mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-24 08:33:39 +00:00
7a49fdcd11
fixes crafty and probably others. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23167 91177308-0d34-0410-b5e6-96231b3b80d8
1645 lines
64 KiB
C++
1645 lines
64 KiB
C++
//===-- PPC32ISelDAGToDAG.cpp - PPC32 pattern matching inst selector ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for 32 bit PowerPC,
|
|
// converting from a legalized dag to a PPC dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PowerPC.h"
|
|
#include "PPC32TargetMachine.h"
|
|
#include "PPC32ISelLowering.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
|
|
Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// PPC32DAGToDAGISel - PPC32 specific code to select PPC32 machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
class PPC32DAGToDAGISel : public SelectionDAGISel {
|
|
PPC32TargetLowering PPC32Lowering;
|
|
unsigned GlobalBaseReg;
|
|
public:
|
|
PPC32DAGToDAGISel(TargetMachine &TM)
|
|
: SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) {}
|
|
|
|
virtual bool runOnFunction(Function &Fn) {
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseReg = 0;
|
|
return SelectionDAGISel::runOnFunction(Fn);
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDOperand getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
|
|
/// base register. Return the virtual register that holds this value.
|
|
SDOperand getGlobalBaseReg();
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDOperand Select(SDOperand Op);
|
|
|
|
SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
|
|
unsigned OCHi, unsigned OCLo,
|
|
bool IsArithmetic = false,
|
|
bool Negate = false);
|
|
SDNode *SelectBitfieldInsert(SDNode *N);
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the
|
|
/// specified condition code, returning the CR# of the expression.
|
|
SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
|
|
|
|
/// SelectAddr - Given the specified address, return the two operands for a
|
|
/// load/store instruction, and return true if it should be an indexed [r+r]
|
|
/// operation.
|
|
bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
|
|
|
|
SDOperand BuildSDIVSequence(SDNode *N);
|
|
SDOperand BuildUDIVSequence(SDNode *N);
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
DEBUG(BB->dump());
|
|
// Select target instructions for the DAG.
|
|
DAG.setRoot(Select(DAG.getRoot()));
|
|
DAG.RemoveDeadNodes();
|
|
|
|
// Emit machine code to BB.
|
|
ScheduleAndEmitDAG(DAG);
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
};
|
|
}
|
|
|
|
/// getGlobalBaseReg - Output the instructions required to put the
|
|
/// base address to use for accessing globals into a register.
|
|
///
|
|
SDOperand PPC32DAGToDAGISel::getGlobalBaseReg() {
|
|
if (!GlobalBaseReg) {
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = BB->getParent()->front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
SSARegMap *RegMap = BB->getParent()->getSSARegMap();
|
|
GlobalBaseReg = RegMap->createVirtualRegister(PPC32::GPRCRegisterClass);
|
|
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
|
|
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
|
|
}
|
|
return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
|
|
}
|
|
|
|
|
|
// isIntImmediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isIntImmediate(SDNode *N, unsigned& Imm) {
|
|
if (N->getOpcode() == ISD::Constant) {
|
|
Imm = cast<ConstantSDNode>(N)->getValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isOprShiftImm - Returns true if the specified operand is a shift opcode with
|
|
// a immediate shift count less than 32.
|
|
static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) {
|
|
Opc = N->getOpcode();
|
|
return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
|
|
isIntImmediate(N->getOperand(1).Val, SH) && SH < 32;
|
|
}
|
|
|
|
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
|
|
// any number of 0s on either side. The 1s are allowed to wrap from LSB to
|
|
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
|
|
// not, since all 1s are not contiguous.
|
|
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
|
|
if (isShiftedMask_32(Val)) {
|
|
// look for the first non-zero bit
|
|
MB = CountLeadingZeros_32(Val);
|
|
// look for the first zero bit after the run of ones
|
|
ME = CountLeadingZeros_32((Val - 1) ^ Val);
|
|
return true;
|
|
} else {
|
|
Val = ~Val; // invert mask
|
|
if (isShiftedMask_32(Val)) {
|
|
// effectively look for the first zero bit
|
|
ME = CountLeadingZeros_32(Val) - 1;
|
|
// effectively look for the first one bit after the run of zeros
|
|
MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
|
|
return true;
|
|
}
|
|
}
|
|
// no run present
|
|
return false;
|
|
}
|
|
|
|
// isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate
|
|
// and mask opcode and mask operation.
|
|
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
|
|
unsigned &SH, unsigned &MB, unsigned &ME) {
|
|
unsigned Shift = 32;
|
|
unsigned Indeterminant = ~0; // bit mask marking indeterminant results
|
|
unsigned Opcode = N->getOpcode();
|
|
if (N->getNumOperands() != 2 ||
|
|
!isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
|
|
return false;
|
|
|
|
if (Opcode == ISD::SHL) {
|
|
// apply shift left to mask if it comes first
|
|
if (IsShiftMask) Mask = Mask << Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu << Shift);
|
|
} else if (Opcode == ISD::SRA || Opcode == ISD::SRL) {
|
|
// apply shift right to mask if it comes first
|
|
if (IsShiftMask) Mask = Mask >> Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu >> Shift);
|
|
// adjust for the left rotate
|
|
Shift = 32 - Shift;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// if the mask doesn't intersect any Indeterminant bits
|
|
if (Mask && !(Mask & Indeterminant)) {
|
|
SH = Shift;
|
|
// make sure the mask is still a mask (wrap arounds may not be)
|
|
return isRunOfOnes(Mask, MB, ME);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
|
|
// opcode and that it has a immediate integer right operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
|
|
return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
|
|
}
|
|
|
|
// isOprNot - Returns true if the specified operand is an xor with immediate -1.
|
|
static bool isOprNot(SDNode *N) {
|
|
unsigned Imm;
|
|
return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
|
|
}
|
|
|
|
// Immediate constant composers.
|
|
// Lo16 - grabs the lo 16 bits from a 32 bit constant.
|
|
// Hi16 - grabs the hi 16 bits from a 32 bit constant.
|
|
// HA16 - computes the hi bits required if the lo bits are add/subtracted in
|
|
// arithmethically.
|
|
static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; }
|
|
static unsigned Hi16(unsigned x) { return Lo16(x >> 16); }
|
|
static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); }
|
|
|
|
// isIntImmediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
Imm = (unsigned)CN->getSignExtended();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SelectBitfieldInsert - turn an or of two masked values into
|
|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
|
|
/// Returns true on success, false if the caller still needs to select OR.
