mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-07 14:33:15 +00:00
after all callers are inlined into the current graph. (2) Optimize the way a graph is inlined into its callees in the TD phase: (a) Use DSGraph::cloneReachableSubgraph to clone only a subgraph at each call site, for faster inlining. (b) Clone separately for the same callee at different call sites, since only the reachable subgraph is being cloned, not the entire caller graph. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7188 91177308-0d34-0410-b5e6-96231b3b80d8
271 lines
11 KiB
C++
271 lines
11 KiB
C++
//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===//
|
|
//
|
|
// This file implements the TDDataStructures class, which represents the
|
|
// Top-down Interprocedural closure of the data structure graph over the
|
|
// program. This is useful (but not strictly necessary?) for applications
|
|
// like pointer analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/DataStructure.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "Support/Statistic.h"
|
|
#include "DSCallSiteIterator.h"
|
|
|
|
namespace {
|
|
RegisterAnalysis<TDDataStructures> // Register the pass
|
|
Y("tddatastructure", "Top-down Data Structure Analysis");
|
|
|
|
Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined");
|
|
}
|
|
|
|
/// FunctionHasCompleteArguments - This function returns true if it is safe not
|
|
/// to mark arguments to the function complete.
|
|
///
|
|
/// FIXME: Need to check if all callers have been found, or rather if a
|
|
/// funcpointer escapes!
|
|
///
|
|
static bool FunctionHasCompleteArguments(Function &F) {
|
|
return F.hasInternalLinkage();
|
|
}
|
|
|
|
// run - Calculate the top down data structure graphs for each function in the
|
|
// program.
|
|
//
|
|
bool TDDataStructures::run(Module &M) {
|
|
BUDataStructures &BU = getAnalysis<BUDataStructures>();
|
|
GlobalsGraph = new DSGraph(BU.getGlobalsGraph());
|
|
|
|
// Figure out which functions must not mark their arguments complete because
|
|
// they are accessible outside this compilation unit.
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
if (!FunctionHasCompleteArguments(*I))
|
|
ArgsRemainIncomplete.insert(I);
|
|
|
|
// We want to traverse the call graph in reverse post-order. To do this, we
|
|
// calculate a post-order traversal, then reverse it.
|
|
hash_set<DSGraph*> VisitedGraph;
|
|
std::vector<DSGraph*> PostOrder;
|
|
const BUDataStructures::ActualCalleesTy &ActualCallees =
|
|
getAnalysis<BUDataStructures>().getActualCallees();
|
|
|
|
// Calculate top-down from main...
|
|
if (Function *F = M.getMainFunction())
|
|
ComputePostOrder(*F, VisitedGraph, PostOrder, ActualCallees);
|
|
|
|
// Next calculate the graphs for each unreachable function...
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
ComputePostOrder(*I, VisitedGraph, PostOrder, ActualCallees);
|
|
|
|
VisitedGraph.clear(); // Release memory!
|
|
|
|
// Visit each of the graphs in reverse post-order now!
|
|
while (!PostOrder.empty()) {
|
|
inlineGraphIntoCallees(*PostOrder.back());
|
|
PostOrder.pop_back();
|
|
}
|
|
|
|
ArgsRemainIncomplete.clear();
|
|
return false;
|
|
}
|
|
|
|
|
|
DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) {
|
|
DSGraph *&G = DSInfo[&F];
|
|
if (G == 0) { // Not created yet? Clone BU graph...
|
|
G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F));
|
|
G->getAuxFunctionCalls().clear();
|
|
G->setPrintAuxCalls();
|
|
G->setGlobalsGraph(GlobalsGraph);
|
|
}
|
|
return *G;
|
|
}
|
|
|
|
|
|
void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited,
|
|
std::vector<DSGraph*> &PostOrder,
|
|
const BUDataStructures::ActualCalleesTy &ActualCallees) {
|
|
if (F.isExternal()) return;
|
|
DSGraph &G = getOrCreateDSGraph(F);
|
|
if (Visited.count(&G)) return;
|
|
Visited.insert(&G);
|
|
|
|
// Recursively traverse all of the callee graphs.
