mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150642 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			458 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements Loop Rotation Pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-rotate"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define MAX_HEADER_SIZE 16
 | 
						|
 | 
						|
STATISTIC(NumRotated, "Number of loops rotated");
 | 
						|
namespace {
 | 
						|
 | 
						|
  class LoopRotate : public LoopPass {
 | 
						|
  public:
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
    LoopRotate() : LoopPass(ID) {
 | 
						|
      initializeLoopRotatePass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    // LCSSA form makes instruction renaming easier.
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addRequiredID(LCSSAID);
 | 
						|
      AU.addPreservedID(LCSSAID);
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
    void simplifyLoopLatch(Loop *L);
 | 
						|
    bool rotateLoop(Loop *L);
 | 
						|
 | 
						|
  private:
 | 
						|
    LoopInfo *LI;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char LoopRotate::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | 
						|
INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
 | 
						|
 | 
						|
/// Rotate Loop L as many times as possible. Return true if
 | 
						|
/// the loop is rotated at least once.
 | 
						|
bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
  // Simplify the loop latch before attempting to rotate the header
 | 
						|
  // upward. Rotation may not be needed if the loop tail can be folded into the
 | 
						|
  // loop exit.
 | 
						|
  simplifyLoopLatch(L);
 | 
						|
 | 
						|
  // One loop can be rotated multiple times.
 | 
						|
  bool MadeChange = false;
 | 
						|
  while (rotateLoop(L))
 | 
						|
    MadeChange = true;
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
 | 
						|
/// old header into the preheader.  If there were uses of the values produced by
 | 
						|
/// these instruction that were outside of the loop, we have to insert PHI nodes
 | 
						|
/// to merge the two values.  Do this now.
 | 
						|
static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
 | 
						|
                                            BasicBlock *OrigPreheader,
 | 
						|
                                            ValueToValueMapTy &ValueMap) {
 | 
						|
  // Remove PHI node entries that are no longer live.
 | 
						|
  BasicBlock::iterator I, E = OrigHeader->end();
 | 
						|
  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
 | 
						|
 | 
						|
  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
 | 
						|
  // as necessary.
 | 
						|
  SSAUpdater SSA;
 | 
						|
  for (I = OrigHeader->begin(); I != E; ++I) {
 | 
						|
    Value *OrigHeaderVal = I;
 | 
						|
 | 
						|
    // If there are no uses of the value (e.g. because it returns void), there
 | 
						|
    // is nothing to rewrite.
 | 
						|
    if (OrigHeaderVal->use_empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
 | 
						|
 | 
						|
    // The value now exits in two versions: the initial value in the preheader
 | 
						|
    // and the loop "next" value in the original header.
 | 
						|
    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
 | 
						|
    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
 | 
						|
    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
 | 
						|
 | 
						|
    // Visit each use of the OrigHeader instruction.
 | 
						|
    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
 | 
						|
         UE = OrigHeaderVal->use_end(); UI != UE; ) {
 | 
						|
      // Grab the use before incrementing the iterator.
 | 
						|
      Use &U = UI.getUse();
 | 
						|
 | 
						|
      // Increment the iterator before removing the use from the list.
 | 
						|
      ++UI;
 | 
						|
 | 
						|
      // SSAUpdater can't handle a non-PHI use in the same block as an
 | 
						|
      // earlier def. We can easily handle those cases manually.
 | 
						|
      Instruction *UserInst = cast<Instruction>(U.getUser());
 | 
						|
      if (!isa<PHINode>(UserInst)) {
 | 
						|
        BasicBlock *UserBB = UserInst->getParent();
 | 
						|
 | 
						|
        // The original users in the OrigHeader are already using the
 | 
						|
        // original definitions.
 | 
						|
        if (UserBB == OrigHeader)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Users in the OrigPreHeader need to use the value to which the
 | 
						|
        // original definitions are mapped.
 | 
						|
        if (UserBB == OrigPreheader) {
 | 
						|
          U = OrigPreHeaderVal;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Anything else can be handled by SSAUpdater.