|
|
///
|
|
/// Patterns matched:
|
|
/// 1. or shl, and 5. or and, and
|
|
/// 2. or and, shl 6. or shl, shr
|
|
/// 3. or shr, and 7. or shr, shl
|
|
/// 4. or and, shr
|
|
SDNode *PPC32DAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
|
|
bool IsRotate = false;
|
|
unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
|
|
unsigned Value;
|
|
|
|
SDOperand Op0 = N->getOperand(0);
|
|
SDOperand Op1 = N->getOperand(1);
|
|
|
|
unsigned Op0Opc = Op0.getOpcode();
|
|
unsigned Op1Opc = Op1.getOpcode();
|
|
|
|
// Verify that we have the correct opcodes
|
|
if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
|
|
return false;
|
|
if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
|
|
return false;
|
|
|
|
// Generate Mask value for Target
|
|
if (isIntImmediate(Op0.getOperand(1), Value)) {
|
|
switch(Op0Opc) {
|
|
case ISD::SHL: TgtMask <<= Value; break;
|
|
case ISD::SRL: TgtMask >>= Value; break;
|
|
case ISD::AND: TgtMask &= Value; break;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
// Generate Mask value for Insert
|
|
if (!isIntImmediate(Op1.getOperand(1), Value))
|
|
return 0;
|
|
|
|
switch(Op1Opc) {
|
|
case ISD::SHL:
|
|
SH = Value;
|
|
InsMask <<= SH;
|
|
if (Op0Opc == ISD::SRL) IsRotate = true;
|
|
break;
|
|
case ISD::SRL:
|
|
SH = Value;
|
|
InsMask >>= SH;
|
|
SH = 32-SH;
|
|
if (Op0Opc == ISD::SHL) IsRotate = true;
|
|
break;
|
|
case ISD::AND:
|
|
InsMask &= Value;
|
|
break;
|
|
}
|
|
|
|
// If both of the inputs are ANDs and one of them has a logical shift by
|
|
// constant as its input, make that AND the inserted value so that we can
|
|
// combine the shift into the rotate part of the rlwimi instruction
|
|
bool IsAndWithShiftOp = false;
|
|
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
|
|
if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
|
|
Op1.getOperand(0).getOpcode() == ISD::SRL) {
|
|
if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
|
|
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
|
|
IsAndWithShiftOp = true;
|
|
}
|
|
} else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
|
|
Op0.getOperand(0).getOpcode() == ISD::SRL) {
|
|
if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
|
|
std::swap(Op0, Op1);
|
|
std::swap(TgtMask, InsMask);
|
|
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
|
|
IsAndWithShiftOp = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that the Target mask and Insert mask together form a full word mask
|
|
// and that the Insert mask is a run of set bits (which implies both are runs
|
|
// of set bits). Given that, Select the arguments and generate the rlwimi
|
|
// instruction.
|
|
unsigned MB, ME;
|
|
if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
|
|
bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
|
|
bool Op0IsAND = Op0Opc == ISD::AND;
|
|
// Check for rotlwi / rotrwi here, a special case of bitfield insert
|
|
// where both bitfield halves are sourced from the same value.
|
|
if (IsRotate && fullMask &&
|
|
N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
|
|
Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(0), getI32Imm(31));
|
|
return Op0.Val;
|
|
}
|
|
SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0))
|
|
: Select(Op0);
|
|
SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0))
|
|
: Select(Op1.getOperand(0));
|
|
Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
return Op0.Val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// SelectIntImmediateExpr - Choose code for integer operations with an immediate
|
|
// operand.
|
|
SDNode *PPC32DAGToDAGISel::SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
|
|
unsigned OCHi, unsigned OCLo,
|
|
bool IsArithmetic,
|
|
bool Negate) {
|
|
// Check to make sure this is a constant.
|
|
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS);
|
|
// Exit if not a constant.
|
|
if (!CN) return 0;
|
|
// Extract immediate.
|
|
unsigned C = (unsigned)CN->getValue();
|
|
// Negate if required (ISD::SUB).
|
|
if (Negate) C = -C;
|
|
// Get the hi and lo portions of constant.
|
|
unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C);
|
|
unsigned Lo = Lo16(C);
|
|
|
|
// If two instructions are needed and usage indicates it would be better to
|
|
// load immediate into a register, bail out.
|
|
if (Hi && Lo && CN->use_size() > 2) return false;
|
|
|
|
// Select the first operand.
|
|
SDOperand Opr0 = Select(LHS);
|
|
|
|
if (Lo) // Add in the lo-part.
|
|
Opr0 = CurDAG->getTargetNode(OCLo, MVT::i32, Opr0, getI32Imm(Lo));
|
|
if (Hi) // Add in the hi-part.
|
|
Opr0 = CurDAG->getTargetNode(OCHi, MVT::i32, Opr0, getI32Imm(Hi));
|
|
return Opr0.Val;
|
|
}
|
|
|
|
/// SelectAddr - Given the specified address, return the two operands for a
|
|
/// load/store instruction, and return true if it should be an indexed [r+r]
|
|
/// operation.
|
|
bool PPC32DAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1,
|
|
SDOperand &Op2) {
|
|
unsigned imm = 0;
|
|
if (Addr.getOpcode() == ISD::ADD) {
|
|
if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) {
|
|
Op1 = getI32Imm(Lo16(imm));
|
|
if (FrameIndexSDNode *FI =
|
|
dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
|
|
++FrameOff;
|
|
Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
|
|
} else {
|
|
Op2 = Select(Addr.getOperand(0));
|
|
}
|
|
return false;
|
|
} else {
|
|
Op1 = Select(Addr.getOperand(0));
|
|
Op2 = Select(Addr.getOperand(1));
|
|
return true; // [r+r]
|
|
}
|
|
}
|
|
|
|
// Now check if we're dealing with a global, and whether or not we should emit
|
|
// an optimized load or store for statics.
|
|
if (GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(Addr)) {
|
|
GlobalValue *GV = GN->getGlobal();
|
|
if (!GV->hasWeakLinkage() && !GV->isExternal()) {
|
|
Op1 = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
|
|
if (PICEnabled)
|
|
Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),
|
|
Op1);
|
|
else
|
|
Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
|
|
return false;
|
|
}
|
|
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Op1 = getI32Imm(0);
|
|
Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
|
|
return false;
|
|
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Addr)) {
|
|
Op1 = Addr;
|
|
if (PICEnabled)
|
|
Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1);
|
|
else
|
|
Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
|
|
return false;
|
|
}
|
|
Op1 = getI32Imm(0);
|
|
Op2 = Select(Addr);
|
|
return false;
|
|
}
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the specified
|
|
/// condition code, returning the CR# of the expression.
|
|
SDOperand PPC32DAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
|
|
ISD::CondCode CC) {
|
|
// Always select the LHS.
|
|
LHS = Select(LHS);
|
|
|
|
// Use U to determine whether the SETCC immediate range is signed or not.
|
|
if (MVT::isInteger(LHS.getValueType())) {
|
|
bool U = ISD::isUnsignedIntSetCC(CC);
|
|
unsigned Imm;
|
|
if (isIntImmediate(RHS, Imm) &&
|
|
((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
|
|
return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32,
|
|
LHS, getI32Imm(Lo16(Imm)));
|
|
return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
|
|
LHS, Select(RHS));
|
|
} else {
|
|
return CurDAG->getTargetNode(PPC::FCMPU, MVT::i32, LHS, Select(RHS));
|
|
}
|
|
}
|
|
|
|
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
|
|
/// to Condition.
