mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72411 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			998 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			998 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the TwoAddress instruction pass which is used
 | |
| // by most register allocators. Two-Address instructions are rewritten
 | |
| // from:
 | |
| //
 | |
| //     A = B op C
 | |
| //
 | |
| // to:
 | |
| //
 | |
| //     A = B
 | |
| //     A op= C
 | |
| //
 | |
| // Note that if a register allocator chooses to use this pass, that it
 | |
| // has to be capable of handling the non-SSA nature of these rewritten
 | |
| // virtual registers.
 | |
| //
 | |
| // It is also worth noting that the duplicate operand of the two
 | |
| // address instruction is removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "twoaddrinstr"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
 | |
| STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
 | |
| STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
 | |
| STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
 | |
| STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
 | |
| STATISTIC(NumReMats,           "Number of instructions re-materialized");
 | |
| STATISTIC(NumDeletes,          "Number of dead instructions deleted");
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN TwoAddressInstructionPass
 | |
|     : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo *MRI;
 | |
|     LiveVariables *LV;
 | |
| 
 | |
|     // DistanceMap - Keep track the distance of a MI from the start of the
 | |
|     // current basic block.
 | |
|     DenseMap<MachineInstr*, unsigned> DistanceMap;
 | |
| 
 | |
|     // SrcRegMap - A map from virtual registers to physical registers which
 | |
|     // are likely targets to be coalesced to due to copies from physical
 | |
|     // registers to virtual registers. e.g. v1024 = move r0.
 | |
|     DenseMap<unsigned, unsigned> SrcRegMap;
 | |
| 
 | |
|     // DstRegMap - A map from virtual registers to physical registers which
 | |
|     // are likely targets to be coalesced to due to copies to physical
 | |
|     // registers from virtual registers. e.g. r1 = move v1024.
 | |
|     DenseMap<unsigned, unsigned> DstRegMap;
 | |
| 
 | |
|     bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
 | |
|                               unsigned Reg,
 | |
|                               MachineBasicBlock::iterator OldPos);
 | |
| 
 | |
|     bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
 | |
|                              MachineInstr *MI, MachineInstr *DefMI,
 | |
|                              MachineBasicBlock *MBB, unsigned Loc);
 | |
| 
 | |
|     bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
 | |
|                            unsigned &LastDef);
 | |
| 
 | |
|     MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
 | |
|                                    unsigned Dist);
 | |
| 
 | |
|     bool isProfitableToCommute(unsigned regB, unsigned regC,
 | |
|                                MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                                unsigned Dist);
 | |
| 
 | |
|     bool CommuteInstruction(MachineBasicBlock::iterator &mi,
 | |
|                             MachineFunction::iterator &mbbi,
 | |
|                             unsigned RegB, unsigned RegC, unsigned Dist);
 | |
| 
 | |
|     bool isProfitableToConv3Addr(unsigned RegA);
 | |
| 
 | |
|     bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
 | |
|                             MachineBasicBlock::iterator &nmi,
 | |
|                             MachineFunction::iterator &mbbi,
 | |
|                             unsigned RegB, unsigned Dist);
 | |
| 
 | |
|     void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                      SmallPtrSet<MachineInstr*, 8> &Processed);
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreserved<LiveVariables>();
 | |
|       AU.addPreservedID(MachineLoopInfoID);
 | |
|       AU.addPreservedID(MachineDominatorsID);
 | |
|       if (StrongPHIElim)
 | |
|         AU.addPreservedID(StrongPHIEliminationID);
 | |
|       else
 | |
|         AU.addPreservedID(PHIEliminationID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     /// runOnMachineFunction - Pass entry point.
 | |
|     bool runOnMachineFunction(MachineFunction&);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char TwoAddressInstructionPass::ID = 0;
 | |
| static RegisterPass<TwoAddressInstructionPass>
 | |
| X("twoaddressinstruction", "Two-Address instruction pass");
 | |
| 
 | |
| const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
 | |
| 
 | |
| /// Sink3AddrInstruction - A two-address instruction has been converted to a
 | |
| /// three-address instruction to avoid clobbering a register. Try to sink it
 | |
| /// past the instruction that would kill the above mentioned register to reduce
 | |
| /// register pressure.
 | |
| bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
 | |
|                                            MachineInstr *MI, unsigned SavedReg,
 | |
|                                            MachineBasicBlock::iterator OldPos) {
 | |
|   // Check if it's safe to move this instruction.
 | |
|   bool SeenStore = true; // Be conservative.
