						|
        assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
 | 
						|
 | 
						|
        Out << BuiltinName;
 | 
						|
        WroteCallee = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Intrinsic::vastart:
 | 
						|
        Out << "0; ";
 | 
						|
 | 
						|
        Out << "va_start(*(va_list*)";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ", ";
 | 
						|
        // Output the last argument to the enclosing function...
 | 
						|
        if (I.getParent()->getParent()->arg_empty()) {
 | 
						|
          cerr << "The C backend does not currently support zero "
 | 
						|
               << "argument varargs functions, such as '"
 | 
						|
               << I.getParent()->getParent()->getName() << "'!\n";
 | 
						|
          abort();
 | 
						|
        }
 | 
						|
        writeOperand(--I.getParent()->getParent()->arg_end());
 | 
						|
        Out << ')';
 | 
						|
        return;
 | 
						|
      case Intrinsic::vaend:
 | 
						|
        if (!isa<ConstantPointerNull>(I.getOperand(1))) {
 | 
						|
          Out << "0; va_end(*(va_list*)";
 | 
						|
          writeOperand(I.getOperand(1));
 | 
						|
          Out << ')';
 | 
						|
        } else {
 | 
						|
          Out << "va_end(*(va_list*)0)";
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      case Intrinsic::vacopy:
 | 
						|
        Out << "0; ";
 | 
						|
        Out << "va_copy(*(va_list*)";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ", *(va_list*)";
 | 
						|
        writeOperand(I.getOperand(2));
 | 
						|
        Out << ')';
 | 
						|
        return;
 | 
						|
      case Intrinsic::returnaddress:
 | 
						|
        Out << "__builtin_return_address(";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ')';
 | 
						|
        return;
 | 
						|
      case Intrinsic::frameaddress:
 | 
						|
        Out << "__builtin_frame_address(";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ')';
 | 
						|
        return;
 | 
						|
      case Intrinsic::powi_f32:
 | 
						|
      case Intrinsic::powi_f64:
 | 
						|
        Out << "__builtin_powi(";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ", ";
 | 
						|
        writeOperand(I.getOperand(2));
 | 
						|
        Out << ')';
 | 
						|
        return;
 | 
						|
      case Intrinsic::setjmp:
 | 
						|
        Out << "setjmp(*(jmp_buf*)";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ')';
 | 
						|
        return;
 | 
						|
      case Intrinsic::longjmp:
 | 
						|
        Out << "longjmp(*(jmp_buf*)";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ", ";
 | 
						|
        writeOperand(I.getOperand(2));
 | 
						|
        Out << ')';
 | 
						|
        return;
 | 
						|
      case Intrinsic::prefetch:
 | 
						|
        Out << "LLVM_PREFETCH((const void *)";
 | 
						|
        writeOperand(I.getOperand(1));
 | 
						|
        Out << ", ";
 | 
						|
        writeOperand(I.getOperand(2));
 | 
						|
        Out << ", ";
 | 
						|
        writeOperand(I.getOperand(3));
 | 
						|
        Out << ")";
 | 
						|
        return;
 | 
						|
      case Intrinsic::dbg_stoppoint: {
 | 
						|
        // If we use writeOperand directly we get a "u" suffix which is rejected
 | 
						|
        // by gcc.
 | 
						|
        DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
 | 
						|
 | 
						|
        Out << "\n#line "
 | 
						|
            << SPI.getLine()
 | 
						|
            << " \"" << SPI.getDirectory()
 | 
						|
            << SPI.getFileName() << "\"\n";
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  Value *Callee = I.getCalledValue();
 | 
						|
 | 
						|
  const PointerType  *PTy   = cast<PointerType>(Callee->getType());
 | 
						|
  const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
 | 
						|
 | 
						|
  // If this is a call to a struct-return function, assign to the first
 | 
						|
  // parameter instead of passing it to the call.
 | 
						|
  bool isStructRet = FTy->isStructReturn();
 | 
						|
  if (isStructRet) {
 | 
						|
    Out << "*(";
 | 
						|
    writeOperand(I.getOperand(1));
 | 
						|
    Out << ") = ";
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (I.isTailCall()) Out << " /*tail*/ ";
 | 
						|
  
 | 
						|
  if (!WroteCallee) {
 | 
						|
    // If this is an indirect call to a struct return function, we need to cast
 | 
						|
    // the pointer.