|
|
static unsigned getBCCForSetCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown condition!"); abort();
|
|
case ISD::SETEQ: return PPC::BEQ;
|
|
case ISD::SETNE: return PPC::BNE;
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: return PPC::BLT;
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: return PPC::BLE;
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT: return PPC::BGT;
|
|
case ISD::SETUGE:
|
|
case ISD::SETGE: return PPC::BGE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getCRIdxForSetCC - Return the index of the condition register field
|
|
/// associated with the SetCC condition, and whether or not the field is
|
|
/// treated as inverted. That is, lt = 0; ge = 0 inverted.
|
|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown condition!"); abort();
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: Inv = false; return 0;
|
|
case ISD::SETUGE:
|
|
case ISD::SETGE: Inv = true; return 0;
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT: Inv = false; return 1;
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: Inv = true; return 1;
|
|
case ISD::SETEQ: Inv = false; return 2;
|
|
case ISD::SETNE: Inv = true; return 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Structure used to return the necessary information to codegen an SDIV as
|
|
// a multiply.
|
|
struct ms {
|
|
int m; // magic number
|
|
int s; // shift amount
|
|
};
|
|
|
|
struct mu {
|
|
unsigned int m; // magic number
|
|
int a; // add indicator
|
|
int s; // shift amount
|
|
};
|
|
|
|
/// magic - calculate the magic numbers required to codegen an integer sdiv as
|
|
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
|
|
/// or -1.
|
|
static struct ms magic(int d) {
|
|
int p;
|
|
unsigned int ad, anc, delta, q1, r1, q2, r2, t;
|
|
const unsigned int two31 = 0x80000000U;
|
|
struct ms mag;
|
|
|
|
ad = abs(d);
|
|
t = two31 + ((unsigned int)d >> 31);
|
|
anc = t - 1 - t%ad; // absolute value of nc
|
|
p = 31; // initialize p
|
|
q1 = two31/anc; // initialize q1 = 2p/abs(nc)
|
|
r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
|
|
q2 = two31/ad; // initialize q2 = 2p/abs(d)
|
|
r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
|
|
do {
|
|
p = p + 1;
|
|
q1 = 2*q1; // update q1 = 2p/abs(nc)
|
|
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
|
|
if (r1 >= anc) { // must be unsigned comparison
|
|
q1 = q1 + 1;
|
|
r1 = r1 - anc;
|
|
}
|
|
q2 = 2*q2; // update q2 = 2p/abs(d)
|
|
r2 = 2*r2; // update r2 = rem(2p/abs(d))
|
|
if (r2 >= ad) { // must be unsigned comparison
|
|
q2 = q2 + 1;
|
|
r2 = r2 - ad;
|
|
}
|
|
delta = ad - r2;
|
|
} while (q1 < delta || (q1 == delta && r1 == 0));
|
|
|
|
mag.m = q2 + 1;
|
|
if (d < 0) mag.m = -mag.m; // resulting magic number
|
|
mag.s = p - 32; // resulting shift
|
|
return mag;
|
|
}
|
|
|
|
/// magicu - calculate the magic numbers required to codegen an integer udiv as
|
|
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
|
|
static struct mu magicu(unsigned d)
|
|
{
|
|
int p;
|
|
unsigned int nc, delta, q1, r1, q2, r2;
|
|
struct mu magu;
|
|
magu.a = 0; // initialize "add" indicator
|
|
nc = - 1 - (-d)%d;
|
|
p = 31; // initialize p
|
|
q1 = 0x80000000/nc; // initialize q1 = 2p/nc
|
|
r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
|
|
q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
|
|
r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
|
|
do {
|
|
p = p + 1;
|
|
if (r1 >= nc - r1 ) {
|
|
q1 = 2*q1 + 1; // update q1
|
|
r1 = 2*r1 - nc; // update r1
|
|
}
|
|
else {
|
|
q1 = 2*q1; // update q1
|
|
r1 = 2*r1; // update r1
|
|
}
|
|
if (r2 + 1 >= d - r2) {
|
|
if (q2 >= 0x7FFFFFFF) magu.a = 1;
|
|
q2 = 2*q2 + 1; // update q2
|
|
r2 = 2*r2 + 1 - d; // update r2
|
|
}
|
|
else {
|
|
if (q2 >= 0x80000000) magu.a = 1;
|
|
q2 = 2*q2; // update q2
|
|
r2 = 2*r2 + 1; // update r2
|
|
}
|
|
delta = d - 1 - r2;
|
|
} while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
|
|
magu.m = q2 + 1; // resulting magic number
|
|
magu.s = p - 32; // resulting shift
|
|
return magu;
|
|
}
|
|
|
|
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number. See:
|
|
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
|
|
SDOperand PPC32DAGToDAGISel::BuildSDIVSequence(SDNode *N) {
|
|
int d = (int)cast<ConstantSDNode>(N->getOperand(1))->getValue();
|
|
ms magics = magic(d);
|
|
// Multiply the numerator (operand 0) by the magic value
|
|
SDOperand Q = CurDAG->getNode(ISD::MULHS, MVT::i32, N->getOperand(0),
|
|
CurDAG->getConstant(magics.m, MVT::i32));
|
|
// If d > 0 and m < 0, add the numerator
|
|
if (d > 0 && magics.m < 0)
|
|
Q = CurDAG->getNode(ISD::ADD, MVT::i32, Q, N->getOperand(0));
|
|
// If d < 0 and m > 0, subtract the numerator.
|
|
if (d < 0 && magics.m > 0)
|
|
Q = CurDAG->getNode(ISD::SUB, MVT::i32, Q, N->getOperand(0));
|
|
// Shift right algebraic if shift value is nonzero
|
|
if (magics.s > 0)
|
|
Q = CurDAG->getNode(ISD::SRA, MVT::i32, Q,
|
|
CurDAG->getConstant(magics.s, MVT::i32));
|
|
// Extract the sign bit and add it to the quotient
|
|
SDOperand T =
|
|
CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(31, MVT::i32));
|
|
return CurDAG->getNode(ISD::ADD, MVT::i32, Q, T);
|
|
}
|
|
|
|
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number. See:
|
|
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
|
|
SDOperand PPC32DAGToDAGISel::BuildUDIVSequence(SDNode *N) {
|
|
unsigned d = (unsigned)cast<ConstantSDNode>(N->getOperand(1))->getValue();
|
|
mu magics = magicu(d);
|
|
// Multiply the numerator (operand 0) by the magic value
|
|
SDOperand Q = CurDAG->getNode(ISD::MULHU, MVT::i32, N->getOperand(0),
|
|
CurDAG->getConstant(magics.m, MVT::i32));
|
|
if (magics.a == 0) {
|
|
return CurDAG->getNode(ISD::SRL, MVT::i32, Q,
|
|
CurDAG->getConstant(magics.s, MVT::i32));
|
|
} else {
|
|
SDOperand NPQ = CurDAG->getNode(ISD::SUB, MVT::i32, N->getOperand(0), Q);
|
|
NPQ = CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
|
|
CurDAG->getConstant(1, MVT::i32));
|
|
NPQ = CurDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
|
|
return CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
|
|
CurDAG->getConstant(magics.s-1, MVT::i32));
|
|
}
|
|
}
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
|
|
N->getOpcode() < PPCISD::FIRST_NUMBER)
|
|
return Op; // Already selected.