|
|
const std::vector<DSCallSite> &FunctionCalls = G.getFunctionCalls();
|
|
|
|
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
|
|
std::pair<BUDataStructures::ActualCalleesTy::const_iterator,
|
|
BUDataStructures::ActualCalleesTy::const_iterator>
|
|
IP = ActualCallees.equal_range(&FunctionCalls[i].getCallInst());
|
|
|
|
for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first;
|
|
I != IP.second; ++I)
|
|
ComputePostOrder(*I->second, Visited, PostOrder, ActualCallees);
|
|
}
|
|
|
|
PostOrder.push_back(&G);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// releaseMemory - If the pass pipeline is done with this pass, we can release
|
|
// our memory... here...
|
|
//
|
|
// FIXME: This should be releaseMemory and will work fine, except that LoadVN
|
|
// has no way to extend the lifetime of the pass, which screws up ds-aa.
|
|
//
|
|
void TDDataStructures::releaseMyMemory() {
|
|
for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
|
|
E = DSInfo.end(); I != E; ++I) {
|
|
I->second->getReturnNodes().erase(I->first);
|
|
if (I->second->getReturnNodes().empty())
|
|
delete I->second;
|
|
}
|
|
|
|
// Empty map so next time memory is released, data structures are not
|
|
// re-deleted.
|
|
DSInfo.clear();
|
|
delete GlobalsGraph;
|
|
GlobalsGraph = 0;
|
|
}
|
|
|
|
void TDDataStructures::inlineGraphIntoCallees(DSGraph &Graph) {
|
|
// Recompute the Incomplete markers and eliminate unreachable nodes.
|
|
Graph.removeTriviallyDeadNodes();
|
|
Graph.maskIncompleteMarkers();
|
|
|
|
// If any of the functions has incomplete incoming arguments, don't mark any
|
|
// of them as complete.
|
|
bool HasIncompleteArgs = false;
|
|
const DSGraph::ReturnNodesTy &GraphReturnNodes = Graph.getReturnNodes();
|
|
for (DSGraph::ReturnNodesTy::const_iterator I = GraphReturnNodes.begin(),
|
|
E = GraphReturnNodes.end(); I != E; ++I)
|
|
if (ArgsRemainIncomplete.count(I->first)) {
|
|
HasIncompleteArgs = true;
|
|
break;
|
|
}
|
|
|
|
// Now fold in the necessary globals from the GlobalsGraph. A global G
|
|
// must be folded in if it exists in the current graph (i.e., is not dead)
|
|
// and it was not inlined from any of my callers. If it was inlined from
|
|
// a caller, it would have been fully consistent with the GlobalsGraph
|
|
// in the caller so folding in is not necessary. Otherwise, this node came
|
|
// solely from this function's BU graph and so has to be made consistent.
|
|
//
|
|
Graph.updateFromGlobalGraph();
|
|
|
|
// Recompute the Incomplete markers. Depends on whether args are complete
|
|
unsigned Flags
|
|
= HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs;
|
|
Graph.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals);
|
|
|
|
// Delete dead nodes. Treat globals that are unreachable as dead also.
|
|
Graph.removeDeadNodes(DSGraph::RemoveUnreachableGlobals);
|
|
|
|
// We are done with computing the current TD Graph! Now move on to
|
|
// inlining the current graph into the graphs for its callees, if any.
|
|
//
|
|
const std::vector<DSCallSite> &FunctionCalls = Graph.getFunctionCalls();
|
|
if (FunctionCalls.empty()) {
|
|
DEBUG(std::cerr << " [TD] No callees for: " << Graph.getFunctionNames()
|
|
<< "\n");
|
|
return;
|
|
}
|
|
|
|
// Now that we have information about all of the callees, propagate the
|
|
// current graph into the callees. Clone only the reachable subgraph at
|
|
// each call-site, not the entire graph (even though the entire graph
|
|
// would be cloned only once, this should still be better on average).
|
|
//
|
|
DEBUG(std::cerr << " [TD] Inlining '" << Graph.getFunctionNames() <<"' into "
|
|
<< FunctionCalls.size() << " call nodes.\n");
|
|
|
|
const BUDataStructures::ActualCalleesTy &ActualCallees =
|
|
getAnalysis<BUDataStructures>().getActualCallees();
|
|
|
|
// Loop over all the call sites and all the callees at each call site.
|
|
// Clone and merge the reachable subgraph from the call into callee's graph.
|
|
//
|
|
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
|
|
// For each function in the invoked function list at this call site...