 | 
						|
    bool NeedsCast = isStructRet && !isa<Function>(Callee);
 | 
						|
 | 
						|
    // GCC is a real PITA.  It does not permit codegening casts of functions to
 | 
						|
    // function pointers if they are in a call (it generates a trap instruction
 | 
						|
    // instead!).  We work around this by inserting a cast to void* in between
 | 
						|
    // the function and the function pointer cast.  Unfortunately, we can't just
 | 
						|
    // form the constant expression here, because the folder will immediately
 | 
						|
    // nuke it.
 | 
						|
    //
 | 
						|
    // Note finally, that this is completely unsafe.  ANSI C does not guarantee
 | 
						|
    // that void* and function pointers have the same size. :( To deal with this
 | 
						|
    // in the common case, we handle casts where the number of arguments passed
 | 
						|
    // match exactly.
 | 
						|
    //
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
 | 
						|
      if (CE->isCast())
 | 
						|
        if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
 | 
						|
          NeedsCast = true;
 | 
						|
          Callee = RF;
 | 
						|
        }
 | 
						|
  
 | 
						|
    if (NeedsCast) {
 | 
						|
      // Ok, just cast the pointer type.
 | 
						|
      Out << "((";
 | 
						|
      if (!isStructRet)
 | 
						|
        printType(Out, I.getCalledValue()->getType());
 | 
						|
      else
 | 
						|
        printStructReturnPointerFunctionType(Out, 
 | 
						|
                             cast<PointerType>(I.getCalledValue()->getType()));
 | 
						|
      Out << ")(void*)";
 | 
						|
    }
 | 
						|
    writeOperand(Callee);
 | 
						|
    if (NeedsCast) Out << ')';
 | 
						|
  }
 | 
						|
 | 
						|
  Out << '(';
 | 
						|
 | 
						|
  unsigned NumDeclaredParams = FTy->getNumParams();
 | 
						|
 | 
						|
  CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  if (isStructRet) {   // Skip struct return argument.
 | 
						|
    ++AI;
 | 
						|
    ++ArgNo;
 | 
						|
  }
 | 
						|
      
 | 
						|
  const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | 
						|
  bool PrintedArg = false;
 | 
						|
  unsigned Idx = 1;
 | 
						|
  for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
 | 
						|
    if (PrintedArg) Out << ", ";
 | 
						|
    if (ArgNo < NumDeclaredParams &&
 | 
						|
        (*AI)->getType() != FTy->getParamType(ArgNo)) {
 | 
						|
      Out << '(';
 | 
						|
      printType(Out, FTy->getParamType(ArgNo), 
 | 
						|
            /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
 | 
						|
      Out << ')';
 | 
						|
    }
 | 
						|
    writeOperand(*AI);
 | 
						|
    PrintedArg = true;
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//This converts the llvm constraint string to something gcc is expecting.
 | 
						|
//TODO: work out platform independent constraints and factor those out
 | 
						|
//      of the per target tables
 | 
						|
//      handle multiple constraint codes
 | 
						|
std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
 | 
						|
 | 
						|
  assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
 | 
						|
 | 
						|
  const char** table = 0;
 | 
						|
  
 | 
						|
  //Grab the translation table from TargetAsmInfo if it exists
 | 
						|
  if (!TAsm) {
 | 
						|
    std::string E;
 | 
						|
    const TargetMachineRegistry::Entry* Match = 
 | 
						|
      TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
 | 
						|
    if (Match) {
 | 
						|
      //Per platform Target Machines don't exist, so create it
 | 
						|
      // this must be done only once
 | 
						|
      const TargetMachine* TM = Match->CtorFn(*TheModule, "");
 | 
						|
      TAsm = TM->getTargetAsmInfo();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (TAsm)
 | 
						|
    table = TAsm->getAsmCBE();
 | 
						|
 | 
						|
  //Search the translation table if it exists
 | 
						|
  for (int i = 0; table && table[i]; i += 2)
 | 
						|
    if (c.Codes[0] == table[i])
 | 
						|
      return table[i+1];
 | 
						|
 | 
						|
  //default is identity
 | 
						|
  return c.Codes[0];
 | 
						|
}
 | 
						|
 | 
						|
//TODO: import logic from AsmPrinter.cpp
 | 
						|
static std::string gccifyAsm(std::string asmstr) {
 | 
						|
  for (std::string::size_type i = 0; i != asmstr.size(); ++i)
 | 
						|
    if (asmstr[i] == '\n')
 | 
						|
      asmstr.replace(i, 1, "\\n");
 | 
						|
    else if (asmstr[i] == '\t')
 | 
						|
      asmstr.replace(i, 1, "\\t");
 | 
						|
    else if (asmstr[i] == '$') {
 | 
						|
      if (asmstr[i + 1] == '{') {
 | 
						|
        std::string::size_type a = asmstr.find_first_of(':', i + 1);
 | 
						|
        std::string::size_type b = asmstr.find_first_of('}', i + 1);
 | 
						|
        std::string n = "%" + 
 | 
						|
          asmstr.substr(a + 1, b - a - 1) +
 | 
						|
          asmstr.substr(i + 2, a - i - 2);
 | 
						|
        asmstr.replace(i, b - i + 1, n);
 | 
						|
        i += n.size() - 1;
 | 
						|
      } else
 | 
						|
        asmstr.replace(i, 1, "%");