|
|
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
std::cerr << "Cannot yet select: ";
|
|
N->dump();
|
|
std::cerr << "\n";
|
|
abort();
|
|
case ISD::EntryToken: // These leaves remain the same.
|
|
return Op;
|
|
case ISD::TokenFactor: {
|
|
SDOperand New;
|
|
if (N->getNumOperands() == 2) {
|
|
SDOperand Op0 = Select(N->getOperand(0));
|
|
SDOperand Op1 = Select(N->getOperand(1));
|
|
New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);
|
|
} else {
|
|
std::vector<SDOperand> Ops;
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Select(N->getOperand(i)));
|
|
New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);
|
|
}
|
|
|
|
if (New.Val != N) {
|
|
CurDAG->ReplaceAllUsesWith(Op, New);
|
|
N = New.Val;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::CopyFromReg: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
if (Chain == N->getOperand(0)) return Op; // No change
|
|
SDOperand New = CurDAG->getCopyFromReg(Chain,
|
|
cast<RegisterSDNode>(N->getOperand(1))->getReg(), N->getValueType(0));
|
|
return New.getValue(Op.ResNo);
|
|
}
|
|
case ISD::CopyToReg: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
SDOperand Reg = N->getOperand(1);
|
|
SDOperand Val = Select(N->getOperand(2));
|
|
if (Chain != N->getOperand(0) || Val != N->getOperand(2)) {
|
|
SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other,
|
|
Chain, Reg, Val);
|
|
CurDAG->ReplaceAllUsesWith(Op, New);
|
|
N = New.Val;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::Constant: {
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
unsigned v = (unsigned)cast<ConstantSDNode>(N)->getValue();
|
|
unsigned Hi = HA16(v);
|
|
unsigned Lo = Lo16(v);
|
|
|
|
// NOTE: This doesn't use SelectNodeTo, because doing that will prevent
|
|
// folding shared immediates into other the second instruction that
|
|
// uses it.
|
|
if (Hi && Lo) {
|
|
SDOperand Top = CurDAG->getTargetNode(PPC::LIS, MVT::i32,
|
|
getI32Imm(v >> 16));
|
|
return CurDAG->getTargetNode(PPC::ORI, MVT::i32, Top,
|
|
getI32Imm(v & 0xFFFF));
|
|
} else if (Lo) {
|
|
return CurDAG->getTargetNode(PPC::LI, MVT::i32, getI32Imm(v));
|
|
} else {
|
|
return CurDAG->getTargetNode(PPC::LIS, MVT::i32, getI32Imm(v >> 16));
|
|
}
|
|
}
|
|
case ISD::UNDEF:
|
|
if (N->getValueType(0) == MVT::i32)
|
|
CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_GPR, MVT::i32);
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_FP, N->getValueType(0));
|
|
break;
|
|
case ISD::FrameIndex: {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
|
|
CurDAG->getTargetFrameIndex(FI, MVT::i32),
|
|
getI32Imm(0));
|
|
break;
|
|
}
|
|
case ISD::ConstantPool: {
|
|
Constant *C = cast<ConstantPoolSDNode>(N)->get();
|
|
SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32);
|
|
if (PICEnabled)
|
|
Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI);
|
|
else
|
|
Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI);
|
|
CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI);
|
|
break;
|
|
}
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
SDOperand Tmp;
|
|
SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
|
|
if (PICEnabled)
|
|
Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), GA);
|
|
else
|
|
Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, GA);
|
|
|
|
if (GV->hasWeakLinkage() || GV->isExternal())
|
|
CurDAG->SelectNodeTo(N, PPC::LWZ, MVT::i32, GA, Tmp);
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, GA);
|
|
break;
|
|
}
|
|
case ISD::DYNAMIC_STACKALLOC: {
|
|
// FIXME: We are currently ignoring the requested alignment for handling
|
|
// greater than the stack alignment. This will need to be revisited at some
|
|
// point. Align = N.getOperand(2);
|
|
if (!isa<ConstantSDNode>(N->getOperand(2)) ||
|
|
cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) {
|
|
std::cerr << "Cannot allocate stack object with greater alignment than"
|
|
<< " the stack alignment yet!";
|
|
abort();
|
|
}
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
SDOperand Amt = Select(N->getOperand(1));
|
|
|
|
SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32);
|
|
|
|
// Subtract the amount (guaranteed to be a multiple of the stack alignment)
|
|
// from the stack pointer, giving us the result pointer.
|
|
SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Reg);
|
|
|
|
// Copy this result back into R1.
|
|
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result);
|
|
|
|
// Copy this result back out of R1 to make sure we're not using the stack
|
|
// space without decrementing the stack pointer.
|
|
Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
|
|
|
|
// Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg.