 | |
|   if (!MI->isSafeToMove(TII, SeenStore))
 | |
|     return false;
 | |
| 
 | |
|   unsigned DefReg = 0;
 | |
|   SmallSet<unsigned, 4> UseRegs;
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned MOReg = MO.getReg();
 | |
|     if (!MOReg)
 | |
|       continue;
 | |
|     if (MO.isUse() && MOReg != SavedReg)
 | |
|       UseRegs.insert(MO.getReg());
 | |
|     if (!MO.isDef())
 | |
|       continue;
 | |
|     if (MO.isImplicit())
 | |
|       // Don't try to move it if it implicitly defines a register.
 | |
|       return false;
 | |
|     if (DefReg)
 | |
|       // For now, don't move any instructions that define multiple registers.
 | |
|       return false;
 | |
|     DefReg = MO.getReg();
 | |
|   }
 | |
| 
 | |
|   // Find the instruction that kills SavedReg.
 | |
|   MachineInstr *KillMI = NULL;
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
 | |
|          UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|     MachineOperand &UseMO = UI.getOperand();
 | |
|     if (!UseMO.isKill())
 | |
|       continue;
 | |
|     KillMI = UseMO.getParent();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
 | |
|     return false;
 | |
| 
 | |
|   // If any of the definitions are used by another instruction between the
 | |
|   // position and the kill use, then it's not safe to sink it.
 | |
|   // 
 | |
|   // FIXME: This can be sped up if there is an easy way to query whether an
 | |
|   // instruction is before or after another instruction. Then we can use
 | |
|   // MachineRegisterInfo def / use instead.
 | |
|   MachineOperand *KillMO = NULL;
 | |
|   MachineBasicBlock::iterator KillPos = KillMI;
 | |
|   ++KillPos;
 | |
| 
 | |
|   unsigned NumVisited = 0;
 | |
|   for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
 | |
|     MachineInstr *OtherMI = I;
 | |
|     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
 | |
|       return false;
 | |
|     ++NumVisited;
 | |
|     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = OtherMI->getOperand(i);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       unsigned MOReg = MO.getReg();
 | |
|       if (!MOReg)
 | |
|         continue;
 | |
|       if (DefReg == MOReg)
 | |
|         return false;
 | |
| 
 | |
|       if (MO.isKill()) {
 | |
|         if (OtherMI == KillMI && MOReg == SavedReg)
 | |
|           // Save the operand that kills the register. We want to unset the kill
 | |
|           // marker if we can sink MI past it.
 | |
|           KillMO = &MO;
 | |
|         else if (UseRegs.count(MOReg))
 | |
|           // One of the uses is killed before the destination.
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update kill and LV information.
 | |
|   KillMO->setIsKill(false);
 | |
|   KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
 | |
|   KillMO->setIsKill(true);
 | |
|   
 | |
|   if (LV)
 | |
|     LV->replaceKillInstruction(SavedReg, KillMI, MI);
 | |
| 
 | |
|   // Move instruction to its destination.
 | |
|   MBB->remove(MI);
 | |
|   MBB->insert(KillPos, MI);
 | |
| 
 | |
|   ++Num3AddrSunk;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isTwoAddrUse - Return true if the specified MI is using the specified
 | |
| /// register as a two-address operand.
 | |
| static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
 | |
|   const TargetInstrDesc &TID = UseMI->getDesc();
 | |
|   for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = UseMI->getOperand(i);
 | |
|     if (MO.isReg() && MO.getReg() == Reg &&
 | |
|         (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
 | |
|       // Earlier use is a two-address one.
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isProfitableToReMat - Return true if the heuristics determines it is likely
 | |
| /// to be profitable to re-materialize the definition of Reg rather than copy
 | |
| /// the register.
 | |
| bool
 | |
| TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
 | |
|                                          const TargetRegisterClass *RC,
 | |
|                                          MachineInstr *MI, MachineInstr *DefMI,
 | |
|                                          MachineBasicBlock *MBB, unsigned Loc) {
 | |
|   bool OtherUse = false;
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
 | |
|          UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|     MachineOperand &UseMO = UI.getOperand();
 | |
|     MachineInstr *UseMI = UseMO.getParent();
 | |
|     MachineBasicBlock *UseMBB = UseMI->getParent();
 | |
|     if (UseMBB == MBB) {
 | |
|       DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
 | |
|       if (DI != DistanceMap.end() && DI->second == Loc)
 | |
|         continue;  // Current use.
 | |
|       OtherUse = true;
 | |
|       // There is at least one other use in the MBB that will clobber the
 | |
|       // register. 
 | |
|       if (isTwoAddrUse(UseMI, Reg))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If other uses in MBB are not two-address uses, then don't remat.
 | |
|   if (OtherUse)
 | |
|     return false;
 | |
| 
 | |
|   // No other uses in the same block, remat if it's defined in the same
 | |
|   // block so it does not unnecessarily extend the live range.
