mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232998 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1750 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1750 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Jump Threading pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "jump-threading"
 | 
						|
 | 
						|
STATISTIC(NumThreads, "Number of jumps threaded");
 | 
						|
STATISTIC(NumFolds,   "Number of terminators folded");
 | 
						|
STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
BBDuplicateThreshold("jump-threading-threshold",
 | 
						|
          cl::desc("Max block size to duplicate for jump threading"),
 | 
						|
          cl::init(6), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
  // These are at global scope so static functions can use them too.
 | 
						|
  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
 | 
						|
  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
 | 
						|
 | 
						|
  // This is used to keep track of what kind of constant we're currently hoping
 | 
						|
  // to find.
 | 
						|
  enum ConstantPreference {
 | 
						|
    WantInteger,
 | 
						|
    WantBlockAddress
 | 
						|
  };
 | 
						|
 | 
						|
  /// This pass performs 'jump threading', which looks at blocks that have
 | 
						|
  /// multiple predecessors and multiple successors.  If one or more of the
 | 
						|
  /// predecessors of the block can be proven to always jump to one of the
 | 
						|
  /// successors, we forward the edge from the predecessor to the successor by
 | 
						|
  /// duplicating the contents of this block.
 | 
						|
  ///
 | 
						|
  /// An example of when this can occur is code like this:
 | 
						|
  ///
 | 
						|
  ///   if () { ...
 | 
						|
  ///     X = 4;
 | 
						|
  ///   }
 | 
						|
  ///   if (X < 3) {
 | 
						|
  ///
 | 
						|
  /// In this case, the unconditional branch at the end of the first if can be
 | 
						|
  /// revectored to the false side of the second if.
 | 
						|
  ///
 | 
						|
  class JumpThreading : public FunctionPass {
 | 
						|
    TargetLibraryInfo *TLI;
 | 
						|
    LazyValueInfo *LVI;
 | 
						|
#ifdef NDEBUG
 | 
						|
    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
 | 
						|
#else
 | 
						|
    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
 | 
						|
#endif
 | 
						|
    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
 | 
						|
 | 
						|
    unsigned BBDupThreshold;
 | 
						|
 | 
						|
    // RAII helper for updating the recursion stack.
 | 
						|
    struct RecursionSetRemover {
 | 
						|
      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
 | 
						|
      std::pair<Value*, BasicBlock*> ThePair;
 | 
						|
 | 
						|
      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
 | 
						|
                          std::pair<Value*, BasicBlock*> P)
 | 
						|
        : TheSet(S), ThePair(P) { }
 | 
						|
 | 
						|
      ~RecursionSetRemover() {
 | 
						|
        TheSet.erase(ThePair);
 | 
						|
      }
 | 
						|
    };
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification
 | 
						|
    JumpThreading(int T = -1) : FunctionPass(ID) {
 | 
						|
      BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
 | 
						|
      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<LazyValueInfo>();
 | 
						|
      AU.addPreserved<LazyValueInfo>();
 | 
						|
      AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    }
 | 
						|
 | 
						|
    void FindLoopHeaders(Function &F);
 | 
						|
    bool ProcessBlock(BasicBlock *BB);
 | 
						|
    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
 | 
						|
                    BasicBlock *SuccBB);
 | 
						|
    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
 | 
						|
                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
 | 
						|
 | 
						|
    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
 | 
						|
                                         PredValueInfo &Result,
 | 
						|
                                         ConstantPreference Preference,
 | 
						|
                                         Instruction *CxtI = nullptr);
 | 
						|
    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 | 
						|
                                ConstantPreference Preference,
 | 
						|
                                Instruction *CxtI = nullptr);
 | 
						|
 | 
						|
    bool ProcessBranchOnPHI(PHINode *PN);
 | 
						|
    bool ProcessBranchOnXOR(BinaryOperator *BO);
 | 
						|
 | 
						|
    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
 | 
						|
    bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char JumpThreading::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
 | 
						|
                "Jump Threading", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(JumpThreading, "jump-threading",
 | 
						|
                "Jump Threading", false, false)
 | 
						|
 | 
						|
// Public interface to the Jump Threading pass
 | 
						|
FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
 | 
						|
 | 
						|
/// runOnFunction - Top level algorithm.
 | 
						|
///
 | 
						|
bool JumpThreading::runOnFunction(Function &F) {
 | 
						|
  if (skipOptnoneFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
 | 
						|
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
  LVI = &getAnalysis<LazyValueInfo>();
 | 
						|
 | 
						|
  // Remove unreachable blocks from function as they may result in infinite
 | 
						|
  // loop. We do threading if we found something profitable. Jump threading a
 | 
						|
  // branch can create other opportunities. If these opportunities form a cycle
 | 
						|
  // i.e. if any jump treading is undoing previous threading in the path, then
 | 
						|
  // we will loop forever. We take care of this issue by not jump threading for
 | 
						|
  // back edges. This works for normal cases but not for unreachable blocks as
 | 
						|
  // they may have cycle with no back edge.
 | 
						|
  removeUnreachableBlocks(F);
 | 
						|
 | 
						|
  FindLoopHeaders(F);
 | 
						|
 | 
						|
  bool Changed, EverChanged = false;
 | 
						|
  do {
 | 
						|
    Changed = false;
 | 
						|
    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
 | 
						|
      BasicBlock *BB = I;
 | 
						|
      // Thread all of the branches we can over this block.
 | 
						|
      while (ProcessBlock(BB))
 | 
						|
        Changed = true;
 | 
						|
 | 
						|
      ++I;
 | 
						|
 | 
						|
      // If the block is trivially dead, zap it.  This eliminates the successor
 | 
						|
      // edges which simplifies the CFG.
 | 
						|
      if (pred_empty(BB) &&
 | 
						|
          BB != &BB->getParent()->getEntryBlock()) {
 | 
						|
        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
 | 
						|
              << "' with terminator: " << *BB->getTerminator() << '\n');
 | 
						|
        LoopHeaders.erase(BB);
 | 
						|
        LVI->eraseBlock(BB);
 | 
						|
        DeleteDeadBlock(BB);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
 | 
						|
      // Can't thread an unconditional jump, but if the block is "almost
 | 
						|
      // empty", we can replace uses of it with uses of the successor and make
 | 
						|
      // this dead.
 | 
						|
      if (BI && BI->isUnconditional() &&
 | 
						|
          BB != &BB->getParent()->getEntryBlock() &&
 | 
						|
          // If the terminator is the only non-phi instruction, try to nuke it.
 | 
						|
          BB->getFirstNonPHIOrDbg()->isTerminator()) {
 | 
						|
        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
 | 
						|
        // block, we have to make sure it isn't in the LoopHeaders set.  We
 | 
						|
        // reinsert afterward if needed.
 | 
						|
        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
 | 
						|
        BasicBlock *Succ = BI->getSuccessor(0);
 | 
						|
 | 
						|
        // FIXME: It is always conservatively correct to drop the info
 | 
						|
        // for a block even if it doesn't get erased.  This isn't totally
 | 
						|
        // awesome, but it allows us to use AssertingVH to prevent nasty
 | 
						|
        // dangling pointer issues within LazyValueInfo.
 | 
						|
        LVI->eraseBlock(BB);
 | 
						|
        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
 | 
						|
          Changed = true;
 | 
						|
          // If we deleted BB and BB was the header of a loop, then the
 | 
						|
          // successor is now the header of the loop.
 | 
						|
          BB = Succ;
 | 
						|
        }
 | 
						|
 | 
						|
        if (ErasedFromLoopHeaders)
 | 
						|
          LoopHeaders.insert(BB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    EverChanged |= Changed;
 | 
						|
  } while (Changed);
 | 
						|
 | 
						|
  LoopHeaders.clear();
 | 
						|
  return EverChanged;
 | 
						|
}
 | 
						|
 | 
						|
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
 | 
						|
/// thread across it. Stop scanning the block when passing the threshold.
 | 
						|
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
 | 
						|
                                             unsigned Threshold) {
 | 
						|
  /// Ignore PHI nodes, these will be flattened when duplication happens.
 | 
						|
  BasicBlock::const_iterator I = BB->getFirstNonPHI();
 | 
						|
 | 
						|
  // FIXME: THREADING will delete values that are just used to compute the
 | 
						|
  // branch, so they shouldn't count against the duplication cost.
 | 
						|
 | 
						|
  // Sum up the cost of each instruction until we get to the terminator.  Don't
 | 
						|
  // include the terminator because the copy won't include it.
 | 
						|
  unsigned Size = 0;
 | 
						|
  for (; !isa<TerminatorInst>(I); ++I) {
 | 
						|
 | 
						|
    // Stop scanning the block if we've reached the threshold.
 | 
						|
    if (Size > Threshold)
 | 
						|
      return Size;
 | 
						|
 | 
						|
    // Debugger intrinsics don't incur code size.
 | 
						|
    if (isa<DbgInfoIntrinsic>(I)) continue;
 | 
						|
 | 
						|
    // If this is a pointer->pointer bitcast, it is free.
 | 
						|
    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // All other instructions count for at least one unit.
 | 
						|
    ++Size;
 | 
						|
 | 
						|
    // Calls are more expensive.  If they are non-intrinsic calls, we model them
 | 
						|
    // as having cost of 4.  If they are a non-vector intrinsic, we model them
 | 
						|
    // as having cost of 2 total, and if they are a vector intrinsic, we model
 | 
						|
    // them as having cost 1.