|
|
CurDAG->ReplaceAllUsesWith(N, Result.Val);
|
|
N = Result.Val;
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
switch(cast<VTSDNode>(N->getOperand(1))->getVT()) {
|
|
default: assert(0 && "Illegal type in SIGN_EXTEND_INREG"); break;
|
|
case MVT::i16:
|
|
CurDAG->SelectNodeTo(N, PPC::EXTSH, MVT::i32, Select(N->getOperand(0)));
|
|
break;
|
|
case MVT::i8:
|
|
CurDAG->SelectNodeTo(N, PPC::EXTSB, MVT::i32, Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
break;
|
|
case ISD::CTLZ:
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
CurDAG->SelectNodeTo(N, PPC::CNTLZW, MVT::i32, Select(N->getOperand(0)));
|
|
break;
|
|
case PPCISD::FSEL:
|
|
CurDAG->SelectNodeTo(N, PPC::FSEL, N->getValueType(0),
|
|
Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)),
|
|
Select(N->getOperand(2)));
|
|
break;
|
|
case ISD::ADD: {
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
if (Ty == MVT::i32) {
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
|
|
PPC::ADDIS, PPC::ADDI, true)) {
|
|
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
|
|
N = I;
|
|
} else {
|
|
CurDAG->SelectNodeTo(N, PPC::ADD, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!NoExcessFPPrecision) { // Match FMA ops
|
|
if (N->getOperand(0).getOpcode() == ISD::MUL &&
|
|
N->getOperand(0).Val->hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
Select(N->getOperand(0).getOperand(1)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
} else if (N->getOperand(1).getOpcode() == ISD::MUL &&
|
|
N->getOperand(1).hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
|
|
Select(N->getOperand(1).getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(1)),
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, Ty,
|
|
Select(N->getOperand(0)), Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::SUB: {
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
if (Ty == MVT::i32) {
|
|
unsigned Imm;
|
|
if (isIntImmediate(N->getOperand(0), Imm) && isInt16(Imm)) {
|
|
if (0 == Imm)
|
|
CurDAG->SelectNodeTo(N, PPC::NEG, Ty, Select(N->getOperand(1)));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::SUBFIC, Ty, Select(N->getOperand(1)),
|
|
getI32Imm(Lo16(Imm)));
|
|
break;
|
|
}
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
|
|
PPC::ADDIS, PPC::ADDI, true, true)) {
|
|
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
|
|
N = I;
|
|
} else {
|
|
CurDAG->SelectNodeTo(N, PPC::SUBF, Ty, Select(N->getOperand(1)),
|
|
Select(N->getOperand(0)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!NoExcessFPPrecision) { // Match FMA ops
|
|
if (N->getOperand(0).getOpcode() == ISD::MUL &&
|
|
N->getOperand(0).Val->hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
Select(N->getOperand(0).getOperand(1)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
} else if (N->getOperand(1).getOpcode() == ISD::MUL &&
|
|
N->getOperand(1).Val->hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty,
|
|
Select(N->getOperand(1).getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(1)),
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
}
|
|
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, Ty,
|
|
Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::MUL: {
|
|
unsigned Imm, Opc;
|
|
if (isIntImmediate(N->getOperand(1), Imm) && isInt16(Imm)) {
|
|
CurDAG->SelectNodeTo(N, PPC::MULLI, MVT::i32,
|
|
Select(N->getOperand(0)), getI32Imm(Lo16(Imm)));
|
|
break;
|
|
}
|
|
switch (N->getValueType(0)) {
|
|
default: assert(0 && "Unhandled multiply type!");
|
|
case MVT::i32: Opc = PPC::MULLW; break;
|
|
case MVT::f32: Opc = PPC::FMULS; break;
|
|
case MVT::f64: Opc = PPC::FMUL; break;
|
|
}
|
|
CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::SDIV: {
|
|
unsigned Imm;
|
|
if (isIntImmediate(N->getOperand(1), Imm)) {
|
|
if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
|
|
SDOperand Op =
|
|
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
|
|
Select(N->getOperand(0)),
|
|
getI32Imm(Log2_32(Imm)));
|
|
CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
|
|
Op.getValue(0), Op.getValue(1));
|
|
break;
|
|
} else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
|
|
SDOperand Op =
|
|
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
|
|
Select(N->getOperand(0)),
|
|
getI32Imm(Log2_32(-Imm)));
|
|
SDOperand PT =
|
|
CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0),
|
|
Op.getValue(1));
|
|
CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
|
|
break;
|
|
} else if (Imm) {
|
|
SDOperand Result = Select(BuildSDIVSequence(N));
|
|
assert(Result.ResNo == 0);
|
|
CurDAG->ReplaceAllUsesWith(Op, Result);
|
|
N = Result.Val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned Opc;
|
|
switch (N->getValueType(0)) {
|
|
default: assert(0 && "Unknown type to ISD::SDIV");
|
|
case MVT::i32: Opc = PPC::DIVW; break;
|
|
case MVT::f32: Opc = PPC::FDIVS; break;
|
|
case MVT::f64: Opc = PPC::FDIV; break;
|
|
}
|
|
CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::UDIV: {
|
|
// If this is a divide by constant, we can emit code using some magic
|
|
// constants to implement it as a multiply instead.
|
|
unsigned Imm;
|
|
if (isIntImmediate(N->getOperand(1), Imm) && Imm) {
|
|
SDOperand Result = Select(BuildUDIVSequence(N));
|
|
assert(Result.ResNo == 0);
|
|
CurDAG->ReplaceAllUsesWith(Op, Result);
|
|
N = Result.Val;
|
|
break;
|
|
}
|
|
|
|
CurDAG->SelectNodeTo(N, PPC::DIVWU, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::MULHS:
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
CurDAG->SelectNodeTo(N, PPC::MULHW, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::MULHU:
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
CurDAG->SelectNodeTo(N, PPC::MULHWU, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::AND: {
|
|
unsigned Imm;
|
|
// If this is an and of a value rotated between 0 and 31 bits and then and'd
|
|
// with a mask, emit rlwinm
|
|
if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
|
|
isShiftedMask_32(~Imm))) {
|
|
SDOperand Val;
|
|
unsigned SH, MB, ME;
|
|
if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
|
|
Val = Select(N->getOperand(0).getOperand(0));
|
|
} else {
|
|
Val = Select(N->getOperand(0));
|
|
isRunOfOnes(Imm, MB, ME);
|
|
SH = 0;
|
|
}
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH),
|
|
getI32Imm(MB), getI32Imm(ME));
|
|
break;
|
|
}
|
|
// Finally, check for the case where we are being asked to select
|
|
// and (not(a), b) or and (a, not(b)) which can be selected as andc.
|
|
if (isOprNot(N->getOperand(0).Val))
|
|
CurDAG->SelectNodeTo(N, PPC::ANDC, MVT::i32, Select(N->getOperand(1)),
|
|
Select(N->getOperand(0).getOperand(0)));
|
|
else if (isOprNot(N->getOperand(1).Val))
|
|
CurDAG->SelectNodeTo(N, PPC::ANDC, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(0)));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::AND, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
if (SDNode *I = SelectBitfieldInsert(N)) {
|
|
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
|
|
N = I;
|
|
break;
|
|
}
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
|
|
N->getOperand(1),
|
|
PPC::ORIS, PPC::ORI)) {
|
|
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
|
|
N = I;
|
|
break;
|
|
}
|
|
// Finally, check for the case where we are being asked to select
|
|
// 'or (not(a), b)' or 'or (a, not(b))' which can be selected as orc.
|
|
if (isOprNot(N->getOperand(0).Val))
|
|
CurDAG->SelectNodeTo(N, PPC::ORC, MVT::i32, Select(N->getOperand(1)),
|
|
Select(N->getOperand(0).getOperand(0)));
|
|
else if (isOprNot(N->getOperand(1).Val))
|
|
CurDAG->SelectNodeTo(N, PPC::ORC, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(0)));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::XOR:
|
|
// Check whether or not this node is a logical 'not'. This is represented
|
|
// by llvm as a xor with the constant value -1 (all bits set). If this is a
|
|
// 'not', then fold 'or' into 'nor', and so forth for the supported ops.
|
|
if (isOprNot(N)) {
|
|
unsigned Opc;
|
|
SDOperand Val = Select(N->getOperand(0));
|
|
switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
|
|
default: Opc = 0; break;
|
|
case PPC::OR: Opc = PPC::NOR; break;
|
|
case PPC::AND: Opc = PPC::NAND; break;
|
|
case PPC::XOR: Opc = PPC::EQV; break;
|
|
}
|
|
if (Opc)
|
|
CurDAG->SelectNodeTo(N, Opc, MVT::i32, Val.getOperand(0),
|
|
Val.getOperand(1));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::NOR, MVT::i32, Val, Val);
|
|
break;
|
|
}
|
|
// If this is a xor with an immediate other than -1, then codegen it as high
|
|
// and low 16 bit immediate xors.