 | |
|   return MBB == DefMI->getParent();
 | |
| }
 | |
| 
 | |
| /// NoUseAfterLastDef - Return true if there are no intervening uses between the
 | |
| /// last instruction in the MBB that defines the specified register and the
 | |
| /// two-address instruction which is being processed. It also returns the last
 | |
| /// def location by reference
 | |
| bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
 | |
|                                            MachineBasicBlock *MBB, unsigned Dist,
 | |
|                                            unsigned &LastDef) {
 | |
|   LastDef = 0;
 | |
|   unsigned LastUse = Dist;
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
 | |
|          E = MRI->reg_end(); I != E; ++I) {
 | |
|     MachineOperand &MO = I.getOperand();
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     if (MI->getParent() != MBB)
 | |
|       continue;
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
 | |
|     if (DI == DistanceMap.end())
 | |
|       continue;
 | |
|     if (MO.isUse() && DI->second < LastUse)
 | |
|       LastUse = DI->second;
 | |
|     if (MO.isDef() && DI->second > LastDef)
 | |
|       LastDef = DI->second;
 | |
|   }
 | |
| 
 | |
|   return !(LastUse > LastDef && LastUse < Dist);
 | |
| }
 | |
| 
 | |
| MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
 | |
|                                                          MachineBasicBlock *MBB,
 | |
|                                                          unsigned Dist) {
 | |
|   unsigned LastUseDist = 0;
 | |
|   MachineInstr *LastUse = 0;
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
 | |
|          E = MRI->reg_end(); I != E; ++I) {
 | |
|     MachineOperand &MO = I.getOperand();
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     if (MI->getParent() != MBB)
 | |
|       continue;
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
 | |
|     if (DI == DistanceMap.end())
 | |
|       continue;
 | |
|     if (DI->second >= Dist)
 | |
|       continue;
 | |
| 
 | |
|     if (MO.isUse() && DI->second > LastUseDist) {
 | |
|       LastUse = DI->first;
 | |
|       LastUseDist = DI->second;
 | |
|     }
 | |
|   }
 | |
|   return LastUse;
 | |
| }
 | |
| 
 | |
| /// isCopyToReg - Return true if the specified MI is a copy instruction or
 | |
| /// a extract_subreg instruction. It also returns the source and destination
 | |
| /// registers and whether they are physical registers by reference.
 | |
| static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
 | |
|                         unsigned &SrcReg, unsigned &DstReg,
 | |
|                         bool &IsSrcPhys, bool &IsDstPhys) {
 | |
|   SrcReg = 0;
 | |
|   DstReg = 0;
 | |
|   unsigned SrcSubIdx, DstSubIdx;
 | |
|   if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
 | |
|     if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
 | |
|       DstReg = MI.getOperand(0).getReg();
 | |
|       SrcReg = MI.getOperand(1).getReg();
 | |
|     } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
 | |
|       DstReg = MI.getOperand(0).getReg();
 | |
|       SrcReg = MI.getOperand(2).getReg();
 | |
|     } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
 | |
|       DstReg = MI.getOperand(0).getReg();
 | |
|       SrcReg = MI.getOperand(2).getReg();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DstReg) {
 | |
|     IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
 | |
|     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isKilled - Test if the given register value, which is used by the given
 | |
| /// instruction, is killed by the given instruction. This looks through
 | |
| /// coalescable copies to see if the original value is potentially not killed.
 | |
| ///
 | |
| /// For example, in this code:
 | |
| ///
 | |
| ///   %reg1034 = copy %reg1024
 | |
| ///   %reg1035 = copy %reg1025<kill>
 | |
| ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
 | |
| ///
 | |
| /// %reg1034 is not considered to be killed, since it is copied from a
 | |
| /// register which is not killed. Treating it as not killed lets the
 | |
| /// normal heuristics commute the (two-address) add, which lets
 | |
| /// coalescing eliminate the extra copy.
 | |
| ///
 | |
| static bool isKilled(MachineInstr &MI, unsigned Reg,
 | |
|                      const MachineRegisterInfo *MRI,
 | |
|                      const TargetInstrInfo *TII) {
 | |
|   MachineInstr *DefMI = &MI;
 | |
|   for (;;) {
 | |
|     if (!DefMI->killsRegister(Reg))
 | |
|       return false;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       return true;
 | |
|     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
 | |
|     // If there are multiple defs, we can't do a simple analysis, so just
 | |
|     // go with what the kill flag says.