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
      if (CI->cannotDuplicate())
 | 
						|
        // Blocks with NoDuplicate are modelled as having infinite cost, so they
 | 
						|
        // are never duplicated.
 | 
						|
        return ~0U;
 | 
						|
      else if (!isa<IntrinsicInst>(CI))
 | 
						|
        Size += 3;
 | 
						|
      else if (!CI->getType()->isVectorTy())
 | 
						|
        Size += 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Threading through a switch statement is particularly profitable.  If this
 | 
						|
  // block ends in a switch, decrease its cost to make it more likely to happen.
 | 
						|
  if (isa<SwitchInst>(I))
 | 
						|
    Size = Size > 6 ? Size-6 : 0;
 | 
						|
 | 
						|
  // The same holds for indirect branches, but slightly more so.
 | 
						|
  if (isa<IndirectBrInst>(I))
 | 
						|
    Size = Size > 8 ? Size-8 : 0;
 | 
						|
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
/// FindLoopHeaders - We do not want jump threading to turn proper loop
 | 
						|
/// structures into irreducible loops.  Doing this breaks up the loop nesting
 | 
						|
/// hierarchy and pessimizes later transformations.  To prevent this from
 | 
						|
/// happening, we first have to find the loop headers.  Here we approximate this
 | 
						|
/// by finding targets of backedges in the CFG.
 | 
						|
///
 | 
						|
/// Note that there definitely are cases when we want to allow threading of
 | 
						|
/// edges across a loop header.  For example, threading a jump from outside the
 | 
						|
/// loop (the preheader) to an exit block of the loop is definitely profitable.
 | 
						|
/// It is also almost always profitable to thread backedges from within the loop
 | 
						|
/// to exit blocks, and is often profitable to thread backedges to other blocks
 | 
						|
/// within the loop (forming a nested loop).  This simple analysis is not rich
 | 
						|
/// enough to track all of these properties and keep it up-to-date as the CFG
 | 
						|
/// mutates, so we don't allow any of these transformations.
 | 
						|
///
 | 
						|
void JumpThreading::FindLoopHeaders(Function &F) {
 | 
						|
  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
 | 
						|
  FindFunctionBackedges(F, Edges);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
 | 
						|
    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
 | 
						|
}
 | 
						|
 | 
						|
/// getKnownConstant - Helper method to determine if we can thread over a
 | 
						|
/// terminator with the given value as its condition, and if so what value to
 | 
						|
/// use for that. What kind of value this is depends on whether we want an
 | 
						|
/// integer or a block address, but an undef is always accepted.
 | 
						|
/// Returns null if Val is null or not an appropriate constant.
 | 
						|
static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
 | 
						|
  if (!Val)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Undef is "known" enough.
 | 
						|
  if (UndefValue *U = dyn_cast<UndefValue>(Val))
 | 
						|
    return U;
 | 
						|
 | 
						|
  if (Preference == WantBlockAddress)
 | 
						|
    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
 | 
						|
 | 
						|
  return dyn_cast<ConstantInt>(Val);
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
 | 
						|
/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
 | 
						|
/// in any of our predecessors.  If so, return the known list of value and pred
 | 
						|
/// BB in the result vector.
 | 
						|
///
 | 
						|
/// This returns true if there were any known values.
 | 
						|
///
 | 
						|
bool JumpThreading::
 | 
						|
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
 | 
						|
                                ConstantPreference Preference,
 | 
						|
                                Instruction *CxtI) {
 | 
						|
  // This method walks up use-def chains recursively.  Because of this, we could
 | 
						|
  // get into an infinite loop going around loops in the use-def chain.  To
 | 
						|
  // prevent this, keep track of what (value, block) pairs we've already visited
 | 
						|
  // and terminate the search if we loop back to them
 | 
						|
  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // An RAII help to remove this pair from the recursion set once the recursion
 | 
						|
  // stack pops back out again.
 | 
						|
  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
 | 
						|
 | 
						|
  // If V is a constant, then it is known in all predecessors.
 | 
						|
  if (Constant *KC = getKnownConstant(V, Preference)) {
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
      Result.push_back(std::make_pair(KC, *PI));
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If V is a non-instruction value, or an instruction in a different block,
 | 
						|
  // then it can't be derived from a PHI.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I || I->getParent() != BB) {
 | 
						|
 | 
						|
    // Okay, if this is a live-in value, see if it has a known value at the end
 | 
						|
    // of any of our predecessors.
 | 
						|
    //
 | 
						|
    // FIXME: This should be an edge property, not a block end property.
 | 
						|
    /// TODO: Per PR2563, we could infer value range information about a
 | 
						|
    /// predecessor based on its terminator.
 | 
						|
    //
 | 
						|
    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
 | 
						|
    // "I" is a non-local compare-with-a-constant instruction.  This would be
 | 
						|
    // able to handle value inequalities better, for example if the compare is
 | 
						|
    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
 | 
						|
    // Perhaps getConstantOnEdge should be smart enough to do this?
 | 
						|
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
      BasicBlock *P = *PI;
 | 
						|
      // If the value is known by LazyValueInfo to be a constant in a
 | 
						|
      // predecessor, use that information to try to thread this block.
 | 
						|
      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
 | 
						|
      if (Constant *KC = getKnownConstant(PredCst, Preference))
 | 
						|
        Result.push_back(std::make_pair(KC, P));
 | 
						|
    }
 | 
						|
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  /// If I is a PHI node, then we know the incoming values for any constants.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *InVal = PN->getIncomingValue(i);
 | 
						|
      if (Constant *KC = getKnownConstant(InVal, Preference)) {
 | 
						|
        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
 | 
						|
      } else {
 | 
						|
        Constant *CI = LVI->getConstantOnEdge(InVal,
 | 
						|
                                              PN->getIncomingBlock(i),
 | 
						|
                                              BB, CxtI);
 | 
						|
        if (Constant *KC = getKnownConstant(CI, Preference))
 | 
						|
          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  PredValueInfoTy LHSVals, RHSVals;
 | 
						|
 | 
						|
  // Handle some boolean conditions.
 | 
						|
  if (I->getType()->getPrimitiveSizeInBits() == 1) {
 | 
						|
    assert(Preference == WantInteger && "One-bit non-integer type?");
 | 
						|
    // X | true -> true
 | 
						|
    // X & false -> false
 | 
						|
    if (I->getOpcode() == Instruction::Or ||
 | 
						|
        I->getOpcode() == Instruction::And) {
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
 | 
						|
      if (LHSVals.empty() && RHSVals.empty())
 | 
						|
        return false;
 | 
						|
 | 
						|
      ConstantInt *InterestingVal;
 | 
						|
      if (I->getOpcode() == Instruction::Or)
 | 
						|
        InterestingVal = ConstantInt::getTrue(I->getContext());
 | 
						|
      else
 | 
						|
        InterestingVal = ConstantInt::getFalse(I->getContext());
 | 
						|
 | 
						|
      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
 | 
						|
 | 
						|
      // Scan for the sentinel.  If we find an undef, force it to the
 | 
						|
      // interesting value: x|undef -> true and x&undef -> false.
 | 
						|
      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
 | 
						|
        if (LHSVals[i].first == InterestingVal ||
 | 
						|
            isa<UndefValue>(LHSVals[i].first)) {
 | 
						|
          Result.push_back(LHSVals[i]);
 | 
						|
          Result.back().first = InterestingVal;
 | 
						|
          LHSKnownBBs.insert(LHSVals[i].second);
 | 
						|
        }
 | 
						|
      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
 | 
						|
        if (RHSVals[i].first == InterestingVal ||
 | 
						|
            isa<UndefValue>(RHSVals[i].first)) {
 | 
						|
          // If we already inferred a value for this block on the LHS, don't
 | 
						|
          // re-add it.