 | 
						|
    }
 | 
						|
    else if (asmstr[i] == '%')//grr
 | 
						|
      { asmstr.replace(i, 1, "%%"); ++i;}
 | 
						|
  
 | 
						|
  return asmstr;
 | 
						|
}
 | 
						|
 | 
						|
//TODO: assumptions about what consume arguments from the call are likely wrong
 | 
						|
//      handle communitivity
 | 
						|
void CWriter::visitInlineAsm(CallInst &CI) {
 | 
						|
  InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
 | 
						|
  std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
 | 
						|
  std::vector<std::pair<std::string, Value*> > Input;
 | 
						|
  std::vector<std::pair<std::string, Value*> > Output;
 | 
						|
  std::string Clobber;
 | 
						|
  int count = CI.getType() == Type::VoidTy ? 1 : 0;
 | 
						|
  for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
 | 
						|
         E = Constraints.end(); I != E; ++I) {
 | 
						|
    assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
 | 
						|
    std::string c = 
 | 
						|
      InterpretASMConstraint(*I);
 | 
						|
    switch(I->Type) {
 | 
						|
    default:
 | 
						|
      assert(0 && "Unknown asm constraint");
 | 
						|
      break;
 | 
						|
    case InlineAsm::isInput: {
 | 
						|
      if (c.size()) {
 | 
						|
        Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
 | 
						|
        ++count; //consume arg
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case InlineAsm::isOutput: {
 | 
						|
      if (c.size()) {
 | 
						|
        Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
 | 
						|
                                        count ? CI.getOperand(count) : &CI));
 | 
						|
        ++count; //consume arg
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case InlineAsm::isClobber: {
 | 
						|
      if (c.size()) 
 | 
						|
        Clobber += ",\"" + c + "\"";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  //fix up the asm string for gcc
 | 
						|
  std::string asmstr = gccifyAsm(as->getAsmString());
 | 
						|
  
 | 
						|
  Out << "__asm__ volatile (\"" << asmstr << "\"\n";
 | 
						|
  Out << "        :";
 | 
						|
  for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
 | 
						|
         E = Output.end(); I != E; ++I) {
 | 
						|
    Out << "\"" << I->first << "\"(";
 | 
						|
    writeOperandRaw(I->second);
 | 
						|
    Out << ")";
 | 
						|
    if (I + 1 != E)
 | 
						|
      Out << ",";
 | 
						|
  }
 | 
						|
  Out << "\n        :";
 | 
						|
  for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
 | 
						|
         E = Input.end(); I != E; ++I) {
 | 
						|
    Out << "\"" << I->first << "\"(";
 | 
						|
    writeOperandRaw(I->second);
 | 
						|
    Out << ")";
 | 
						|
    if (I + 1 != E)
 | 
						|
      Out << ",";
 | 
						|
  }
 | 
						|
  if (Clobber.size())
 | 
						|
    Out << "\n        :" << Clobber.substr(1);
 | 
						|
  Out << ")";
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitMallocInst(MallocInst &I) {
 | 
						|
  assert(0 && "lowerallocations pass didn't work!");
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitAllocaInst(AllocaInst &I) {
 | 
						|
  Out << '(';
 | 
						|
  printType(Out, I.getType());
 | 
						|
  Out << ") alloca(sizeof(";
 | 
						|
  printType(Out, I.getType()->getElementType());
 | 
						|
  Out << ')';
 | 
						|
  if (I.isArrayAllocation()) {
 | 
						|
    Out << " * " ;
 | 
						|
    writeOperand(I.getOperand(0));
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitFreeInst(FreeInst &I) {
 | 
						|
  assert(0 && "lowerallocations pass didn't work!");
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
 | 
						|
                                      gep_type_iterator E) {
 | 
						|
  bool HasImplicitAddress = false;
 | 
						|
  // If accessing a global value with no indexing, avoid *(&GV) syndrome
 | 
						|
  if (isa<GlobalValue>(Ptr)) {
 | 
						|
    HasImplicitAddress = true;
 | 
						|
  } else if (isDirectAlloca(Ptr)) {
 | 
						|
    HasImplicitAddress = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (I == E) {
 | 
						|
    if (!HasImplicitAddress)
 | 
						|
      Out << '*';  // Implicit zero first argument: '*x' is equivalent to 'x[0]'
 | 
						|
 | 
						|
    writeOperandInternal(Ptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Constant *CI = dyn_cast<Constant>(I.getOperand());
 | 
						|
  if (HasImplicitAddress && (!CI || !CI->isNullValue()))
 | 
						|
    Out << "(&";
 | 
						|
 | 
						|
  writeOperandInternal(Ptr);
 | 
						|
 | 
						|
  if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
 | 
						|
    Out << ')';
 | 
						|
    HasImplicitAddress = false;  // HIA is only true if we haven't addressed yet
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
 | 
						|
         "Can only have implicit address with direct accessing");
 | 
						|
 | 
						|
  if (HasImplicitAddress) {
 | 
						|
    ++I;
 | 
						|
  } else if (CI && CI->isNullValue()) {
 | 
						|
    gep_type_iterator TmpI = I; ++TmpI;
 | 
						|
 | 
						|
    // Print out the -> operator if possible...