 | |
|     if (next(Begin) != MRI->def_end())
 | |
|       return true;
 | |
|     DefMI = &*Begin;
 | |
|     bool IsSrcPhys, IsDstPhys;
 | |
|     unsigned SrcReg,  DstReg;
 | |
|     // If the def is something other than a copy, then it isn't going to
 | |
|     // be coalesced, so follow the kill flag.
 | |
|     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
 | |
|       return true;
 | |
|     Reg = SrcReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isTwoAddrUse - Return true if the specified MI uses the specified register
 | |
| /// as a two-address use. If so, return the destination register by reference.
 | |
| static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
 | |
|   const TargetInstrDesc &TID = MI.getDesc();
 | |
|   unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
 | |
|     ? MI.getNumOperands() : TID.getNumOperands();
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
 | |
|       continue;
 | |
|     unsigned ti;
 | |
|     if (MI.isRegTiedToDefOperand(i, &ti)) {
 | |
|       DstReg = MI.getOperand(ti).getReg();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// findOnlyInterestingUse - Given a register, if has a single in-basic block
 | |
| /// use, return the use instruction if it's a copy or a two-address use.
 | |
| static
 | |
| MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
 | |
|                                      MachineRegisterInfo *MRI,
 | |
|                                      const TargetInstrInfo *TII,
 | |
|                                      bool &IsCopy,
 | |
|                                      unsigned &DstReg, bool &IsDstPhys) {
 | |
|   MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
 | |
|   if (UI == MRI->use_end())
 | |
|     return 0;
 | |
|   MachineInstr &UseMI = *UI;
 | |
|   if (++UI != MRI->use_end())
 | |
|     // More than one use.
 | |
|     return 0;
 | |
|   if (UseMI.getParent() != MBB)
 | |
|     return 0;
 | |
|   unsigned SrcReg;
 | |
|   bool IsSrcPhys;
 | |
|   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
 | |
|     IsCopy = true;
 | |
|     return &UseMI;
 | |
|   }
 | |
|   IsDstPhys = false;
 | |
|   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
 | |
|     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | |
|     return &UseMI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getMappedReg - Return the physical register the specified virtual register
 | |
| /// might be mapped to.
 | |
| static unsigned
 | |
| getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
 | |
|   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
 | |
|     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
 | |
|     if (SI == RegMap.end())
 | |
|       return 0;
 | |
|     Reg = SI->second;
 | |
|   }
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|     return Reg;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// regsAreCompatible - Return true if the two registers are equal or aliased.
 | |
| ///
 | |
| static bool
 | |
| regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
 | |
|   if (RegA == RegB)
 | |
|     return true;
 | |
|   if (!RegA || !RegB)
 | |
|     return false;
 | |
|   return TRI->regsOverlap(RegA, RegB);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isProfitableToReMat - Return true if it's potentially profitable to commute
 | |
| /// the two-address instruction that's being processed.
 | |
| bool
 | |
| TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
 | |
|                                        MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                                        unsigned Dist) {
 | |
|   // Determine if it's profitable to commute this two address instruction. In
 | |
|   // general, we want no uses between this instruction and the definition of
 | |
|   // the two-address register.
 | |
|   // e.g.
 | |
|   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
 | |
|   // %reg1029<def> = MOV8rr %reg1028
 | |
|   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
 | |
|   // insert => %reg1030<def> = MOV8rr %reg1028
 | |
|   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
 | |
|   // In this case, it might not be possible to coalesce the second MOV8rr
 | |
|   // instruction if the first one is coalesced. So it would be profitable to
 | |
|   // commute it:
 | |
|   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
 | |
|   // %reg1029<def> = MOV8rr %reg1028
 | |
|   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
 | |
|   // insert => %reg1030<def> = MOV8rr %reg1029
 | |
|   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>  
 | |
| 
 | |
|   if (!MI->killsRegister(regC))
 | |
|     return false;
 | |
| 
 | |
|   // Ok, we have something like:
 | |
|   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
 | |
|   // let's see if it's worth commuting it.
 | |
| 
 | |
|   // Look for situations like this:
 | |
|   // %reg1024<def> = MOV r1
 | |
|   // %reg1025<def> = MOV r0
 | |
|   // %reg1026<def> = ADD %reg1024, %reg1025
 | |
|   // r0            = MOV %reg1026
 | |
|   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
 | |
|   unsigned FromRegB = getMappedReg(regB, SrcRegMap);
 | |
|   unsigned FromRegC = getMappedReg(regC, SrcRegMap);
 | |
|   unsigned ToRegB = getMappedReg(regB, DstRegMap);
 | |
|   unsigned ToRegC = getMappedReg(regC, DstRegMap);
 | |
|   if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
 | |
|       (regsAreCompatible(FromRegB, ToRegC, TRI) ||
 | |
|        regsAreCompatible(FromRegC, ToRegB, TRI)))
 | |
|     return true;
 | |
| 
 | |
|   // If there is a use of regC between its last def (could be livein) and this
 | |
|   // instruction, then bail.