 | 
						|
          if (!LHSKnownBBs.count(RHSVals[i].second)) {
 | 
						|
            Result.push_back(RHSVals[i]);
 | 
						|
            Result.back().first = InterestingVal;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle the NOT form of XOR.
 | 
						|
    if (I->getOpcode() == Instruction::Xor &&
 | 
						|
        isa<ConstantInt>(I->getOperand(1)) &&
 | 
						|
        cast<ConstantInt>(I->getOperand(1))->isOne()) {
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
      if (Result.empty())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Invert the known values.
 | 
						|
      for (unsigned i = 0, e = Result.size(); i != e; ++i)
 | 
						|
        Result[i].first = ConstantExpr::getNot(Result[i].first);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  // Try to simplify some other binary operator values.
 | 
						|
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
    assert(Preference != WantBlockAddress
 | 
						|
            && "A binary operator creating a block address?");
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
      PredValueInfoTy LHSVals;
 | 
						|
      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
 | 
						|
                                      WantInteger, CxtI);
 | 
						|
 | 
						|
      // Try to use constant folding to simplify the binary operator.
 | 
						|
      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
 | 
						|
        Constant *V = LHSVals[i].first;
 | 
						|
        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
 | 
						|
 | 
						|
        if (Constant *KC = getKnownConstant(Folded, WantInteger))
 | 
						|
          Result.push_back(std::make_pair(KC, LHSVals[i].second));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle compare with phi operand, where the PHI is defined in this block.
 | 
						|
  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
 | 
						|
    assert(Preference == WantInteger && "Compares only produce integers");
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
 | 
						|
    if (PN && PN->getParent() == BB) {
 | 
						|
      const DataLayout &DL = PN->getModule()->getDataLayout();
 | 
						|
      // We can do this simplification if any comparisons fold to true or false.
 | 
						|
      // See if any do.
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        BasicBlock *PredBB = PN->getIncomingBlock(i);
 | 
						|
        Value *LHS = PN->getIncomingValue(i);
 | 
						|
        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
 | 
						|
 | 
						|
        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
 | 
						|
        if (!Res) {
 | 
						|
          if (!isa<Constant>(RHS))
 | 
						|
            continue;
 | 
						|
 | 
						|
          LazyValueInfo::Tristate
 | 
						|
            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
 | 
						|
                                           cast<Constant>(RHS), PredBB, BB,
 | 
						|
                                           CxtI ? CxtI : Cmp);
 | 
						|
          if (ResT == LazyValueInfo::Unknown)
 | 
						|
            continue;
 | 
						|
          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
 | 
						|
        }
 | 
						|
 | 
						|
        if (Constant *KC = getKnownConstant(Res, WantInteger))
 | 
						|
          Result.push_back(std::make_pair(KC, PredBB));
 | 
						|
      }
 | 
						|
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    // If comparing a live-in value against a constant, see if we know the
 | 
						|
    // live-in value on any predecessors.
 | 
						|
    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
 | 
						|
      if (!isa<Instruction>(Cmp->getOperand(0)) ||
 | 
						|
          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
 | 
						|
        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
 | 
						|
 | 
						|
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
 | 
						|
          BasicBlock *P = *PI;
 | 
						|
          // If the value is known by LazyValueInfo to be a constant in a
 | 
						|
          // predecessor, use that information to try to thread this block.
 | 
						|
          LazyValueInfo::Tristate Res =
 | 
						|
            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
 | 
						|
                                    RHSCst, P, BB, CxtI ? CxtI : Cmp);
 | 
						|
          if (Res == LazyValueInfo::Unknown)
 | 
						|
            continue;
 | 
						|
 | 
						|
          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
 | 
						|
          Result.push_back(std::make_pair(ResC, P));
 | 
						|
        }
 | 
						|
 | 
						|
        return !Result.empty();
 | 
						|
      }
 | 
						|
 | 
						|
      // Try to find a constant value for the LHS of a comparison,
 | 
						|
      // and evaluate it statically if we can.
 | 
						|
      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
 | 
						|
        PredValueInfoTy LHSVals;
 | 
						|
        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
 | 
						|
                                        WantInteger, CxtI);
 | 
						|
 | 
						|
        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
 | 
						|
          Constant *V = LHSVals[i].first;
 | 
						|
          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
 | 
						|
                                                      V, CmpConst);
 | 
						|
          if (Constant *KC = getKnownConstant(Folded, WantInteger))
 | 
						|
            Result.push_back(std::make_pair(KC, LHSVals[i].second));
 | 
						|
        }
 | 
						|
 | 
						|
        return !Result.empty();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | 
						|
    // Handle select instructions where at least one operand is a known constant
 | 
						|
    // and we can figure out the condition value for any predecessor block.
 | 
						|
    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
 | 
						|
    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
 | 
						|
    PredValueInfoTy Conds;
 | 
						|
    if ((TrueVal || FalseVal) &&
 | 
						|
        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
 | 
						|
                                        WantInteger, CxtI)) {
 | 
						|
      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
 | 
						|
        Constant *Cond = Conds[i].first;
 | 
						|
 | 
						|
        // Figure out what value to use for the condition.
 | 
						|
        bool KnownCond;
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
 | 
						|
          // A known boolean.
 | 
						|
          KnownCond = CI->isOne();
 | 
						|
        } else {
 | 
						|
          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
 | 
						|
          // Either operand will do, so be sure to pick the one that's a known
 | 
						|
          // constant.
 | 
						|
          // FIXME: Do this more cleverly if both values are known constants?
 | 
						|
          KnownCond = (TrueVal != nullptr);
 | 
						|
        }
 | 
						|
 | 
						|
        // See if the select has a known constant value for this predecessor.
 | 
						|
        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
 | 
						|
          Result.push_back(std::make_pair(Val, Conds[i].second));
 | 
						|
      }
 | 
						|
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If all else fails, see if LVI can figure out a constant value for us.
 | 
						|
  Constant *CI = LVI->getConstant(V, BB, CxtI);
 | 
						|
  if (Constant *KC = getKnownConstant(CI, Preference)) {
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
      Result.push_back(std::make_pair(KC, *PI));
 | 
						|
  }
 | 
						|
 | 
						|
  return !Result.empty();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
 | 
						|
/// in an undefined jump, decide which block is best to revector to.
 | 
						|
///
 | 
						|
/// Since we can pick an arbitrary destination, we pick the successor with the
 | 
						|
/// fewest predecessors.  This should reduce the in-degree of the others.
 | 
						|
///
 | 
						|
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
 | 
						|
  TerminatorInst *BBTerm = BB->getTerminator();
 | 
						|
  unsigned MinSucc = 0;
 | 
						|
  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
 | 
						|
  // Compute the successor with the minimum number of predecessors.
 | 
						|
  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | 
						|
  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
    TestBB = BBTerm->getSuccessor(i);
 | 
						|
    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | 
						|
    if (NumPreds < MinNumPreds) {
 | 
						|
      MinSucc = i;
 | 
						|
      MinNumPreds = NumPreds;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MinSucc;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasAddressTakenAndUsed(BasicBlock *BB) {
 | 
						|
  if (!BB->hasAddressTaken()) return false;
 | 
						|
 | 
						|
  // If the block has its address taken, it may be a tree of dead constants
 | 
						|
  // hanging off of it.  These shouldn't keep the block alive.
 | 
						|
  BlockAddress *BA = BlockAddress::get(BB);
 | 
						|
  BA->removeDeadConstantUsers();
 | 
						|
  return !BA->use_empty();
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBlock - If there are any predecessors whose control can be threaded
 | 
						|
/// through to a successor, transform them now.
 | 
						|
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
 | 
						|
  // If the block is trivially dead, just return and let the caller nuke it.
 | 
						|
  // This simplifies other transformations.
 | 
						|
  if (pred_empty(BB) &&
 | 
						|
      BB != &BB->getParent()->getEntryBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this block has a single predecessor, and if that pred has a single
 | 
						|
  // successor, merge the blocks.  This encourages recursive jump threading
 | 
						|
  // because now the condition in this block can be threaded through
 | 
						|
  // predecessors of our predecessor block.
 | 
						|
  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
 | 
						|
    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
 | 
						|
      // If SinglePred was a loop header, BB becomes one.
