llvm-6502/include/llvm/Bitcode/BitstreamReader.h
Chris Lattner e17b658c79 Implement support for globally associating abbrevs with block IDs, which
relieves us from having to emit the abbrevs into each instance of the block.
This shrinks kc.bit from 3368K to 3333K, but will be a more significant win
once instructions are abbreviated.

The VST went from:

  Block ID #14 (VALUE_SYMTAB):
      Num Instances: 2345
         Total Size: 1.29508e+07b/1.61885e+06B/404713W
       Average Size: 5522.73b/690.342B/172.585W
          % of file: 48.0645
  Tot/Avg SubBlocks: 0/0
    Tot/Avg Abbrevs: 7035/3
    Tot/Avg Records: 120924/51.5667
      % Abbrev Recs: 100

to:

  Block ID #14 (VALUE_SYMTAB):
      Num Instances: 2345
         Total Size: 1.26713e+07b/1.58391e+06B/395978W
       Average Size: 5403.53b/675.442B/168.86W
          % of file: 47.5198
  Tot/Avg SubBlocks: 0/0
    Tot/Avg Abbrevs: 0/0
    Tot/Avg Records: 120924/51.5667
      % Abbrev Recs: 100

because we didn't emit the same 3 abbrevs 2345 times :)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36767 91177308-0d34-0410-b5e6-96231b3b80d8
2007-05-05 00:17:00 +00:00