 | |
|   unsigned LastDefC = 0;
 | |
|   if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
 | |
|     return false;
 | |
| 
 | |
|   // If there is a use of regB between its last def (could be livein) and this
 | |
|   // instruction, then go ahead and make this transformation.
 | |
|   unsigned LastDefB = 0;
 | |
|   if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
 | |
|     return true;
 | |
| 
 | |
|   // Since there are no intervening uses for both registers, then commute
 | |
|   // if the def of regC is closer. Its live interval is shorter.
 | |
|   return LastDefB && LastDefC && LastDefC > LastDefB;
 | |
| }
 | |
| 
 | |
| /// CommuteInstruction - Commute a two-address instruction and update the basic
 | |
| /// block, distance map, and live variables if needed. Return true if it is
 | |
| /// successful.
 | |
| bool
 | |
| TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
 | |
|                                MachineFunction::iterator &mbbi,
 | |
|                                unsigned RegB, unsigned RegC, unsigned Dist) {
 | |
|   MachineInstr *MI = mi;
 | |
|   DOUT << "2addr: COMMUTING  : " << *MI;
 | |
|   MachineInstr *NewMI = TII->commuteInstruction(MI);
 | |
| 
 | |
|   if (NewMI == 0) {
 | |
|     DOUT << "2addr: COMMUTING FAILED!\n";
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DOUT << "2addr: COMMUTED TO: " << *NewMI;
 | |
|   // If the instruction changed to commute it, update livevar.
 | |
|   if (NewMI != MI) {
 | |
|     if (LV)
 | |
|       // Update live variables
 | |
|       LV->replaceKillInstruction(RegC, MI, NewMI);
 | |
| 
 | |
|     mbbi->insert(mi, NewMI);           // Insert the new inst
 | |
|     mbbi->erase(mi);                   // Nuke the old inst.
 | |
|     mi = NewMI;
 | |
|     DistanceMap.insert(std::make_pair(NewMI, Dist));
 | |
|   }
 | |
| 
 | |
|   // Update source register map.
 | |
|   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
 | |
|   if (FromRegC) {
 | |
|     unsigned RegA = MI->getOperand(0).getReg();
 | |
|     SrcRegMap[RegA] = FromRegC;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isProfitableToConv3Addr - Return true if it is profitable to convert the
 | |
| /// given 2-address instruction to a 3-address one.
 | |
| bool
 | |
| TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
 | |
|   // Look for situations like this:
 | |
|   // %reg1024<def> = MOV r1
 | |
|   // %reg1025<def> = MOV r0
 | |
|   // %reg1026<def> = ADD %reg1024, %reg1025
 | |
|   // r2            = MOV %reg1026
 | |
|   // Turn ADD into a 3-address instruction to avoid a copy.
 | |
|   unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
 | |
|   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
 | |
|   return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
 | |
| }
 | |
| 
 | |
| /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
 | |
| /// three address one. Return true if this transformation was successful.
 | |
| bool
 | |
| TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
 | |
|                                               MachineBasicBlock::iterator &nmi,
 | |
|                                               MachineFunction::iterator &mbbi,
 | |
|                                               unsigned RegB, unsigned Dist) {
 | |
|   MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
 | |
|   if (NewMI) {
 | |
|     DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
 | |
|     DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
 | |
|     bool Sunk = false;
 | |
| 
 | |
|     if (NewMI->findRegisterUseOperand(RegB, false, TRI))
 | |
|       // FIXME: Temporary workaround. If the new instruction doesn't
 | |
|       // uses RegB, convertToThreeAddress must have created more
 | |
|       // then one instruction.
 | |
|       Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
 | |
| 
 | |
|     mbbi->erase(mi); // Nuke the old inst.
 | |
| 
 | |
|     if (!Sunk) {
 | |
|       DistanceMap.insert(std::make_pair(NewMI, Dist));
 | |
|       mi = NewMI;
 | |
|       nmi = next(mi);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ProcessCopy - If the specified instruction is not yet processed, process it
 | |
| /// if it's a copy. For a copy instruction, we find the physical registers the
 | |
| /// source and destination registers might be mapped to. These are kept in
 | |
| /// point-to maps used to determine future optimizations. e.g.
 | |
| /// v1024 = mov r0
 | |
| /// v1025 = mov r1
 | |
| /// v1026 = add v1024, v1025
 | |
| /// r1    = mov r1026
 | |
| /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
 | |
| /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
 | |
| /// potentially joined with r1 on the output side. It's worthwhile to commute
 | |
| /// 'add' to eliminate a copy.