 | 
						|
      if (LoopHeaders.erase(SinglePred))
 | 
						|
        LoopHeaders.insert(BB);
 | 
						|
 | 
						|
      LVI->eraseBlock(SinglePred);
 | 
						|
      MergeBasicBlockIntoOnlyPred(BB);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // What kind of constant we're looking for.
 | 
						|
  ConstantPreference Preference = WantInteger;
 | 
						|
 | 
						|
  // Look to see if the terminator is a conditional branch, switch or indirect
 | 
						|
  // branch, if not we can't thread it.
 | 
						|
  Value *Condition;
 | 
						|
  Instruction *Terminator = BB->getTerminator();
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
 | 
						|
    // Can't thread an unconditional jump.
 | 
						|
    if (BI->isUnconditional()) return false;
 | 
						|
    Condition = BI->getCondition();
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
 | 
						|
    Condition = SI->getCondition();
 | 
						|
  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
 | 
						|
    // Can't thread indirect branch with no successors.
 | 
						|
    if (IB->getNumSuccessors() == 0) return false;
 | 
						|
    Condition = IB->getAddress()->stripPointerCasts();
 | 
						|
    Preference = WantBlockAddress;
 | 
						|
  } else {
 | 
						|
    return false; // Must be an invoke.
 | 
						|
  }
 | 
						|
 | 
						|
  // Run constant folding to see if we can reduce the condition to a simple
 | 
						|
  // constant.
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
 | 
						|
    Value *SimpleVal =
 | 
						|
        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
 | 
						|
    if (SimpleVal) {
 | 
						|
      I->replaceAllUsesWith(SimpleVal);
 | 
						|
      I->eraseFromParent();
 | 
						|
      Condition = SimpleVal;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the terminator is branching on an undef, we can pick any of the
 | 
						|
  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
 | 
						|
  if (isa<UndefValue>(Condition)) {
 | 
						|
    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
 | 
						|
 | 
						|
    // Fold the branch/switch.
 | 
						|
    TerminatorInst *BBTerm = BB->getTerminator();
 | 
						|
    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
      if (i == BestSucc) continue;
 | 
						|
      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "  In block '" << BB->getName()
 | 
						|
          << "' folding undef terminator: " << *BBTerm << '\n');
 | 
						|
    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
 | 
						|
    BBTerm->eraseFromParent();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the terminator of this block is branching on a constant, simplify the
 | 
						|
  // terminator to an unconditional branch.  This can occur due to threading in
 | 
						|
  // other blocks.
 | 
						|
  if (getKnownConstant(Condition, Preference)) {
 | 
						|
    DEBUG(dbgs() << "  In block '" << BB->getName()
 | 
						|
          << "' folding terminator: " << *BB->getTerminator() << '\n');
 | 
						|
    ++NumFolds;
 | 
						|
    ConstantFoldTerminator(BB, true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *CondInst = dyn_cast<Instruction>(Condition);
 | 
						|
 | 
						|
  // All the rest of our checks depend on the condition being an instruction.
 | 
						|
  if (!CondInst) {
 | 
						|
    // FIXME: Unify this with code below.
 | 
						|
    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
 | 
						|
    // For a comparison where the LHS is outside this block, it's possible
 | 
						|
    // that we've branched on it before.  Used LVI to see if we can simplify
 | 
						|
    // the branch based on that.
 | 
						|
    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
 | 
						|
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
 | 
						|
        (!isa<Instruction>(CondCmp->getOperand(0)) ||
 | 
						|
         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
 | 
						|
      // For predecessor edge, determine if the comparison is true or false
 | 
						|
      // on that edge.  If they're all true or all false, we can simplify the
 | 
						|
      // branch.
 | 
						|
      // FIXME: We could handle mixed true/false by duplicating code.
 | 
						|
      LazyValueInfo::Tristate Baseline =
 | 
						|
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
 | 
						|
                                CondConst, *PI, BB, CondCmp);
 | 
						|
      if (Baseline != LazyValueInfo::Unknown) {
 | 
						|
        // Check that all remaining incoming values match the first one.
 | 
						|
        while (++PI != PE) {
 | 
						|
          LazyValueInfo::Tristate Ret =
 | 
						|
            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
 | 
						|
                                    CondCmp->getOperand(0), CondConst, *PI, BB,
 | 
						|
                                    CondCmp);
 | 
						|
          if (Ret != Baseline) break;
 | 
						|
        }
 | 
						|
 | 
						|
        // If we terminated early, then one of the values didn't match.
 | 
						|
        if (PI == PE) {
 | 
						|
          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
 | 
						|
          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
 | 
						|
          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
 | 
						|
          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
 | 
						|
          CondBr->eraseFromParent();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    } else if (CondBr && CondConst && CondBr->isConditional()) {
 | 
						|
      // There might be an invariant in the same block with the conditional
 | 
						|
      // that can determine the predicate.
 | 
						|
 | 
						|
      LazyValueInfo::Tristate Ret =
 | 
						|
        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
 | 
						|
                            CondConst, CondCmp);
 | 
						|
      if (Ret != LazyValueInfo::Unknown) {
 | 
						|
        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
 | 
						|
        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
 | 
						|
        CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
 | 
						|
        BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
 | 
						|
        CondBr->eraseFromParent();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for some cases that are worth simplifying.  Right now we want to look
 | 
						|
  // for loads that are used by a switch or by the condition for the branch.  If
 | 
						|
  // we see one, check to see if it's partially redundant.  If so, insert a PHI
 | 
						|
  // which can then be used to thread the values.
 | 
						|
  //
 | 
						|
  Value *SimplifyValue = CondInst;
 | 
						|
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
 | 
						|
    if (isa<Constant>(CondCmp->getOperand(1)))
 | 
						|
      SimplifyValue = CondCmp->getOperand(0);
 | 
						|
 | 
						|
  // TODO: There are other places where load PRE would be profitable, such as
 | 
						|
  // more complex comparisons.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
 | 
						|
    if (SimplifyPartiallyRedundantLoad(LI))
 | 
						|
      return true;
 | 
						|
 | 
						|
 | 
						|
  // Handle a variety of cases where we are branching on something derived from
 | 
						|
  // a PHI node in the current block.  If we can prove that any predecessors
 | 
						|
  // compute a predictable value based on a PHI node, thread those predecessors.
 | 
						|
  //
 | 
						|
  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is an otherwise-unfoldable branch on a phi node in the current
 | 
						|
  // block, see if we can simplify.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
 | 
						|
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
 | 
						|
      return ProcessBranchOnPHI(PN);
 | 
						|
 | 
						|
 | 
						|
  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
 | 
						|
  if (CondInst->getOpcode() == Instruction::Xor &&
 | 
						|
      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
 | 
						|
    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
 | 
						|
 | 
						|
 | 
						|
  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
 | 
						|
  // "(X == 4)", thread through this block.
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
 | 
						|
/// load instruction, eliminate it by replacing it with a PHI node.  This is an
 | 
						|
/// important optimization that encourages jump threading, and needs to be run
 | 
						|
/// interlaced with other jump threading tasks.
 | 
						|
bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 | 
						|
  // Don't hack volatile/atomic loads.
 | 
						|
  if (!LI->isSimple()) return false;
 | 
						|
 | 
						|
  // If the load is defined in a block with exactly one predecessor, it can't be
 | 
						|
  // partially redundant.
 | 
						|
  BasicBlock *LoadBB = LI->getParent();
 | 
						|
  if (LoadBB->getSinglePredecessor())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the load is defined in a landing pad, it can't be partially redundant,
 | 
						|
  // because the edges between the invoke and the landing pad cannot have other
 | 
						|
  // instructions between them.
 | 
						|
  if (LoadBB->isLandingPad())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *LoadedPtr = LI->getOperand(0);
 | 
						|
 | 
						|
  // If the loaded operand is defined in the LoadBB, it can't be available.
 | 
						|
  // TODO: Could do simple PHI translation, that would be fun :)
 | 
						|
  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
 | 
						|
    if (PtrOp->getParent() == LoadBB)
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Scan a few instructions up from the load, to see if it is obviously live at
 | 
						|
  // the entry to its block.
 | 
						|
  BasicBlock::iterator BBIt = LI;
 | 
						|
 | 
						|
  if (Value *AvailableVal =
 | 
						|
        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
 | 
						|
    // If the value if the load is locally available within the block, just use
 | 
						|
    // it.  This frequently occurs for reg2mem'd allocas.