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
|
|
N->getOperand(1),
|
|
PPC::XORIS, PPC::XORI)) {
|
|
CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
|
|
N = I;
|
|
break;
|
|
}
|
|
// Finally, check for the case where we are being asked to select
|
|
// xor (not(a), b) which is equivalent to not(xor a, b), which is eqv
|
|
if (isOprNot(N->getOperand(0).Val))
|
|
CurDAG->SelectNodeTo(N, PPC::EQV, MVT::i32,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::XOR, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::SHL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME))
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
else if (isIntImmediate(N->getOperand(1), Imm))
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
|
|
getI32Imm(Imm), getI32Imm(0), getI32Imm(31-Imm));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::SLW, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::SRL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME))
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
else if (isIntImmediate(N->getOperand(1), Imm))
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
|
|
getI32Imm(32-Imm), getI32Imm(Imm), getI32Imm(31));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::SRW, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::SRA: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME))
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
else if (isIntImmediate(N->getOperand(1), Imm))
|
|
CurDAG->SelectNodeTo(N, PPC::SRAWI, MVT::i32, Select(N->getOperand(0)),
|
|
getI32Imm(Imm));
|
|
else
|
|
CurDAG->SelectNodeTo(N, PPC::SRAW, MVT::i32, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::FABS:
|
|
CurDAG->SelectNodeTo(N, PPC::FABS, N->getValueType(0),
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::FP_EXTEND:
|
|
assert(MVT::f64 == N->getValueType(0) &&
|
|
MVT::f32 == N->getOperand(0).getValueType() && "Illegal FP_EXTEND");
|
|
// We need to emit an FMR to make sure that the result has the right value
|
|
// type.
|
|
CurDAG->SelectNodeTo(N, PPC::FMR, MVT::f64, Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::FP_ROUND:
|
|
assert(MVT::f32 == N->getValueType(0) &&
|
|
MVT::f64 == N->getOperand(0).getValueType() && "Illegal FP_ROUND");
|
|
CurDAG->SelectNodeTo(N, PPC::FRSP, MVT::f32, Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::FP_TO_SINT: {
|
|
SDOperand In = Select(N->getOperand(0));
|
|
In = CurDAG->getTargetNode(PPC::FCTIWZ, MVT::f64, In);
|
|
|
|
int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
|
|
SDOperand FI = CurDAG->getTargetFrameIndex(FrameIdx, MVT::f64);
|
|
SDOperand ST = CurDAG->getTargetNode(PPC::STFD, MVT::Other, In,
|
|
getI32Imm(0), FI);
|
|
CurDAG->SelectNodeTo(N, PPC::LWZ, MVT::i32, MVT::Other,
|
|
getI32Imm(4), FI, ST);
|
|
break;
|
|
}
|
|
case ISD::FNEG: {
|
|
SDOperand Val = Select(N->getOperand(0));
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
if (Val.Val->hasOneUse()) {
|
|
unsigned Opc;
|
|
switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
|
|
default: Opc = 0; break;
|
|
case PPC::FABS: Opc = PPC::FNABS; break;
|
|
case PPC::FMADD: Opc = PPC::FNMADD; break;
|
|
case PPC::FMADDS: Opc = PPC::FNMADDS; break;
|
|
case PPC::FMSUB: Opc = PPC::FNMSUB; break;
|
|
case PPC::FMSUBS: Opc = PPC::FNMSUBS; break;
|
|
}
|
|
// If we inverted the opcode, then emit the new instruction with the
|
|
// inverted opcode and the original instruction's operands. Otherwise,
|
|
// fall through and generate a fneg instruction.
|
|
if (Opc) {
|
|
if (PPC::FNABS == Opc)
|
|
CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0));
|
|
else
|
|
CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0),
|
|
Val.getOperand(1), Val.getOperand(2));
|
|
break;
|
|
}
|
|
}
|
|
CurDAG->SelectNodeTo(N, PPC::FNEG, Ty, Val);
|
|
break;
|
|
}
|
|
case ISD::FSQRT: {
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS, Ty,
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
|
|
case ISD::ADD_PARTS: {
|
|
SDOperand LHSL = Select(N->getOperand(0));
|
|
SDOperand LHSH = Select(N->getOperand(1));
|
|
|
|
unsigned Imm;
|
|
bool ME = false, ZE = false;
|
|
if (isIntImmediate(N->getOperand(3), Imm)) {
|
|
ME = (signed)Imm == -1;
|
|
ZE = Imm == 0;
|
|
}
|
|
|
|
std::vector<SDOperand> Result;
|
|
SDOperand CarryFromLo;
|
|
if (isIntImmediate(N->getOperand(2), Imm) &&
|
|
((signed)Imm >= -32768 || (signed)Imm < 32768)) {
|
|
// Codegen the low 32 bits of the add. Interestingly, there is no
|
|
// shifted form of add immediate carrying.
|
|
CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
LHSL, getI32Imm(Imm));
|
|
} else {
|
|
CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag,
|
|
LHSL, Select(N->getOperand(2)));
|
|
}
|
|
CarryFromLo = CarryFromLo.getValue(1);
|
|
|
|
// Codegen the high 32 bits, adding zero, minus one, or the full value
|
|
// along with the carry flag produced by addc/addic.