 | |
| void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *MBB,
 | |
|                                      SmallPtrSet<MachineInstr*, 8> &Processed) {
 | |
|   if (Processed.count(MI))
 | |
|     return;
 | |
| 
 | |
|   bool IsSrcPhys, IsDstPhys;
 | |
|   unsigned SrcReg, DstReg;
 | |
|   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
 | |
|     return;
 | |
| 
 | |
|   if (IsDstPhys && !IsSrcPhys)
 | |
|     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
 | |
|   else if (!IsDstPhys && IsSrcPhys) {
 | |
|     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
 | |
|     if (!isNew)
 | |
|       assert(SrcRegMap[DstReg] == SrcReg &&
 | |
|              "Can't map to two src physical registers!");
 | |
| 
 | |
|     SmallVector<unsigned, 4> VirtRegPairs;
 | |
|     bool IsCopy = false;
 | |
|     unsigned NewReg = 0;
 | |
|     while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
 | |
|                                                    IsCopy, NewReg, IsDstPhys)) {
 | |
|       if (IsCopy) {
 | |
|         if (!Processed.insert(UseMI))
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
 | |
|       if (DI != DistanceMap.end())
 | |
|         // Earlier in the same MBB.Reached via a back edge.
 | |
|         break;
 | |
| 
 | |
|       if (IsDstPhys) {
 | |
|         VirtRegPairs.push_back(NewReg);
 | |
|         break;
 | |
|       }
 | |
|       bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
 | |
|       if (!isNew)
 | |
|         assert(SrcRegMap[NewReg] == DstReg &&
 | |
|                "Can't map to two src physical registers!");
 | |
|       VirtRegPairs.push_back(NewReg);
 | |
|       DstReg = NewReg;
 | |
|     }
 | |
| 
 | |
|     if (!VirtRegPairs.empty()) {
 | |
|       unsigned ToReg = VirtRegPairs.back();
 | |
|       VirtRegPairs.pop_back();
 | |
|       while (!VirtRegPairs.empty()) {
 | |
|         unsigned FromReg = VirtRegPairs.back();
 | |
|         VirtRegPairs.pop_back();
 | |
|         bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
 | |
|         if (!isNew)
 | |
|           assert(DstRegMap[FromReg] == ToReg &&
 | |
|                  "Can't map to two dst physical registers!");
 | |
|         ToReg = FromReg;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Processed.insert(MI);
 | |
| }
 | |
| 
 | |
| /// isSafeToDelete - If the specified instruction does not produce any side
 | |
| /// effects and all of its defs are dead, then it's safe to delete.
 | |
| static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
 | |
|                            const TargetInstrInfo *TII,
 | |
|                            SmallVector<unsigned, 4> &Kills) {
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   if (TID.mayStore() || TID.isCall())
 | |
|     return false;
 | |
|   if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (MO.isDef() && !MO.isDead())
 | |
|       return false;
 | |
|     if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
 | |
|       Kills.push_back(MO.getReg());
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Reduce two-address instructions to two operands.
 | |
| ///
 | |
| bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   DOUT << "Machine Function\n";
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = TM.getInstrInfo();
 | |
|   TRI = TM.getRegisterInfo();
 | |
|   LV = getAnalysisIfAvailable<LiveVariables>();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
 | |
|   DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 | |
| 
 | |
|   // ReMatRegs - Keep track of the registers whose def's are remat'ed.
 | |
|   BitVector ReMatRegs;
 | |
|   ReMatRegs.resize(MRI->getLastVirtReg()+1);
 | |
| 
 | |
|   SmallPtrSet<MachineInstr*, 8> Processed;
 | |
|   for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     unsigned Dist = 0;
 | |
|     DistanceMap.clear();
 | |
|     SrcRegMap.clear();
 | |
|     DstRegMap.clear();
 | |
|     Processed.clear();
 | |
|     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
 | |
|          mi != me; ) {
 | |
|       MachineBasicBlock::iterator nmi = next(mi);
 | |
|       const TargetInstrDesc &TID = mi->getDesc();
 | |
|       bool FirstTied = true;
 | |
| 
 | |
|       DistanceMap.insert(std::make_pair(mi, ++Dist));
 | |
| 
 | |
|       ProcessCopy(&*mi, &*mbbi, Processed);
 | |
| 
 | |
|       unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
 | |
|         ? mi->getNumOperands() : TID.getNumOperands();
 | |
|       for (unsigned si = 0; si < NumOps; ++si) {
 | |
|         unsigned ti = 0;
 | |
|         if (!mi->isRegTiedToDefOperand(si, &ti))
 | |
|           continue;
 | |
| 
 | |
|         if (FirstTied) {
 | |
|           ++NumTwoAddressInstrs;
 | |
|           DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
 | |
|         }
 | |
| 
 | |
|         FirstTied = false;
 | |
| 
 | |
|         assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
 | |
|                mi->getOperand(si).isUse() && "two address instruction invalid");
 | |
| 
 | |
|         // If the two operands are the same we just remove the use
 | |
|         // and mark the def as def&use, otherwise we have to insert a copy.