 | 
						|
    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
 | 
						|
 | 
						|
    // If the returned value is the load itself, replace with an undef. This can
 | 
						|
    // only happen in dead loops.
 | 
						|
    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
 | 
						|
    if (AvailableVal->getType() != LI->getType())
 | 
						|
      AvailableVal =
 | 
						|
          CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
 | 
						|
    LI->replaceAllUsesWith(AvailableVal);
 | 
						|
    LI->eraseFromParent();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if we scanned the whole block and got to the top of the block,
 | 
						|
  // we know the block is locally transparent to the load.  If not, something
 | 
						|
  // might clobber its value.
 | 
						|
  if (BBIt != LoadBB->begin())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If all of the loads and stores that feed the value have the same AA tags,
 | 
						|
  // then we can propagate them onto any newly inserted loads.
 | 
						|
  AAMDNodes AATags;
 | 
						|
  LI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock*, 8> PredsScanned;
 | 
						|
  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
 | 
						|
  AvailablePredsTy AvailablePreds;
 | 
						|
  BasicBlock *OneUnavailablePred = nullptr;
 | 
						|
 | 
						|
  // If we got here, the loaded value is transparent through to the start of the
 | 
						|
  // block.  Check to see if it is available in any of the predecessor blocks.
 | 
						|
  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | 
						|
       PI != PE; ++PI) {
 | 
						|
    BasicBlock *PredBB = *PI;
 | 
						|
 | 
						|
    // If we already scanned this predecessor, skip it.
 | 
						|
    if (!PredsScanned.insert(PredBB).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Scan the predecessor to see if the value is available in the pred.
 | 
						|
    BBIt = PredBB->end();
 | 
						|
    AAMDNodes ThisAATags;
 | 
						|
    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
 | 
						|
                                                    nullptr, &ThisAATags);
 | 
						|
    if (!PredAvailable) {
 | 
						|
      OneUnavailablePred = PredBB;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If AA tags disagree or are not present, forget about them.
 | 
						|
    if (AATags != ThisAATags) AATags = AAMDNodes();
 | 
						|
 | 
						|
    // If so, this load is partially redundant.  Remember this info so that we
 | 
						|
    // can create a PHI node.
 | 
						|
    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
 | 
						|
  }
 | 
						|
 | 
						|
  // If the loaded value isn't available in any predecessor, it isn't partially
 | 
						|
  // redundant.
 | 
						|
  if (AvailablePreds.empty()) return false;
 | 
						|
 | 
						|
  // Okay, the loaded value is available in at least one (and maybe all!)
 | 
						|
  // predecessors.  If the value is unavailable in more than one unique
 | 
						|
  // predecessor, we want to insert a merge block for those common predecessors.
 | 
						|
  // This ensures that we only have to insert one reload, thus not increasing
 | 
						|
  // code size.
 | 
						|
  BasicBlock *UnavailablePred = nullptr;
 | 
						|
 | 
						|
  // If there is exactly one predecessor where the value is unavailable, the
 | 
						|
  // already computed 'OneUnavailablePred' block is it.  If it ends in an
 | 
						|
  // unconditional branch, we know that it isn't a critical edge.
 | 
						|
  if (PredsScanned.size() == AvailablePreds.size()+1 &&
 | 
						|
      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
 | 
						|
    UnavailablePred = OneUnavailablePred;
 | 
						|
  } else if (PredsScanned.size() != AvailablePreds.size()) {
 | 
						|
    // Otherwise, we had multiple unavailable predecessors or we had a critical
 | 
						|
    // edge from the one.
 | 
						|
    SmallVector<BasicBlock*, 8> PredsToSplit;
 | 
						|
    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
 | 
						|
      AvailablePredSet.insert(AvailablePreds[i].first);
 | 
						|
 | 
						|
    // Add all the unavailable predecessors to the PredsToSplit list.
 | 
						|
    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | 
						|
         PI != PE; ++PI) {
 | 
						|
      BasicBlock *P = *PI;
 | 
						|
      // If the predecessor is an indirect goto, we can't split the edge.
 | 
						|
      if (isa<IndirectBrInst>(P->getTerminator()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!AvailablePredSet.count(P))
 | 
						|
        PredsToSplit.push_back(P);
 | 
						|
    }
 | 
						|
 | 
						|
    // Split them out to their own block.
 | 
						|
    UnavailablePred =
 | 
						|
      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split");
 | 
						|
  }
 | 
						|
 | 
						|
  // If the value isn't available in all predecessors, then there will be
 | 
						|
  // exactly one where it isn't available.  Insert a load on that edge and add
 | 
						|
  // it to the AvailablePreds list.
 | 
						|
  if (UnavailablePred) {
 | 
						|
    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
           "Can't handle critical edge here!");
 | 
						|
    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
 | 
						|
                                 LI->getAlignment(),
 | 
						|
                                 UnavailablePred->getTerminator());
 | 
						|
    NewVal->setDebugLoc(LI->getDebugLoc());
 | 
						|
    if (AATags)
 | 
						|
      NewVal->setAAMetadata(AATags);
 | 
						|
 | 
						|
    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that each predecessor of this block has a value in
 | 
						|
  // AvailablePreds, sort them for efficient access as we're walking the preds.
 | 
						|
  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 | 
						|
 | 
						|
  // Create a PHI node at the start of the block for the PRE'd load value.
 | 
						|
  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | 
						|
  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
 | 
						|
                                LoadBB->begin());
 | 
						|
  PN->takeName(LI);
 | 
						|
  PN->setDebugLoc(LI->getDebugLoc());
 | 
						|
 | 
						|
  // Insert new entries into the PHI for each predecessor.  A single block may
 | 
						|
  // have multiple entries here.
 | 
						|
  for (pred_iterator PI = PB; PI != PE; ++PI) {
 | 
						|
    BasicBlock *P = *PI;
 | 
						|
    AvailablePredsTy::iterator I =
 | 
						|
      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
 | 
						|
                       std::make_pair(P, (Value*)nullptr));
 | 
						|
 | 
						|
    assert(I != AvailablePreds.end() && I->first == P &&
 | 
						|
           "Didn't find entry for predecessor!");
 | 
						|
 | 
						|
    // If we have an available predecessor but it requires casting, insert the
 | 
						|
    // cast in the predecessor and use the cast. Note that we have to update the
 | 
						|
    // AvailablePreds vector as we go so that all of the PHI entries for this
 | 
						|
    // predecessor use the same bitcast.
 | 
						|
    Value *&PredV = I->second;
 | 
						|
    if (PredV->getType() != LI->getType())
 | 
						|
      PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
 | 
						|
                                               P->getTerminator());
 | 
						|
 | 
						|
    PN->addIncoming(PredV, I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  //cerr << "PRE: " << *LI << *PN << "\n";
 | 
						|
 | 
						|
  LI->replaceAllUsesWith(PN);
 | 
						|
  LI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindMostPopularDest - The specified list contains multiple possible
 | 
						|
/// threadable destinations.  Pick the one that occurs the most frequently in
 | 
						|
/// the list.
 | 
						|
static BasicBlock *
 | 
						|
FindMostPopularDest(BasicBlock *BB,
 | 
						|
                    const SmallVectorImpl<std::pair<BasicBlock*,
 | 
						|
                                  BasicBlock*> > &PredToDestList) {
 | 
						|
  assert(!PredToDestList.empty());
 | 
						|
 | 
						|
  // Determine popularity.  If there are multiple possible destinations, we
 | 
						|
  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
 | 
						|
  // blocks with known and real destinations to threading undef.  We'll handle
 | 
						|
  // them later if interesting.
 | 
						|
  DenseMap<BasicBlock*, unsigned> DestPopularity;
 | 
						|
  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
 | 
						|
    if (PredToDestList[i].second)
 | 
						|
      DestPopularity[PredToDestList[i].second]++;
 | 
						|
 | 
						|
  // Find the most popular dest.
 | 
						|
  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
 | 
						|
  BasicBlock *MostPopularDest = DPI->first;
 | 
						|
  unsigned Popularity = DPI->second;
 | 
						|
  SmallVector<BasicBlock*, 4> SamePopularity;
 | 
						|
 | 
						|
  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
 | 
						|
    // If the popularity of this entry isn't higher than the popularity we've
 | 
						|
    // seen so far, ignore it.
 | 
						|
    if (DPI->second < Popularity)
 | 
						|
      ; // ignore.
 | 
						|
    else if (DPI->second == Popularity) {
 | 
						|
      // If it is the same as what we've seen so far, keep track of it.