 | 
						|
      SSA.RewriteUse(U);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the instructions in this range my be safely and cheaply
 | 
						|
/// speculated. This is not an important enough situation to develop complex
 | 
						|
/// heuristics. We handle a single arithmetic instruction along with any type
 | 
						|
/// conversions.
 | 
						|
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
 | 
						|
                                  BasicBlock::iterator End) {
 | 
						|
  bool seenIncrement = false;
 | 
						|
  for (BasicBlock::iterator I = Begin; I != End; ++I) {
 | 
						|
 | 
						|
    if (!isSafeToSpeculativelyExecute(I))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (isa<DbgInfoIntrinsic>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      // GEPs are cheap if all indices are constant.
 | 
						|
      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
 | 
						|
        return false;
 | 
						|
      // fall-thru to increment case
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
      if (seenIncrement)
 | 
						|
        return false;
 | 
						|
      seenIncrement = true;
 | 
						|
      break;
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
      // ignore type conversions
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold the loop tail into the loop exit by speculating the loop tail
 | 
						|
/// instructions. Typically, this is a single post-increment. In the case of a
 | 
						|
/// simple 2-block loop, hoisting the increment can be much better than
 | 
						|
/// duplicating the entire loop header. In the cast of loops with early exits,
 | 
						|
/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
 | 
						|
/// canonical form so downstream passes can handle it.
 | 
						|
///
 | 
						|
/// I don't believe this invalidates SCEV.
 | 
						|
void LoopRotate::simplifyLoopLatch(Loop *L) {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (!Latch || Latch->hasAddressTaken())
 | 
						|
    return;
 | 
						|
 | 
						|
  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
  if (!Jmp || !Jmp->isUnconditional())
 | 
						|
    return;
 | 
						|
 | 
						|
  BasicBlock *LastExit = Latch->getSinglePredecessor();
 | 
						|
  if (!LastExit || !L->isLoopExiting(LastExit))
 | 
						|
    return;
 | 
						|
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
 | 
						|
  if (!BI)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
 | 
						|
        << LastExit->getName() << "\n");
 | 
						|
 | 
						|
  // Hoist the instructions from Latch into LastExit.
 | 
						|
  LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
 | 
						|
 | 
						|
  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
 | 
						|
  BasicBlock *Header = Jmp->getSuccessor(0);
 | 
						|
  assert(Header == L->getHeader() && "expected a backward branch");
 | 
						|
 | 
						|
  // Remove Latch from the CFG so that LastExit becomes the new Latch.
 | 
						|
  BI->setSuccessor(FallThruPath, Header);
 | 
						|
  Latch->replaceSuccessorsPhiUsesWith(LastExit);
 | 
						|
  Jmp->eraseFromParent();
 | 
						|
 | 
						|
  // Nuke the Latch block.
 | 
						|
  assert(Latch->empty() && "unable to evacuate Latch");
 | 
						|
  LI->removeBlock(Latch);
 | 
						|
  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
 | 
						|
    DT->eraseNode(Latch);
 | 
						|
  Latch->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Rotate loop LP. Return true if the loop is rotated.
 | 
						|
bool LoopRotate::rotateLoop(Loop *L) {
 | 
						|
  // If the loop has only one block then there is not much to rotate.
 | 
						|
  if (L->getBlocks().size() == 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *OrigHeader = L->getHeader();
 | 
						|
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
 | 
						|
  if (BI == 0 || BI->isUnconditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the loop header is not one of the loop exiting blocks then
 | 
						|
  // either this loop is already rotated or it is not
 | 
						|
  // suitable for loop rotation transformations.
 | 
						|
  if (!L->isLoopExiting(OrigHeader))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Updating PHInodes in loops with multiple exits adds complexity.
 | 
						|
  // Keep it simple, and restrict loop rotation to loops with one exit only.
 | 
						|
  // In future, lift this restriction and support for multiple exits if
 | 
						|
  // required.