 | 
						|
    if (TmpI != E && isa<StructType>(*TmpI)) {
 | 
						|
      Out << (HasImplicitAddress ? "." : "->");
 | 
						|
      Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
 | 
						|
      I = ++TmpI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (; I != E; ++I)
 | 
						|
    if (isa<StructType>(*I)) {
 | 
						|
      Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
 | 
						|
    } else {
 | 
						|
      Out << '[';
 | 
						|
      writeOperand(I.getOperand());
 | 
						|
      Out << ']';
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitLoadInst(LoadInst &I) {
 | 
						|
  Out << '*';
 | 
						|
  if (I.isVolatile()) {
 | 
						|
    Out << "((";
 | 
						|
    printType(Out, I.getType(), false, "volatile*");
 | 
						|
    Out << ")";
 | 
						|
  }
 | 
						|
 | 
						|
  writeOperand(I.getOperand(0));
 | 
						|
 | 
						|
  if (I.isVolatile())
 | 
						|
    Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitStoreInst(StoreInst &I) {
 | 
						|
  Out << '*';
 | 
						|
  if (I.isVolatile()) {
 | 
						|
    Out << "((";
 | 
						|
    printType(Out, I.getOperand(0)->getType(), false, " volatile*");
 | 
						|
    Out << ")";
 | 
						|
  }
 | 
						|
  writeOperand(I.getPointerOperand());
 | 
						|
  if (I.isVolatile()) Out << ')';
 | 
						|
  Out << " = ";
 | 
						|
  Value *Operand = I.getOperand(0);
 | 
						|
  Constant *BitMask = 0;
 | 
						|
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
 | 
						|
    if (!ITy->isPowerOf2ByteWidth())
 | 
						|
      // We have a bit width that doesn't match an even power-of-2 byte
 | 
						|
      // size. Consequently we must & the value with the type's bit mask
 | 
						|
      BitMask = ConstantInt::get(ITy, ITy->getBitMask());
 | 
						|
  if (BitMask)
 | 
						|
    Out << "((";
 | 
						|
  writeOperand(Operand);
 | 
						|
  if (BitMask) {
 | 
						|
    Out << ") & ";
 | 
						|
    printConstant(BitMask);
 | 
						|
    Out << ")"; 
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
 | 
						|
  Out << '&';
 | 
						|
  printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
 | 
						|
                          gep_type_end(I));
 | 
						|
}
 | 
						|
 | 
						|
void CWriter::visitVAArgInst(VAArgInst &I) {
 | 
						|
  Out << "va_arg(*(va_list*)";
 | 
						|
  writeOperand(I.getOperand(0));
 | 
						|
  Out << ", ";
 | 
						|
  printType(Out, I.getType());
 | 
						|
  Out << ");\n ";
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       External Interface declaration
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
 | 
						|
                                              std::ostream &o,
 | 
						|
                                              CodeGenFileType FileType,
 | 
						|
                                              bool Fast) {
 | 
						|
  if (FileType != TargetMachine::AssemblyFile) return true;
 | 
						|
 | 
						|
  PM.add(createLowerGCPass());
 | 
						|
  PM.add(createLowerAllocationsPass(true));
 | 
						|
  PM.add(createLowerInvokePass());
 | 
						|
  PM.add(createCFGSimplificationPass());   // clean up after lower invoke.
 | 
						|
  PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
 | 
						|
  PM.add(new CWriter(o));
 | 
						|
  return false;
 | 
						|
}
 |