 | 
						|
      SamePopularity.push_back(DPI->first);
 | 
						|
    } else {
 | 
						|
      // If it is more popular, remember it.
 | 
						|
      SamePopularity.clear();
 | 
						|
      MostPopularDest = DPI->first;
 | 
						|
      Popularity = DPI->second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, now we know the most popular destination.  If there is more than one
 | 
						|
  // destination, we need to determine one.  This is arbitrary, but we need
 | 
						|
  // to make a deterministic decision.  Pick the first one that appears in the
 | 
						|
  // successor list.
 | 
						|
  if (!SamePopularity.empty()) {
 | 
						|
    SamePopularity.push_back(MostPopularDest);
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
    for (unsigned i = 0; ; ++i) {
 | 
						|
      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
 | 
						|
 | 
						|
      if (std::find(SamePopularity.begin(), SamePopularity.end(),
 | 
						|
                    TI->getSuccessor(i)) == SamePopularity.end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      MostPopularDest = TI->getSuccessor(i);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have finally picked the most popular destination.
 | 
						|
  return MostPopularDest;
 | 
						|
}
 | 
						|
 | 
						|
bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 | 
						|
                                           ConstantPreference Preference,
 | 
						|
                                           Instruction *CxtI) {
 | 
						|
  // If threading this would thread across a loop header, don't even try to
 | 
						|
  // thread the edge.
 | 
						|
  if (LoopHeaders.count(BB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  PredValueInfoTy PredValues;
 | 
						|
  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(!PredValues.empty() &&
 | 
						|
         "ComputeValueKnownInPredecessors returned true with no values");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "IN BB: " << *BB;
 | 
						|
        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
 | 
						|
          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
 | 
						|
            << *PredValues[i].first
 | 
						|
            << " for pred '" << PredValues[i].second->getName() << "'.\n";
 | 
						|
        });
 | 
						|
 | 
						|
  // Decide what we want to thread through.  Convert our list of known values to
 | 
						|
  // a list of known destinations for each pred.  This also discards duplicate
 | 
						|
  // predecessors and keeps track of the undefined inputs (which are represented
 | 
						|
  // as a null dest in the PredToDestList).
 | 
						|
  SmallPtrSet<BasicBlock*, 16> SeenPreds;
 | 
						|
  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
 | 
						|
 | 
						|
  BasicBlock *OnlyDest = nullptr;
 | 
						|
  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
 | 
						|
    BasicBlock *Pred = PredValues[i].second;
 | 
						|
    if (!SeenPreds.insert(Pred).second)
 | 
						|
      continue;  // Duplicate predecessor entry.
 | 
						|
 | 
						|
    // If the predecessor ends with an indirect goto, we can't change its
 | 
						|
    // destination.
 | 
						|
    if (isa<IndirectBrInst>(Pred->getTerminator()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Constant *Val = PredValues[i].first;
 | 
						|
 | 
						|
    BasicBlock *DestBB;
 | 
						|
    if (isa<UndefValue>(Val))
 | 
						|
      DestBB = nullptr;
 | 
						|
    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
 | 
						|
      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
 | 
						|
    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
 | 
						|
      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
 | 
						|
    } else {
 | 
						|
      assert(isa<IndirectBrInst>(BB->getTerminator())
 | 
						|
              && "Unexpected terminator");
 | 
						|
      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have exactly one destination, remember it for efficiency below.
 | 
						|
    if (PredToDestList.empty())
 | 
						|
      OnlyDest = DestBB;
 | 
						|
    else if (OnlyDest != DestBB)
 | 
						|
      OnlyDest = MultipleDestSentinel;
 | 
						|
 | 
						|
    PredToDestList.push_back(std::make_pair(Pred, DestBB));
 | 
						|
  }
 | 
						|
 | 
						|
  // If all edges were unthreadable, we fail.
 | 
						|
  if (PredToDestList.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Determine which is the most common successor.  If we have many inputs and
 | 
						|
  // this block is a switch, we want to start by threading the batch that goes
 | 
						|
  // to the most popular destination first.  If we only know about one
 | 
						|
  // threadable destination (the common case) we can avoid this.
 | 
						|
  BasicBlock *MostPopularDest = OnlyDest;
 | 
						|
 | 
						|
  if (MostPopularDest == MultipleDestSentinel)
 | 
						|
    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
 | 
						|
 | 
						|
  // Now that we know what the most popular destination is, factor all
 | 
						|
  // predecessors that will jump to it into a single predecessor.
 | 
						|
  SmallVector<BasicBlock*, 16> PredsToFactor;
 | 
						|
  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
 | 
						|
    if (PredToDestList[i].second == MostPopularDest) {
 | 
						|
      BasicBlock *Pred = PredToDestList[i].first;
 | 
						|
 | 
						|
      // This predecessor may be a switch or something else that has multiple
 | 
						|
      // edges to the block.  Factor each of these edges by listing them
 | 
						|
      // according to # occurrences in PredsToFactor.
 | 
						|
      TerminatorInst *PredTI = Pred->getTerminator();
 | 
						|
      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
 | 
						|
        if (PredTI->getSuccessor(i) == BB)
 | 
						|
          PredsToFactor.push_back(Pred);
 | 
						|
    }
 | 
						|
 | 
						|
  // If the threadable edges are branching on an undefined value, we get to pick
 | 
						|
  // the destination that these predecessors should get to.
 | 
						|
  if (!MostPopularDest)
 | 
						|
    MostPopularDest = BB->getTerminator()->
 | 
						|
                            getSuccessor(GetBestDestForJumpOnUndef(BB));
 | 
						|
 | 
						|
  // Ok, try to thread it!
 | 
						|
  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
 | 
						|
/// a PHI node in the current block.  See if there are any simplifications we
 | 
						|
/// can do based on inputs to the phi node.
 | 
						|
///
 | 
						|
bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
 | 
						|
  BasicBlock *BB = PN->getParent();
 | 
						|
 | 
						|
  // TODO: We could make use of this to do it once for blocks with common PHI
 | 
						|
  // values.
 | 
						|
  SmallVector<BasicBlock*, 1> PredBBs;
 | 
						|
  PredBBs.resize(1);
 | 
						|
 | 
						|
  // If any of the predecessor blocks end in an unconditional branch, we can
 | 
						|
  // *duplicate* the conditional branch into that block in order to further
 | 
						|
  // encourage jump threading and to eliminate cases where we have branch on a
 | 
						|
  // phi of an icmp (branch on icmp is much better).
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *PredBB = PN->getIncomingBlock(i);
 | 
						|
    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
 | 
						|
      if (PredBr->isUnconditional()) {
 | 
						|
        PredBBs[0] = PredBB;
 | 
						|
        // Try to duplicate BB into PredBB.
 | 
						|
        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
 | 
						|
/// a xor instruction in the current block.  See if there are any
 | 
						|
/// simplifications we can do based on inputs to the xor.
 | 
						|
///
 | 
						|
bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
 | 
						|
  BasicBlock *BB = BO->getParent();
 | 
						|
 | 
						|
  // If either the LHS or RHS of the xor is a constant, don't do this
 | 
						|
  // optimization.
 | 
						|
  if (isa<ConstantInt>(BO->getOperand(0)) ||
 | 
						|
      isa<ConstantInt>(BO->getOperand(1)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the first instruction in BB isn't a phi, we won't be able to infer
 | 
						|
  // anything special about any particular predecessor.
 | 
						|
  if (!isa<PHINode>(BB->front()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have a xor as the branch input to this block, and we know that the
 | 
						|
  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
 | 
						|
  // the condition into the predecessor and fix that value to true, saving some
 | 
						|
  // logical ops on that path and encouraging other paths to simplify.
 | 
						|
  //
 | 
						|
  // This copies something like this:
 | 
						|
  //
 | 
						|
  //  BB:
 | 
						|
  //    %X = phi i1 [1],  [%X']
 | 
						|
  //    %Y = icmp eq i32 %A, %B
 | 
						|
  //    %Z = xor i1 %X, %Y
 | 
						|
  //    br i1 %Z, ...
 | 
						|
  //
 | 
						|
  // Into:
 | 
						|
  //  BB':
 | 
						|
  //    %Y = icmp ne i32 %A, %B
 | 
						|
  //    br i1 %Z, ...