|
|
SDOperand ResultHi;
|
|
if (ZE)
|
|
ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo);
|
|
else if (ME)
|
|
ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo);
|
|
else
|
|
ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH,
|
|
Select(N->getOperand(3)), CarryFromLo);
|
|
Result.push_back(CarryFromLo.getValue(0));
|
|
Result.push_back(ResultHi);
|
|
CurDAG->ReplaceAllUsesWith(N, Result);
|
|
return Result[Op.ResNo];
|
|
}
|
|
case ISD::SUB_PARTS: {
|
|
SDOperand LHSL = Select(N->getOperand(0));
|
|
SDOperand LHSH = Select(N->getOperand(1));
|
|
SDOperand RHSL = Select(N->getOperand(2));
|
|
SDOperand RHSH = Select(N->getOperand(3));
|
|
|
|
std::vector<SDOperand> Result;
|
|
Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag,
|
|
RHSL, LHSL));
|
|
Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH,
|
|
Result[0].getValue(1)));
|
|
CurDAG->ReplaceAllUsesWith(N, Result);
|
|
return Result[Op.ResNo];
|
|
}
|
|
case ISD::SHL_PARTS: {
|
|
SDOperand LO = Select(N->getOperand(0));
|
|
SDOperand HI = Select(N->getOperand(1));
|
|
SDOperand SH = Select(N->getOperand(2));
|
|
SDOperand SH_LO_R = CurDAG->getTargetNode(PPC::SUBFIC, MVT::i32, MVT::Flag,
|
|
SH, getI32Imm(32));
|
|
SDOperand SH_LO_L = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, SH,
|
|
getI32Imm((unsigned)-32));
|
|
SDOperand HI_SHL = CurDAG->getTargetNode(PPC::SLW, MVT::i32, HI, SH);
|
|
SDOperand HI_LOR = CurDAG->getTargetNode(PPC::SRW, MVT::i32, LO, SH_LO_R);
|
|
SDOperand HI_LOL = CurDAG->getTargetNode(PPC::SLW, MVT::i32, LO, SH_LO_L);
|
|
SDOperand HI_OR = CurDAG->getTargetNode(PPC::OR, MVT::i32, HI_SHL, HI_LOR);
|
|
|
|
std::vector<SDOperand> Result;
|
|
Result.push_back(CurDAG->getTargetNode(PPC::SLW, MVT::i32, LO, SH));
|
|
Result.push_back(CurDAG->getTargetNode(PPC::OR, MVT::i32, HI_OR, HI_LOL));
|
|
CurDAG->ReplaceAllUsesWith(N, Result);
|
|
return Result[Op.ResNo];
|
|
}
|
|
case ISD::SRL_PARTS: {
|
|
SDOperand LO = Select(N->getOperand(0));
|
|
SDOperand HI = Select(N->getOperand(1));
|
|
SDOperand SH = Select(N->getOperand(2));
|
|
SDOperand SH_HI_L = CurDAG->getTargetNode(PPC::SUBFIC, MVT::i32, MVT::Flag,
|
|
SH, getI32Imm(32));
|
|
SDOperand SH_HI_R = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, SH,
|
|
getI32Imm((unsigned)-32));
|
|
SDOperand LO_SHR = CurDAG->getTargetNode(PPC::SRW, MVT::i32, LO, SH);
|
|
SDOperand LO_HIL = CurDAG->getTargetNode(PPC::SLW, MVT::i32, HI, SH_HI_L);
|
|
SDOperand LO_HIR = CurDAG->getTargetNode(PPC::SRW, MVT::i32, HI, SH_HI_R);
|
|
SDOperand LO_OR = CurDAG->getTargetNode(PPC::OR, MVT::i32, LO_SHR, LO_HIL);
|
|
|
|
std::vector<SDOperand> Result;
|
|
Result.push_back(CurDAG->getTargetNode(PPC::OR, MVT::i32, LO_OR, LO_HIR));
|
|
Result.push_back(CurDAG->getTargetNode(PPC::SRW, MVT::i32, HI, SH));
|
|
CurDAG->ReplaceAllUsesWith(N, Result);
|
|
return Result[Op.ResNo];
|
|
}
|
|
|
|
case ISD::LOAD:
|
|
case ISD::EXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::SEXTLOAD: {
|
|
SDOperand Op1, Op2;
|
|
bool isIdx = SelectAddr(N->getOperand(1), Op1, Op2);
|
|
|
|
MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
|
|
N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
|
|
unsigned Opc;
|
|
switch (TypeBeingLoaded) {
|
|
default: N->dump(); assert(0 && "Cannot load this type!");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = isIdx ? PPC::LBZX : PPC::LBZ; break;
|
|
case MVT::i16:
|
|
if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load?
|
|
Opc = isIdx ? PPC::LHAX : PPC::LHA;
|
|
} else {
|
|
Opc = isIdx ? PPC::LHZX : PPC::LHZ;
|
|
}
|
|
break;
|
|
case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break;
|
|
case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break;
|
|
case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break;
|
|
}
|
|
|
|
CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
|
|
Op1, Op2, Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
|
|
case ISD::TRUNCSTORE:
|
|
case ISD::STORE: {
|
|
SDOperand AddrOp1, AddrOp2;
|
|
bool isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2);
|
|
|
|
unsigned Opc;
|
|
if (N->getOpcode() == ISD::STORE) {
|
|
switch (N->getOperand(1).getValueType()) {
|
|
default: assert(0 && "unknown Type in store");
|
|
case MVT::i32: Opc = isIdx ? PPC::STWX : PPC::STW; break;
|
|
case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break;
|
|
case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break;
|
|
}
|
|
} else { //ISD::TRUNCSTORE
|
|
switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
|
|
default: assert(0 && "unknown Type in store");
|
|
case MVT::i1:
|
|
case MVT::i8: Opc = isIdx ? PPC::STBX : PPC::STB; break;
|
|
case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break;
|
|
}
|
|
}
|
|
|
|
CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)),
|
|
AddrOp1, AddrOp2, Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
|
|
case ISD::SETCC: {
|
|
unsigned Imm;
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
if (isIntImmediate(N->getOperand(1), Imm)) {
|
|
// We can codegen setcc op, imm very efficiently compared to a brcond.
|
|
// Check for those cases here.
|
|
// setcc op, 0
|
|
if (Imm == 0) {
|
|
SDOperand Op = Select(N->getOperand(0));
|
|
switch (CC) {
|
|
default: assert(0 && "Unhandled SetCC condition"); abort();
|
|
case ISD::SETEQ:
|
|
Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op);
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
|
|
getI32Imm(5), getI32Imm(31));
|
|
break;
|
|
case ISD::SETNE: {
|
|
SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
Op, getI32Imm(~0U));
|
|
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::SETLT:
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
|
|
getI32Imm(31), getI32Imm(31));
|
|
break;
|
|
case ISD::SETGT: {
|
|
SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op);
|
|
T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);;
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
|
|
getI32Imm(31), getI32Imm(31));
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
} else if (Imm == ~0U) { // setcc op, -1
|
|
SDOperand Op = Select(N->getOperand(0));
|
|
switch (CC) {
|
|
default: assert(0 && "Unhandled SetCC condition"); abort();
|
|
case ISD::SETEQ:
|
|
Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
Op, getI32Imm(1));
|
|
CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
|
|
CurDAG->getTargetNode(PPC::LI, MVT::i32,
|
|
getI32Imm(0)),
|
|
Op.getValue(1));
|
|
break;
|
|
case ISD::SETNE: {
|
|
Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op);
|
|
SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
Op, getI32Imm(~0U));
|
|
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::SETLT: {
|
|
SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
|
|
getI32Imm(1));
|
|
SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op);
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
|
|
getI32Imm(31), getI32Imm(31));
|
|
break;
|
|
}
|
|
case ISD::SETGT:
|
|
Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
|
|
getI32Imm(31), getI32Imm(31));
|
|
CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool Inv;
|
|
unsigned Idx = getCRIdxForSetCC(CC, Inv);
|
|
SDOperand CCReg =
|
|
SelectCC(Select(N->getOperand(0)), Select(N->getOperand(1)), CC);
|
|
SDOperand IntCR;
|
|
|
|
// Force the ccreg into CR7.