 | |
|         if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
 | |
|           // Rewrite:
 | |
|           //     a = b op c
 | |
|           // to:
 | |
|           //     a = b
 | |
|           //     a = a op c
 | |
|           unsigned regA = mi->getOperand(ti).getReg();
 | |
|           unsigned regB = mi->getOperand(si).getReg();
 | |
| 
 | |
|           assert(TargetRegisterInfo::isVirtualRegister(regB) &&
 | |
|                  "cannot update physical register live information");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|           // First, verify that we don't have a use of a in the instruction (a =
 | |
|           // b + a for example) because our transformation will not work. This
 | |
|           // should never occur because we are in SSA form.
 | |
|           for (unsigned i = 0; i != mi->getNumOperands(); ++i)
 | |
|             assert(i == ti ||
 | |
|                    !mi->getOperand(i).isReg() ||
 | |
|                    mi->getOperand(i).getReg() != regA);
 | |
| #endif
 | |
| 
 | |
|           // If this instruction is not the killing user of B, see if we can
 | |
|           // rearrange the code to make it so.  Making it the killing user will
 | |
|           // allow us to coalesce A and B together, eliminating the copy we are
 | |
|           // about to insert.
 | |
|           if (!isKilled(*mi, regB, MRI, TII)) {
 | |
|             // If regA is dead and the instruction can be deleted, just delete
 | |
|             // it so it doesn't clobber regB.
 | |
|             SmallVector<unsigned, 4> Kills;
 | |
|             if (mi->getOperand(ti).isDead() &&
 | |
|                 isSafeToDelete(mi, regB, TII, Kills)) {
 | |
|               SmallVector<std::pair<std::pair<unsigned, bool>
 | |
|                 ,MachineInstr*>, 4> NewKills;
 | |
|               bool ReallySafe = true;
 | |
|               // If this instruction kills some virtual registers, we need
 | |
|               // update the kill information. If it's not possible to do so,
 | |
|               // then bail out.
 | |
|               while (!Kills.empty()) {
 | |
|                 unsigned Kill = Kills.back();
 | |
|                 Kills.pop_back();
 | |
|                 if (TargetRegisterInfo::isPhysicalRegister(Kill)) {
 | |
|                   ReallySafe = false;
 | |
|                   break;
 | |
|                 }
 | |
|                 MachineInstr *LastKill = FindLastUseInMBB(Kill, &*mbbi, Dist);
 | |
|                 if (LastKill) {
 | |
|                   bool isModRef = LastKill->modifiesRegister(Kill);
 | |
|                   NewKills.push_back(std::make_pair(std::make_pair(Kill,isModRef),
 | |
|                                                     LastKill));
 | |
|                 } else {
 | |
|                   ReallySafe = false;
 | |
|                   break;
 | |
|                 }
 | |
|               }
 | |
| 
 | |
|               if (ReallySafe) {
 | |
|                 if (LV) {
 | |
|                   while (!NewKills.empty()) {
 | |
|                     MachineInstr *NewKill = NewKills.back().second;
 | |
|                     unsigned Kill = NewKills.back().first.first;
 | |
|                     bool isDead = NewKills.back().first.second;
 | |
|                     NewKills.pop_back();
 | |
|                     if (LV->removeVirtualRegisterKilled(Kill,  mi)) {
 | |
|                       if (isDead)
 | |
|                         LV->addVirtualRegisterDead(Kill, NewKill);
 | |
|                       else
 | |
|                         LV->addVirtualRegisterKilled(Kill, NewKill);
 | |
|                     }
 | |
|                   }
 | |
|                 }
 | |
| 
 | |
|                 // We're really going to nuke the old inst. If regB was marked
 | |
|                 // as a kill we need to update its Kills list.
 | |
|                 if (mi->getOperand(si).isKill())
 | |
|                   LV->removeVirtualRegisterKilled(regB, mi);
 | |
| 
 | |
|                 mbbi->erase(mi); // Nuke the old inst.
 | |
|                 mi = nmi;
 | |
|                 ++NumDeletes;
 | |
|                 break; // Done with this instruction.