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() > 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check size of original header and reject loop if it is very big.
 | 
						|
  {
 | 
						|
    CodeMetrics Metrics;
 | 
						|
    Metrics.analyzeBasicBlock(OrigHeader);
 | 
						|
    if (Metrics.NumInsts > MAX_HEADER_SIZE)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now, this loop is suitable for rotation.
 | 
						|
  BasicBlock *OrigPreheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *OrigLatch = L->getLoopLatch();
 | 
						|
 | 
						|
  // If the loop could not be converted to canonical form, it must have an
 | 
						|
  // indirectbr in it, just give up.
 | 
						|
  if (OrigPreheader == 0 || OrigLatch == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Anything ScalarEvolution may know about this loop or the PHI nodes
 | 
						|
  // in its header will soon be invalidated.
 | 
						|
  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
 | 
						|
    SE->forgetLoop(L);
 | 
						|
 | 
						|
  // Find new Loop header. NewHeader is a Header's one and only successor
 | 
						|
  // that is inside loop.  Header's other successor is outside the
 | 
						|
  // loop.  Otherwise loop is not suitable for rotation.
 | 
						|
  BasicBlock *Exit = BI->getSuccessor(0);
 | 
						|
  BasicBlock *NewHeader = BI->getSuccessor(1);
 | 
						|
  if (L->contains(Exit))
 | 
						|
    std::swap(Exit, NewHeader);
 | 
						|
  assert(NewHeader && "Unable to determine new loop header");
 | 
						|
  assert(L->contains(NewHeader) && !L->contains(Exit) &&
 | 
						|
         "Unable to determine loop header and exit blocks");
 | 
						|
 | 
						|
  // This code assumes that the new header has exactly one predecessor.
 | 
						|
  // Remove any single-entry PHI nodes in it.
 | 
						|
  assert(NewHeader->getSinglePredecessor() &&
 | 
						|
         "New header doesn't have one pred!");
 | 
						|
  FoldSingleEntryPHINodes(NewHeader);
 | 
						|
 | 
						|
  // Begin by walking OrigHeader and populating ValueMap with an entry for
 | 
						|
  // each Instruction.
 | 
						|
  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
 | 
						|
  ValueToValueMapTy ValueMap;
 | 
						|
 | 
						|
  // For PHI nodes, the value available in OldPreHeader is just the
 | 
						|
  // incoming value from OldPreHeader.
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
 | 
						|
 | 
						|
  // For the rest of the instructions, either hoist to the OrigPreheader if
 | 
						|
  // possible or create a clone in the OldPreHeader if not.
 | 
						|
  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
 | 
						|
  while (I != E) {
 | 
						|
    Instruction *Inst = I++;
 | 
						|
 | 
						|
    // If the instruction's operands are invariant and it doesn't read or write
 | 
						|
    // memory, then it is safe to hoist.  Doing this doesn't change the order of
 | 
						|
    // execution in the preheader, but does prevent the instruction from
 | 
						|
    // executing in each iteration of the loop.  This means it is safe to hoist
 | 
						|
    // something that might trap, but isn't safe to hoist something that reads
 | 
						|
    // memory (without proving that the loop doesn't write).
 | 
						|
    if (L->hasLoopInvariantOperands(Inst) &&
 | 
						|
        !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
 | 
						|
        !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
 | 
						|
        !isa<AllocaInst>(Inst)) {
 | 
						|
      Inst->moveBefore(LoopEntryBranch);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, create a duplicate of the instruction.
 | 
						|
    Instruction *C = Inst->clone();
 | 
						|
 | 
						|
    // Eagerly remap the operands of the instruction.
 | 
						|
    RemapInstruction(C, ValueMap,
 | 
						|
                     RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
 | 
						|
 | 
						|
    // With the operands remapped, see if the instruction constant folds or is
 | 
						|
    // otherwise simplifyable.  This commonly occurs because the entry from PHI
 | 
						|
    // nodes allows icmps and other instructions to fold.
 | 
						|
    Value *V = SimplifyInstruction(C);
 | 
						|
    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
 | 
						|
      // If so, then delete the temporary instruction and stick the folded value
 | 
						|
      // in the map.
 | 
						|
      delete C;
 | 
						|
      ValueMap[Inst] = V;
 | 
						|
    } else {
 | 
						|
      // Otherwise, stick the new instruction into the new block!
 | 
						|
      C->setName(Inst->getName());
 | 
						|
      C->insertBefore(LoopEntryBranch);
 | 
						|
      ValueMap[Inst] = C;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Along with all the other instructions, we just cloned OrigHeader's
 | 
						|
  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
 | 
						|
  // successors by duplicating their incoming values for OrigHeader.