460 lines
14 KiB
C++

//===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines the BitstreamReader class. This class can be used to
// read an arbitrary bitstream, regardless of its contents.
//
//===----------------------------------------------------------------------===//
#ifndef BITSTREAM_READER_H
#define BITSTREAM_READER_H
#include "llvm/Bitcode/BitCodes.h"
#include <vector>
namespace llvm {
class BitstreamReader {
const unsigned char *NextChar;
const unsigned char *LastChar;
/// CurWord - This is the current data we have pulled from the stream but have
/// not returned to the client.
uint32_t CurWord;
/// BitsInCurWord - This is the number of bits in CurWord that are valid. This
/// is always from [0...31] inclusive.
unsigned BitsInCurWord;
// CurCodeSize - This is the declared size of code values used for the current
// block, in bits.
unsigned CurCodeSize;
/// CurAbbrevs - Abbrevs installed at in this block.
std::vector<BitCodeAbbrev*> CurAbbrevs;
struct Block {
unsigned PrevCodeSize;
std::vector<BitCodeAbbrev*> PrevAbbrevs;
explicit Block(unsigned PCS) : PrevCodeSize(PCS) {}
};
/// BlockScope - This tracks the codesize of parent blocks.
SmallVector<Block, 8> BlockScope;
/// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks.
/// These describe abbreviations that all blocks of the specified ID inherit.
struct BlockInfo {
unsigned BlockID;
std::vector<BitCodeAbbrev*> Abbrevs;
};
std::vector<BlockInfo> BlockInfoRecords;
/// FirstChar - This remembers the first byte of the stream.
const unsigned char *FirstChar;
public:
BitstreamReader() {
NextChar = FirstChar = LastChar = 0;
CurWord = 0;
BitsInCurWord = 0;
CurCodeSize = 0;
}
BitstreamReader(const unsigned char *Start, const unsigned char *End) {
init(Start, End);
}
void init(const unsigned char *Start, const unsigned char *End) {
NextChar = FirstChar = Start;
LastChar = End;
assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes");
CurWord = 0;
BitsInCurWord = 0;
CurCodeSize = 2;
}
~BitstreamReader() {
// Abbrevs could still exist if the stream was broken. If so, don't leak
// them.
for (unsigned i = 0, e = CurAbbrevs.size(); i != e; ++i)
CurAbbrevs[i]->dropRef();
for (unsigned S = 0, e = BlockScope.size(); S != e; ++S) {
std::vector<BitCodeAbbrev*> &Abbrevs = BlockScope[S].PrevAbbrevs;
for (unsigned i = 0, e = Abbrevs.size(); i != e; ++i)
Abbrevs[i]->dropRef();
}
// Free the BlockInfoRecords.
while (!BlockInfoRecords.empty()) {
BlockInfo &Info = BlockInfoRecords.back();
// Free blockinfo abbrev info.
for (unsigned i = 0, e = Info.Abbrevs.size(); i != e; ++i)
Info.Abbrevs[i]->dropRef();
BlockInfoRecords.pop_back();
}
}
bool AtEndOfStream() const { return NextChar == LastChar; }
/// GetCurrentBitNo - Return the bit # of the bit we are reading.
uint64_t GetCurrentBitNo() const {
return (NextChar-FirstChar)*8 + (32-BitsInCurWord);
}
/// JumpToBit - Reset the stream to the specified bit number.
void JumpToBit(uint64_t BitNo) {
unsigned ByteNo = (BitNo/8) & ~3;
unsigned WordBitNo = BitNo & 31;
assert(ByteNo < (unsigned)(LastChar-FirstChar) && "Invalid location");
// Move the cursor to the right word.
NextChar = FirstChar+ByteNo;
BitsInCurWord = 0;
// Skip over any bits that are already consumed.
if (WordBitNo) {
NextChar -= 4;
Read(WordBitNo);
}
}
/// GetAbbrevIDWidth - Return the number of bits used to encode an abbrev #.
unsigned GetAbbrevIDWidth() const { return CurCodeSize; }
uint32_t Read(unsigned NumBits) {
// If the field is fully contained by CurWord, return it quickly.
if (BitsInCurWord >= NumBits) {
uint32_t R = CurWord & ((1U << NumBits)-1);
CurWord >>= NumBits;
BitsInCurWord -= NumBits;
return R;
}
// If we run out of data, stop at the end of the stream.
if (LastChar == NextChar) {
CurWord = 0;
BitsInCurWord = 0;
return 0;
}
unsigned R = CurWord;
// Read the next word from the stream.
CurWord = (NextChar[0] << 0) | (NextChar[1] << 8) |
(NextChar[2] << 16) | (NextChar[3] << 24);
NextChar += 4;
// Extract NumBits-BitsInCurWord from what we just read.
unsigned BitsLeft = NumBits-BitsInCurWord;
// Be careful here, BitsLeft is in the range [1..32] inclusive.
R |= (CurWord & (~0U >> (32-BitsLeft))) << BitsInCurWord;
// BitsLeft bits have just been used up from CurWord.
if (BitsLeft != 32)
CurWord >>= BitsLeft;
else
CurWord = 0;
BitsInCurWord = 32-BitsLeft;
return R;
}
uint64_t Read64(unsigned NumBits) {
if (NumBits <= 32) return Read(NumBits);
uint64_t V = Read(32);
return V | (uint64_t)Read(NumBits-32) << 32;
}
uint32_t ReadVBR(unsigned NumBits) {
uint32_t Piece = Read(NumBits);
if ((Piece & (1U << (NumBits-1))) == 0)
return Piece;
uint32_t Result = 0;
unsigned NextBit = 0;
while (1) {
Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
if ((Piece & (1U << (NumBits-1))) == 0)
return Result;
NextBit += NumBits-1;
Piece = Read(NumBits);
}
}
uint64_t ReadVBR64(unsigned NumBits) {
uint64_t Piece = Read(NumBits);
if ((Piece & (1U << (NumBits-1))) == 0)
return Piece;
uint64_t Result = 0;
unsigned NextBit = 0;
while (1) {
Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
if ((Piece & (1U << (NumBits-1))) == 0)
return Result;
NextBit += NumBits-1;
Piece = Read(NumBits);
}
}
void SkipToWord() {
BitsInCurWord = 0;
CurWord = 0;
}
unsigned ReadCode() {
return Read(CurCodeSize);
}
//===--------------------------------------------------------------------===//
// Block Manipulation
//===--------------------------------------------------------------------===//
private:
/// getBlockInfo - If there is block info for the specified ID, return it,
/// otherwise return null.
BlockInfo *getBlockInfo(unsigned BlockID) {
// Common case, the most recent entry matches BlockID.
if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
return &BlockInfoRecords.back();
for (unsigned i = 0, e = BlockInfoRecords.size(); i != e; ++i)
if (BlockInfoRecords[i].BlockID == BlockID)
return &BlockInfoRecords[i];
return 0;
}
public:
// Block header:
// [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
/// ReadSubBlockID - Having read the ENTER_SUBBLOCK code, read the BlockID for
/// the block.
unsigned ReadSubBlockID() {
return ReadVBR(bitc::BlockIDWidth);
}
/// SkipBlock - Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip
/// over the body of this block. If the block record is malformed, return
/// true.
bool SkipBlock() {
// Read and ignore the codelen value. Since we are skipping this block, we
// don't care what code widths are used inside of it.
ReadVBR(bitc::CodeLenWidth);
SkipToWord();
unsigned NumWords = Read(bitc::BlockSizeWidth);
// Check that the block wasn't partially defined, and that the offset isn't
// bogus.
if (AtEndOfStream() || NextChar+NumWords*4 > LastChar)
return true;
NextChar += NumWords*4;
return false;
}
/// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, read and enter
/// the block, returning the BlockID of the block we just entered.
bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = 0) {
// Save the current block's state on BlockScope.
BlockScope.push_back(Block(CurCodeSize));
BlockScope.back().PrevAbbrevs.swap(CurAbbrevs);
// Add the abbrevs specific to this block to the CurAbbrevs list.
if (BlockInfo *Info = getBlockInfo(BlockID)) {
for (unsigned i = 0, e = Info->Abbrevs.size(); i != e; ++i) {
CurAbbrevs.push_back(Info->Abbrevs[i]);
CurAbbrevs.back()->addRef();
}
}
// Get the codesize of this block.
CurCodeSize = ReadVBR(bitc::CodeLenWidth);
SkipToWord();
unsigned NumWords = Read(bitc::BlockSizeWidth);
if (NumWordsP) *NumWordsP = NumWords;
// Validate that this block is sane.
if (CurCodeSize == 0 || AtEndOfStream() || NextChar+NumWords*4 > LastChar)
return true;
return false;
}
bool ReadBlockEnd() {
if (BlockScope.empty()) return true;
// Block tail:
// [END_BLOCK, <align4bytes>]
SkipToWord();
CurCodeSize = BlockScope.back().PrevCodeSize;
// Delete abbrevs from popped scope.
for (unsigned i = 0, e = CurAbbrevs.size(); i != e; ++i)
CurAbbrevs[i]->dropRef();
BlockScope.back().PrevAbbrevs.swap(CurAbbrevs);
BlockScope.pop_back();
return false;
}
//===--------------------------------------------------------------------===//
// Record Processing
//===--------------------------------------------------------------------===//
private:
void ReadAbbreviatedField(const BitCodeAbbrevOp &Op,
SmallVectorImpl<uint64_t> &Vals) {
if (Op.isLiteral()) {
// If the abbrev specifies the literal value to use, use it.
Vals.push_back(Op.getLiteralValue());
} else {
// Decode the value as we are commanded.
switch (Op.getEncoding()) {
default: assert(0 && "Unknown encoding!");
case BitCodeAbbrevOp::Fixed:
Vals.push_back(Read(Op.getEncodingData()));
break;
case BitCodeAbbrevOp::VBR:
Vals.push_back(ReadVBR64(Op.getEncodingData()));
break;
}
}
}
public:
unsigned ReadRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals) {
if (AbbrevID == bitc::UNABBREV_RECORD) {
unsigned Code = ReadVBR(6);
unsigned NumElts = ReadVBR(6);
for (unsigned i = 0; i != NumElts; ++i)
Vals.push_back(ReadVBR64(6));
return Code;
}
unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV;
assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!");
BitCodeAbbrev *Abbv = CurAbbrevs[AbbrevNo];
for (unsigned i = 0, e = Abbv->getNumOperandInfos(); i != e; ++i) {
const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i);
if (Op.isLiteral() || Op.getEncoding() != BitCodeAbbrevOp::Array) {
ReadAbbreviatedField(Op, Vals);
} else {
// Array case. Read the number of elements as a vbr6.
unsigned NumElts = ReadVBR(6);
// Get the element encoding.
assert(i+2 == e && "array op not second to last?");
const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i);
// Read all the elements.
for (; NumElts; --NumElts)
ReadAbbreviatedField(EltEnc, Vals);
}
}
unsigned Code = Vals[0];
Vals.erase(Vals.begin());
return Code;
}
//===--------------------------------------------------------------------===//
// Abbrev Processing
//===--------------------------------------------------------------------===//
void ReadAbbrevRecord() {
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
unsigned NumOpInfo = ReadVBR(5);
for (unsigned i = 0; i != NumOpInfo; ++i) {
bool IsLiteral = Read(1);
if (IsLiteral) {
Abbv->Add(BitCodeAbbrevOp(ReadVBR64(8)));
continue;
}
BitCodeAbbrevOp::Encoding E = (BitCodeAbbrevOp::Encoding)Read(3);
if (BitCodeAbbrevOp::hasEncodingData(E))
Abbv->Add(BitCodeAbbrevOp(E, ReadVBR64(5)));
else
Abbv->Add(BitCodeAbbrevOp(E));
}
CurAbbrevs.push_back(Abbv);
}
//===--------------------------------------------------------------------===//
// BlockInfo Block Reading
//===--------------------------------------------------------------------===//
private:
BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
if (BlockInfo *BI = getBlockInfo(BlockID))
return *BI;
// Otherwise, add a new record.
BlockInfoRecords.push_back(BlockInfo());
BlockInfoRecords.back().BlockID = BlockID;
return BlockInfoRecords.back();
}
public:
bool ReadBlockInfoBlock() {
if (EnterSubBlock(bitc::BLOCKINFO_BLOCK_ID)) return true;
SmallVector<uint64_t, 64> Record;
BlockInfo *CurBlockInfo = 0;
// Read all the records for this module.
while (1) {
unsigned Code = ReadCode();
if (Code == bitc::END_BLOCK)
return ReadBlockEnd();
if (Code == bitc::ENTER_SUBBLOCK) {
ReadSubBlockID();
if (SkipBlock()) return true;
continue;
}
// Read abbrev records, associate them with CurBID.
if (Code == bitc::DEFINE_ABBREV) {
if (!CurBlockInfo) return true;
ReadAbbrevRecord();
// ReadAbbrevRecord installs the abbrev in CurAbbrevs. Move it to the
// appropriate BlockInfo.
BitCodeAbbrev *Abbv = CurAbbrevs.back();
CurAbbrevs.pop_back();
CurBlockInfo->Abbrevs.push_back(Abbv);
continue;
}
// Read a record.
switch (ReadRecord(Code, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::BLOCKINFO_CODE_SETBID:
if (Record.size() < 1) return true;
CurBlockInfo = &getOrCreateBlockInfo(Record[0]);
break;
}
}
}
};
} // End llvm namespace
#endif