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             // If this instruction is commutative, check to see if C dies.  If
 | |
|             // so, swap the B and C operands.  This makes the live ranges of A
 | |
|             // and C joinable.
 | |
|             // FIXME: This code also works for A := B op C instructions.
 | |
|             if (TID.isCommutable() && mi->getNumOperands() >= 3) {
 | |
|               assert(mi->getOperand(3-si).isReg() &&
 | |
|                      "Not a proper commutative instruction!");
 | |
|               unsigned regC = mi->getOperand(3-si).getReg();
 | |
|               if (isKilled(*mi, regC, MRI, TII)) {
 | |
|                 if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
 | |
|                   ++NumCommuted;
 | |
|                   regB = regC;
 | |
|                   goto InstructionRearranged;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             // If this instruction is potentially convertible to a true
 | |
|             // three-address instruction,
 | |
|             if (TID.isConvertibleTo3Addr()) {
 | |
|               // FIXME: This assumes there are no more operands which are tied
 | |
|               // to another register.
 | |
| #ifndef NDEBUG
 | |
|               for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
 | |
|                 assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
 | |
| #endif
 | |
| 
 | |
|               if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
 | |
|                 ++NumConvertedTo3Addr;
 | |
|                 break; // Done with this instruction.
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // If it's profitable to commute the instruction, do so.
 | |
|           if (TID.isCommutable() && mi->getNumOperands() >= 3) {
 | |
|             unsigned regC = mi->getOperand(3-si).getReg();
 | |
|             if (isProfitableToCommute(regB, regC, mi, mbbi, Dist))
 | |
|               if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
 | |
|                 ++NumAggrCommuted;
 | |
|                 ++NumCommuted;
 | |
|                 regB = regC;
 | |
|                 goto InstructionRearranged;
 | |
|               }
 | |
|           }
 | |
| 
 | |
|           // If it's profitable to convert the 2-address instruction to a
 | |
|           // 3-address one, do so.
 | |
|           if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
 | |
|             if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
 | |
|               ++NumConvertedTo3Addr;
 | |
|               break; // Done with this instruction.
 | |
|             }
 | |
|           }
 | |
| 
 | |
|         InstructionRearranged:
 | |
|           const TargetRegisterClass* rc = MRI->getRegClass(regB);
 | |
|           MachineInstr *DefMI = MRI->getVRegDef(regB);
 | |
|           // If it's safe and profitable, remat the definition instead of
 | |
|           // copying it.
 | |
|           if (DefMI &&
 | |
|               DefMI->getDesc().isAsCheapAsAMove() &&
 | |
|               DefMI->isSafeToReMat(TII, regB) &&
 | |
|               isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
 | |
|             DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
 | |
|             TII->reMaterialize(*mbbi, mi, regA, DefMI);
 | |
|             ReMatRegs.set(regB);
 | |
|             ++NumReMats;
 | |
|           } else {
 | |
|             bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
 | |
|             (void)Emitted;
 | |
|             assert(Emitted && "Unable to issue a copy instruction!\n");
 | |
|           }
 | |
| 
 | |
|           MachineBasicBlock::iterator prevMI = prior(mi);
 | |
|           // Update DistanceMap.
 | |
|           DistanceMap.insert(std::make_pair(prevMI, Dist));
 | |
|           DistanceMap[mi] = ++Dist;
 | |
| 
 | |
|           // Update live variables for regB.
 | |
|           if (LV) {
 | |
|             if (LV->removeVirtualRegisterKilled(regB,  mi))
 | |
|               LV->addVirtualRegisterKilled(regB, prevMI);
 | |
| 
 | |
|             if (LV->removeVirtualRegisterDead(regB, mi))
 | |
|               LV->addVirtualRegisterDead(regB, prevMI);
 | |
|           }
 | |
| 
 | |
|           DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
 | |
|           
 | |
|           // Replace all occurences of regB with regA.
 | |
|           for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
 | |
|             if (mi->getOperand(i).isReg() &&
 | |
|                 mi->getOperand(i).getReg() == regB)
 | |
|               mi->getOperand(i).setReg(regA);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
 | |
|         mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
 | |
|         MadeChange = true;
 | |
| 
 | |
|         DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
 | |
|       }
 | |
| 
 | |
|       mi = nmi;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Some remat'ed instructions are dead.
 | |
|   int VReg = ReMatRegs.find_first();
 | |
|   while (VReg != -1) {
 | |
|     if (MRI->use_empty(VReg)) {
 | |
|       MachineInstr *DefMI = MRI->getVRegDef(VReg);
 | |
|       DefMI->eraseFromParent();
 | |
|     }
 | |
|     VReg = ReMatRegs.find_next(VReg);
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 |