 | 
						|
  TerminatorInst *TI = OrigHeader->getTerminator();
 | 
						|
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
 | 
						|
 | 
						|
  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
 | 
						|
  // OrigPreHeader's old terminator (the original branch into the loop), and
 | 
						|
  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
 | 
						|
  LoopEntryBranch->eraseFromParent();
 | 
						|
 | 
						|
  // If there were any uses of instructions in the duplicated block outside the
 | 
						|
  // loop, update them, inserting PHI nodes as required
 | 
						|
  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
 | 
						|
 | 
						|
  // NewHeader is now the header of the loop.
 | 
						|
  L->moveToHeader(NewHeader);
 | 
						|
  assert(L->getHeader() == NewHeader && "Latch block is our new header");
 | 
						|
 | 
						|
 | 
						|
  // At this point, we've finished our major CFG changes.  As part of cloning
 | 
						|
  // the loop into the preheader we've simplified instructions and the
 | 
						|
  // duplicated conditional branch may now be branching on a constant.  If it is
 | 
						|
  // branching on a constant and if that constant means that we enter the loop,
 | 
						|
  // then we fold away the cond branch to an uncond branch.  This simplifies the
 | 
						|
  // loop in cases important for nested loops, and it also means we don't have
 | 
						|
  // to split as many edges.
 | 
						|
  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
 | 
						|
  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
 | 
						|
  if (!isa<ConstantInt>(PHBI->getCondition()) ||
 | 
						|
      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
 | 
						|
          != NewHeader) {
 | 
						|
    // The conditional branch can't be folded, handle the general case.
 | 
						|
    // Update DominatorTree to reflect the CFG change we just made.  Then split
 | 
						|
    // edges as necessary to preserve LoopSimplify form.
 | 
						|
    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
 | 
						|
      // Since OrigPreheader now has the conditional branch to Exit block, it is
 | 
						|
      // the dominator of Exit.
 | 
						|
      DT->changeImmediateDominator(Exit, OrigPreheader);
 | 
						|
      DT->changeImmediateDominator(NewHeader, OrigPreheader);
 | 
						|
 | 
						|
      // Update OrigHeader to be dominated by the new header block.
 | 
						|
      DT->changeImmediateDominator(OrigHeader, OrigLatch);
 | 
						|
    }
 | 
						|
 | 
						|
    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
 | 
						|
    // thus is not a preheader anymore.  Split the edge to form a real preheader.
 | 
						|
    BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
 | 
						|
    NewPH->setName(NewHeader->getName() + ".lr.ph");
 | 
						|
 | 
						|
    // Preserve canonical loop form, which means that 'Exit' should have only one
 | 
						|
    // predecessor.
 | 
						|
    BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
 | 
						|
    ExitSplit->moveBefore(Exit);
 | 
						|
  } else {
 | 
						|
    // We can fold the conditional branch in the preheader, this makes things
 | 
						|
    // simpler. The first step is to remove the extra edge to the Exit block.
 | 
						|
    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
 | 
						|
    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
 | 
						|
    NewBI->setDebugLoc(PHBI->getDebugLoc());
 | 
						|
    PHBI->eraseFromParent();
 | 
						|
 | 
						|
    // With our CFG finalized, update DomTree if it is available.
 | 
						|
    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
 | 
						|
      // Update OrigHeader to be dominated by the new header block.
 | 
						|
      DT->changeImmediateDominator(NewHeader, OrigPreheader);
 | 
						|
      DT->changeImmediateDominator(OrigHeader, OrigLatch);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
 | 
						|
  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
 | 
						|
 | 
						|
  // Now that the CFG and DomTree are in a consistent state again, try to merge
 | 
						|
  // the OrigHeader block into OrigLatch.  This will succeed if they are
 | 
						|
  // connected by an unconditional branch.  This is just a cleanup so the
 | 
						|
  // emitted code isn't too gross in this common case.
 | 
						|
  MergeBlockIntoPredecessor(OrigHeader, this);
 | 
						|
 | 
						|
  ++NumRotated;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 |