 | 
						|
 | 
						|
  PredValueInfoTy XorOpValues;
 | 
						|
  bool isLHS = true;
 | 
						|
  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
 | 
						|
                                       WantInteger, BO)) {
 | 
						|
    assert(XorOpValues.empty());
 | 
						|
    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
 | 
						|
                                         WantInteger, BO))
 | 
						|
      return false;
 | 
						|
    isLHS = false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!XorOpValues.empty() &&
 | 
						|
         "ComputeValueKnownInPredecessors returned true with no values");
 | 
						|
 | 
						|
  // Scan the information to see which is most popular: true or false.  The
 | 
						|
  // predecessors can be of the set true, false, or undef.
 | 
						|
  unsigned NumTrue = 0, NumFalse = 0;
 | 
						|
  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
 | 
						|
    if (isa<UndefValue>(XorOpValues[i].first))
 | 
						|
      // Ignore undefs for the count.
 | 
						|
      continue;
 | 
						|
    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
 | 
						|
      ++NumFalse;
 | 
						|
    else
 | 
						|
      ++NumTrue;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine which value to split on, true, false, or undef if neither.
 | 
						|
  ConstantInt *SplitVal = nullptr;
 | 
						|
  if (NumTrue > NumFalse)
 | 
						|
    SplitVal = ConstantInt::getTrue(BB->getContext());
 | 
						|
  else if (NumTrue != 0 || NumFalse != 0)
 | 
						|
    SplitVal = ConstantInt::getFalse(BB->getContext());
 | 
						|
 | 
						|
  // Collect all of the blocks that this can be folded into so that we can
 | 
						|
  // factor this once and clone it once.
 | 
						|
  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
 | 
						|
  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
 | 
						|
    if (XorOpValues[i].first != SplitVal &&
 | 
						|
        !isa<UndefValue>(XorOpValues[i].first))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BlocksToFoldInto.push_back(XorOpValues[i].second);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we inferred a value for all of the predecessors, then duplication won't
 | 
						|
  // help us.  However, we can just replace the LHS or RHS with the constant.
 | 
						|
  if (BlocksToFoldInto.size() ==
 | 
						|
      cast<PHINode>(BB->front()).getNumIncomingValues()) {
 | 
						|
    if (!SplitVal) {
 | 
						|
      // If all preds provide undef, just nuke the xor, because it is undef too.
 | 
						|
      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
 | 
						|
      BO->eraseFromParent();
 | 
						|
    } else if (SplitVal->isZero()) {
 | 
						|
      // If all preds provide 0, replace the xor with the other input.
 | 
						|
      BO->replaceAllUsesWith(BO->getOperand(isLHS));
 | 
						|
      BO->eraseFromParent();
 | 
						|
    } else {
 | 
						|
      // If all preds provide 1, set the computed value to 1.
 | 
						|
      BO->setOperand(!isLHS, SplitVal);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to duplicate BB into PredBB.
 | 
						|
  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
 | 
						|
/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
 | 
						|
/// NewPred using the entries from OldPred (suitably mapped).
 | 
						|
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
 | 
						|
                                            BasicBlock *OldPred,
 | 
						|
                                            BasicBlock *NewPred,
 | 
						|
                                     DenseMap<Instruction*, Value*> &ValueMap) {
 | 
						|
  for (BasicBlock::iterator PNI = PHIBB->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
 | 
						|
    // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | 
						|
    // DestBlock.
 | 
						|
    Value *IV = PN->getIncomingValueForBlock(OldPred);
 | 
						|
 | 
						|
    // Remap the value if necessary.
 | 
						|
    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
 | 
						|
      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
 | 
						|
      if (I != ValueMap.end())
 | 
						|
        IV = I->second;
 | 
						|
    }
 | 
						|
 | 
						|
    PN->addIncoming(IV, NewPred);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ThreadEdge - We have decided that it is safe and profitable to factor the
 | 
						|
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
 | 
						|
/// across BB.  Transform the IR to reflect this change.
 | 
						|
bool JumpThreading::ThreadEdge(BasicBlock *BB,
 | 
						|
                               const SmallVectorImpl<BasicBlock*> &PredBBs,
 | 
						|
                               BasicBlock *SuccBB) {
 | 
						|
  // If threading to the same block as we come from, we would infinite loop.
 | 
						|
  if (SuccBB == BB) {
 | 
						|
    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
 | 
						|
          << "' - would thread to self!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If threading this would thread across a loop header, don't thread the edge.
 | 
						|
  // See the comments above FindLoopHeaders for justifications and caveats.
 | 
						|
  if (LoopHeaders.count(BB)) {
 | 
						|
    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
 | 
						|
          << "' to dest BB '" << SuccBB->getName()
 | 
						|
          << "' - it might create an irreducible loop!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
 | 
						|
  if (JumpThreadCost > BBDupThreshold) {
 | 
						|
    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
 | 
						|
          << "' - Cost is too high: " << JumpThreadCost << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // And finally, do it!  Start by factoring the predecessors is needed.
 | 
						|
  BasicBlock *PredBB;
 | 
						|
  if (PredBBs.size() == 1)
 | 
						|
    PredBB = PredBBs[0];
 | 
						|
  else {
 | 
						|
    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
 | 
						|
          << " common predecessors.\n");
 | 
						|
    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm");
 | 
						|
  }
 | 
						|
 | 
						|
  // And finally, do it!
 | 
						|
  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
 | 
						|
        << SuccBB->getName() << "' with cost: " << JumpThreadCost
 | 
						|
        << ", across block:\n    "
 | 
						|
        << *BB << "\n");
 | 
						|
 | 
						|
  LVI->threadEdge(PredBB, BB, SuccBB);
 | 
						|
 | 
						|
  // We are going to have to map operands from the original BB block to the new
 | 
						|
  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
 | 
						|
  // account for entry from PredBB.
 | 
						|
  DenseMap<Instruction*, Value*> ValueMapping;
 | 
						|
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
 | 
						|
                                         BB->getName()+".thread",
 | 
						|
                                         BB->getParent(), BB);
 | 
						|
  NewBB->moveAfter(PredBB);
 | 
						|
 | 
						|
  BasicBlock::iterator BI = BB->begin();
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | 
						|
 | 
						|
  // Clone the non-phi instructions of BB into NewBB, keeping track of the
 | 
						|
  // mapping and using it to remap operands in the cloned instructions.
 | 
						|
  for (; !isa<TerminatorInst>(BI); ++BI) {
 | 
						|
    Instruction *New = BI->clone();
 | 
						|
    New->setName(BI->getName());
 | 
						|
    NewBB->getInstList().push_back(New);
 | 
						|
    ValueMapping[BI] = New;
 | 
						|
 | 
						|
    // Remap operands to patch up intra-block references.
 | 
						|
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | 
						|
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | 
						|
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | 
						|
        if (I != ValueMapping.end())
 | 
						|
          New->setOperand(i, I->second);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // We didn't copy the terminator from BB over to NewBB, because there is now
 | 
						|
  // an unconditional jump to SuccBB.  Insert the unconditional jump.
 | 
						|
  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
 | 
						|
  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
 | 
						|
 | 
						|
  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
 | 
						|
  // PHI nodes for NewBB now.
 | 
						|
  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
 | 
						|
 | 
						|
  // If there were values defined in BB that are used outside the block, then we
 | 
						|
  // now have to update all uses of the value to use either the original value,
 | 
						|
  // the cloned value, or some PHI derived value.  This can require arbitrary
 | 
						|
  // PHI insertion, of which we are prepared to do, clean these up now.