|
|
std::pair<BUDataStructures::ActualCalleesTy::const_iterator,
|
|
BUDataStructures::ActualCalleesTy::const_iterator>
|
|
IP = ActualCallees.equal_range(&FunctionCalls[i].getCallInst());
|
|
|
|
// Multiple callees may have the same graph, so try to inline and merge
|
|
// only once for each <callSite,calleeGraph> pair, not once for each
|
|
// <callSite,calleeFunction> pair; the latter will be correct but slower.
|
|
hash_set<DSGraph*> GraphsSeen;
|
|
|
|
// Loop over each actual callee at this call site
|
|
for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first;
|
|
I != IP.second; ++I) {
|
|
DSGraph& CalleeGraph = getDSGraph(*I->second);
|
|
assert(&CalleeGraph != &Graph && "TD need not inline graph into self!");
|
|
|
|
// if this callee graph is already done at this site, skip this callee
|
|
if (GraphsSeen.find(&CalleeGraph) != GraphsSeen.end())
|
|
continue;
|
|
GraphsSeen.insert(&CalleeGraph);
|
|
|
|
// Get the root nodes for cloning the reachable subgraph into each callee:
|
|
// -- all global nodes that appear in both the caller and the callee
|
|
// -- return value at this call site, if any
|
|
// -- actual arguments passed at this call site
|
|
// -- callee node at this call site, if this is an indirect call (this may
|
|
// not be needed for merging, but allows us to create CS and therefore
|
|
// simplify the merging below).
|
|
hash_set<const DSNode*> RootNodeSet;
|
|
for (DSGraph::ScalarMapTy::const_iterator
|
|
SI = CalleeGraph.getScalarMap().begin(),
|
|
SE = CalleeGraph.getScalarMap().end(); SI != SE; ++SI)
|
|
if (GlobalValue* GV = dyn_cast<GlobalValue>(SI->first)) {
|
|
DSGraph::ScalarMapTy::const_iterator GI=Graph.getScalarMap().find(GV);
|
|
if (GI != Graph.getScalarMap().end())
|
|
RootNodeSet.insert(GI->second.getNode());
|
|
}
|
|
|
|
if (const DSNode* RetNode = FunctionCalls[i].getRetVal().getNode())
|
|
RootNodeSet.insert(RetNode);
|
|
|
|
for (unsigned j=0, N=FunctionCalls[i].getNumPtrArgs(); j < N; ++j)
|
|
if (const DSNode* ArgTarget = FunctionCalls[i].getPtrArg(j).getNode())
|
|
RootNodeSet.insert(ArgTarget);
|
|
|
|
if (FunctionCalls[i].isIndirectCall())
|
|
RootNodeSet.insert(FunctionCalls[i].getCalleeNode());
|
|
|
|
DEBUG(std::cerr << " [TD] Resolving arguments for callee graph '"
|
|
<< CalleeGraph.getFunctionNames()
|
|
<< "': " << I->second->getFunctionType()->getNumParams()
|
|
<< " args\n at call site (DSCallSite*) 0x"
|
|
<< &FunctionCalls[i] << "\n");
|
|
|
|
DSGraph::NodeMapTy NodeMapInCallee; // map from nodes to clones in callee
|
|
DSGraph::NodeMapTy CompletedMap; // unused map for nodes not to do
|
|
CalleeGraph.cloneReachableSubgraph(Graph, RootNodeSet,
|
|
NodeMapInCallee, CompletedMap,
|
|
DSGraph::StripModRefBits |
|
|
DSGraph::KeepAllocaBit);
|
|
|
|
// Transform our call site info into the cloned version for CalleeGraph
|
|
DSCallSite CS(FunctionCalls[i], NodeMapInCallee);
|
|
|
|
// Get the formal argument and return nodes for the called function
|
|
// and merge them with the cloned subgraph. Global nodes were merged
|
|
// already by cloneReachableSubgraph() above.
|
|
CalleeGraph.getCallSiteForArguments(*I->second).mergeWith(CS);
|
|
|
|
++NumTDInlines;
|
|
}
|
|
}
|
|
|
|
DEBUG(std::cerr << " [TD] Done inlining into callees for: "
|
|
<< Graph.getFunctionNames() << " [" << Graph.getGraphSize() << "+"
|
|
<< Graph.getFunctionCalls().size() << "]\n");
|
|
}
|
|
|