|
|
SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
|
|
|
|
std::vector<MVT::ValueType> VTs;
|
|
VTs.push_back(MVT::Other);
|
|
VTs.push_back(MVT::Flag); // NONSTANDARD CopyToReg node: defines a flag
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(CurDAG->getEntryNode());
|
|
Ops.push_back(CR7Reg);
|
|
Ops.push_back(CCReg);
|
|
CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1);
|
|
|
|
if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
|
|
IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg);
|
|
else
|
|
IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg);
|
|
|
|
if (!Inv) {
|
|
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
|
|
getI32Imm(32-(3-Idx)), getI32Imm(31), getI32Imm(31));
|
|
} else {
|
|
SDOperand Tmp =
|
|
CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
|
|
getI32Imm(32-(3-Idx)), getI32Imm(31),getI32Imm(31));
|
|
CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case ISD::SELECT_CC: {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
|
|
|
|
// handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
|
|
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
|
|
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
|
|
if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
|
|
if (N1C->isNullValue() && N3C->isNullValue() &&
|
|
N2C->getValue() == 1ULL && CC == ISD::SETNE) {
|
|
SDOperand LHS = Select(N->getOperand(0));
|
|
SDOperand Tmp =
|
|
CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
LHS, getI32Imm(~0U));
|
|
CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS,
|
|
Tmp.getValue(1));
|
|
break;
|
|
}
|
|
|
|
SDOperand CCReg = SelectCC(Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)), CC);
|
|
unsigned BROpc = getBCCForSetCC(CC);
|
|
|
|
bool isFP = MVT::isFloatingPoint(N->getValueType(0));
|
|
unsigned SelectCCOp = isFP ? PPC::SELECT_CC_FP : PPC::SELECT_CC_Int;
|
|
CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
|
|
Select(N->getOperand(2)), Select(N->getOperand(3)),
|
|
getI32Imm(BROpc));
|
|
break;
|
|
}
|
|
|
|
case ISD::CALLSEQ_START:
|
|
case ISD::CALLSEQ_END: {
|
|
unsigned Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
|
|
unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
|
|
PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP;
|
|
CurDAG->SelectNodeTo(N, Opc, MVT::Other,
|
|
getI32Imm(Amt), Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
case ISD::CALL:
|
|
case ISD::TAILCALL: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
|
|
unsigned CallOpcode;
|
|
std::vector<SDOperand> CallOperands;
|
|
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
|
|
CallOpcode = PPC::CALLpcrel;
|
|
CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(),
|
|
MVT::i32));
|
|
} else if (ExternalSymbolSDNode *ESSDN =
|
|
dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
|
|
CallOpcode = PPC::CALLpcrel;
|
|
CallOperands.push_back(N->getOperand(1));
|
|
} else {
|
|
// Copy the callee address into the CTR register.
|
|
SDOperand Callee = Select(N->getOperand(1));
|
|
Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain);
|
|
|
|
// Copy the callee address into R12 on darwin.
|
|
SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
|
|
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
|
|
|
|
CallOperands.push_back(getI32Imm(20)); // Information to encode indcall
|
|
CallOperands.push_back(getI32Imm(0)); // Information to encode indcall
|
|
CallOperands.push_back(R12);
|
|
CallOpcode = PPC::CALLindirect;
|
|
}
|
|
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
|
|
SDOperand InFlag; // Null incoming flag value.
|
|
|
|
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
|
|
unsigned DestReg = 0;
|
|
MVT::ValueType RegTy = N->getOperand(i).getValueType();
|
|
if (RegTy == MVT::i32) {
|
|
assert(GPR_idx < 8 && "Too many int args");
|
|
DestReg = GPR[GPR_idx++];
|
|
} else {
|
|
assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
|
|
"Unpromoted integer arg?");
|
|
assert(FPR_idx < 13 && "Too many fp args");
|
|
DestReg = FPR[FPR_idx++];
|
|
}
|
|
|
|
if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
|
|
SDOperand Val = Select(N->getOperand(i));
|
|
Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
|
|
}
|
|
}
|
|
|
|
// Finally, once everything is in registers to pass to the call, emit the
|
|
// call itself.
|
|
if (InFlag.Val)
|
|
CallOperands.push_back(InFlag); // Strong dep on register copies.
|
|
else
|
|
CallOperands.push_back(Chain); // Weak dep on whatever occurs before
|
|
Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
|
|
CallOperands);
|
|
|
|
std::vector<SDOperand> CallResults;
|
|
|
|
// If the call has results, copy the values out of the ret val registers.
|
|
switch (N->getValueType(0)) {
|
|
default: assert(0 && "Unexpected ret value!");
|
|
case MVT::Other: break;
|
|
case MVT::i32:
|
|
if (N->getValueType(1) == MVT::i32) {
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32,
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
} else {
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
}
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
break;
|
|
}
|
|
|
|
CallResults.push_back(Chain);
|
|
CurDAG->ReplaceAllUsesWith(N, CallResults);
|
|
return CallResults[Op.ResNo];
|
|
}
|
|
case ISD::RET: {
|
|
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
|
|
|
|
if (N->getNumOperands() == 2) {
|
|
SDOperand Val = Select(N->getOperand(1));
|
|
if (N->getOperand(1).getValueType() == MVT::i32) {
|
|
Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val);
|
|
} else {
|
|
assert(MVT::isFloatingPoint(N->getOperand(1).getValueType()));
|
|
Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val);
|
|
}
|
|
} else if (N->getNumOperands() > 1) {
|
|
assert(N->getOperand(1).getValueType() == MVT::i32 &&
|
|
N->getOperand(2).getValueType() == MVT::i32 &&
|
|
N->getNumOperands() == 3 && "Unknown two-register ret value!");
|
|
Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1)));
|
|
Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2)));
|
|
}
|
|
|
|
// Finally, select this to a blr (return) instruction.
|
|
CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain);
|
|
break;
|
|
}
|
|
case ISD::BR:
|
|
CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1),
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::BR_CC:
|
|
case ISD::BRTWOWAY_CC: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N->getOperand(4))->getBasicBlock();
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
|
|
SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
|
|
unsigned Opc = getBCCForSetCC(CC);
|
|
|
|
// If this is a two way branch, then grab the fallthrough basic block
|
|
// argument and build a PowerPC branch pseudo-op, suitable for long branch
|
|
// conversion if necessary by the branch selection pass. Otherwise, emit a
|
|
// standard conditional branch.
|
|
if (N->getOpcode() == ISD::BRTWOWAY_CC) {
|
|
MachineBasicBlock *Fallthrough =
|
|
cast<BasicBlockSDNode>(N->getOperand(5))->getBasicBlock();
|
|
SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other,
|
|
CondCode, getI32Imm(Opc),
|
|
N->getOperand(4), N->getOperand(5),
|
|
Chain);
|
|
CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(5), CB);
|
|
} else {
|
|
// Iterate to the next basic block
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// If the fallthrough path is off the end of the function, which would be
|
|
// undefined behavior, set it to be the same as the current block because
|
|
// we have nothing better to set it to, and leaving it alone will cause
|
|
// the PowerPC Branch Selection pass to crash.
|
|
if (It == BB->getParent()->end()) It = Dest;
|
|
CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode,
|
|
getI32Imm(Opc), N->getOperand(4),
|
|
CurDAG->getBasicBlock(It), Chain);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return SDOperand(N, Op.ResNo);
|
|
}
|
|
|
|
|
|
/// createPPC32ISelDag - This pass converts a legalized DAG into a
|
|
/// PowerPC-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createPPC32ISelDag(TargetMachine &TM) {
|
|
return new PPC32DAGToDAGISel(TM);
|
|
}
|
|
|