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SmallVector<Use*, 16> UsesToRename;
 | 
						|
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | 
						|
    // Scan all uses of this instruction to see if it is used outside of its
 | 
						|
    // block, and if so, record them in UsesToRename.
 | 
						|
    for (Use &U : I->uses()) {
 | 
						|
      Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
        if (UserPN->getIncomingBlock(U) == BB)
 | 
						|
          continue;
 | 
						|
      } else if (User->getParent() == BB)
 | 
						|
        continue;
 | 
						|
 | 
						|
      UsesToRename.push_back(&U);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are no uses outside the block, we're done with this instruction.
 | 
						|
    if (UsesToRename.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
 | 
						|
 | 
						|
    // We found a use of I outside of BB.  Rename all uses of I that are outside
 | 
						|
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | 
						|
    // with the two values we know.
 | 
						|
    SSAUpdate.Initialize(I->getType(), I->getName());
 | 
						|
    SSAUpdate.AddAvailableValue(BB, I);
 | 
						|
    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
 | 
						|
 | 
						|
    while (!UsesToRename.empty())
 | 
						|
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
 | 
						|
  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
 | 
						|
  // us to simplify any PHI nodes in BB.
 | 
						|
  TerminatorInst *PredTerm = PredBB->getTerminator();
 | 
						|
  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
 | 
						|
    if (PredTerm->getSuccessor(i) == BB) {
 | 
						|
      BB->removePredecessor(PredBB, true);
 | 
						|
      PredTerm->setSuccessor(i, NewBB);
 | 
						|
    }
 | 
						|
 | 
						|
  // At this point, the IR is fully up to date and consistent.  Do a quick scan
 | 
						|
  // over the new instructions and zap any that are constants or dead.  This
 | 
						|
  // frequently happens because of phi translation.
 | 
						|
  SimplifyInstructionsInBlock(NewBB, TLI);
 | 
						|
 | 
						|
  // Threaded an edge!
 | 
						|
  ++NumThreads;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
 | 
						|
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
 | 
						|
/// If we can duplicate the contents of BB up into PredBB do so now, this
 | 
						|
/// improves the odds that the branch will be on an analyzable instruction like
 | 
						|
/// a compare.
 | 
						|
bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
 | 
						|
                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
 | 
						|
  assert(!PredBBs.empty() && "Can't handle an empty set");
 | 
						|
 | 
						|
  // If BB is a loop header, then duplicating this block outside the loop would
 | 
						|
  // cause us to transform this into an irreducible loop, don't do this.
 | 
						|
  // See the comments above FindLoopHeaders for justifications and caveats.
 | 
						|
  if (LoopHeaders.count(BB)) {
 | 
						|
    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
 | 
						|
          << "' into predecessor block '" << PredBBs[0]->getName()
 | 
						|
          << "' - it might create an irreducible loop!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
 | 
						|
  if (DuplicationCost > BBDupThreshold) {
 | 
						|
    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
 | 
						|
          << "' - Cost is too high: " << DuplicationCost << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // And finally, do it!  Start by factoring the predecessors is needed.
 | 
						|
  BasicBlock *PredBB;
 | 
						|
  if (PredBBs.size() == 1)
 | 
						|
    PredBB = PredBBs[0];
 | 
						|
  else {
 | 
						|
    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
 | 
						|
          << " common predecessors.\n");
 | 
						|
    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm");
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
 | 
						|
  // of PredBB.
 | 
						|
  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
 | 
						|
        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
 | 
						|
        << DuplicationCost << " block is:" << *BB << "\n");
 | 
						|
 | 
						|
  // Unless PredBB ends with an unconditional branch, split the edge so that we
 | 
						|
  // can just clone the bits from BB into the end of the new PredBB.
 | 
						|
  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
 | 
						|
 | 
						|
  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
 | 
						|
    PredBB = SplitEdge(PredBB, BB);
 | 
						|
    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
 | 
						|
  }
 | 
						|
 | 
						|
  // We are going to have to map operands from the original BB block into the
 | 
						|
  // PredBB block.  Evaluate PHI nodes in BB.
 | 
						|
  DenseMap<Instruction*, Value*> ValueMapping;
 | 
						|
 | 
						|
  BasicBlock::iterator BI = BB->begin();
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | 
						|
  // Clone the non-phi instructions of BB into PredBB, keeping track of the
 | 
						|
  // mapping and using it to remap operands in the cloned instructions.
 | 
						|
  for (; BI != BB->end(); ++BI) {
 | 
						|
    Instruction *New = BI->clone();
 | 
						|
 | 
						|
    // Remap operands to patch up intra-block references.
 | 
						|
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | 
						|
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | 
						|
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | 
						|
        if (I != ValueMapping.end())
 | 
						|
          New->setOperand(i, I->second);
 | 
						|
      }
 | 
						|
 | 
						|
    // If this instruction can be simplified after the operands are updated,
 | 
						|
    // just use the simplified value instead.  This frequently happens due to
 | 
						|
    // phi translation.
 | 
						|
    if (Value *IV =
 | 
						|
            SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
 | 
						|
      delete New;
 | 
						|
      ValueMapping[BI] = IV;
 | 
						|
    } else {
 | 
						|
      // Otherwise, insert the new instruction into the block.
 | 
						|
      New->setName(BI->getName());
 | 
						|
      PredBB->getInstList().insert(OldPredBranch, New);
 | 
						|
      ValueMapping[BI] = New;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if the targets of the branch had PHI nodes. If so, we need to
 | 
						|
  // add entries to the PHI nodes for branch from PredBB now.
 | 
						|
  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
 | 
						|
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
 | 
						|
                                  ValueMapping);
 | 
						|
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
 | 
						|
                                  ValueMapping);
 | 
						|
 | 
						|
  // If there were values defined in BB that are used outside the block, then we
 | 
						|
  // now have to update all uses of the value to use either the original value,
 | 
						|
  // the cloned value, or some PHI derived value.  This can require arbitrary
 | 
						|
  // PHI insertion, of which we are prepared to do, clean these up now.
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SmallVector<Use*, 16> UsesToRename;
 | 
						|
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | 
						|
    // Scan all uses of this instruction to see if it is used outside of its
 | 
						|
    // block, and if so, record them in UsesToRename.
 | 
						|
    for (Use &U : I->uses()) {
 | 
						|
      Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
        if (UserPN->getIncomingBlock(U) == BB)
 | 
						|
          continue;
 | 
						|
      } else if (User->getParent() == BB)
 | 
						|
        continue;
 | 
						|
 | 
						|
      UsesToRename.push_back(&U);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are no uses outside the block, we're done with this instruction.
 | 
						|
    if (UsesToRename.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
 | 
						|
 | 
						|
    // We found a use of I outside of BB.  Rename all uses of I that are outside
 | 
						|
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | 
						|
    // with the two values we know.
 | 
						|
    SSAUpdate.Initialize(I->getType(), I->getName());
 | 
						|
    SSAUpdate.AddAvailableValue(BB, I);
 | 
						|
    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
 | 
						|
 | 
						|
    while (!UsesToRename.empty())
 | 
						|
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
 | 
						|
  // that we nuked.
 | 
						|
  BB->removePredecessor(PredBB, true);
 | 
						|
 | 
						|
  // Remove the unconditional branch at the end of the PredBB block.
 | 
						|
  OldPredBranch->eraseFromParent();
 | 
						|
 | 
						|
  ++NumDupes;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// TryToUnfoldSelect - Look for blocks of the form
 | 
						|
/// bb1:
 | 
						|
///   %a = select
 | 
						|
///   br bb
 | 
						|
///
 | 
						|
/// bb2:
 | 
						|
///   %p = phi [%a, %bb] ...
 | 
						|
///   %c = icmp %p
 | 
						|
///   br i1 %c
 | 
						|
///
 | 
						|
/// And expand the select into a branch structure if one of its arms allows %c
 | 
						|
/// to be folded. This later enables threading from bb1 over bb2.
 | 
						|
bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
 | 
						|
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
 | 
						|
  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
 | 
						|
 | 
						|
  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
 | 
						|
      CondLHS->getParent() != BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
 | 
						|
    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
 | 
						|
    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
 | 
						|
 | 
						|
    // Look if one of the incoming values is a select in the corresponding
 | 
						|
    // predecessor.
 | 
						|
    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
 | 
						|
      continue;
 | 
						|
 | 
						|
    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
 | 
						|
    if (!PredTerm || !PredTerm->isUnconditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Now check if one of the select values would allow us to constant fold the
 | 
						|
    // terminator in BB. We don't do the transform if both sides fold, those
 | 
						|
    // cases will be threaded in any case.
 | 
						|
    LazyValueInfo::Tristate LHSFolds =
 | 
						|
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
 | 
						|
                                CondRHS, Pred, BB, CondCmp);
 | 
						|
    LazyValueInfo::Tristate RHSFolds =
 | 
						|
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
 | 
						|
                                CondRHS, Pred, BB, CondCmp);
 | 
						|
    if ((LHSFolds != LazyValueInfo::Unknown ||
 | 
						|
         RHSFolds != LazyValueInfo::Unknown) &&
 | 
						|
        LHSFolds != RHSFolds) {
 | 
						|
      // Expand the select.
 | 
						|
      //
 | 
						|
      // Pred --
 | 
						|
      //  |    v
 | 
						|
      //  |  NewBB
 | 
						|
      //  |    |
 | 
						|
      //  |-----
 | 
						|
      //  v
 | 
						|
      // BB
 | 
						|
      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
 | 
						|
                                             BB->getParent(), BB);
 | 
						|
      // Move the unconditional branch to NewBB.
 | 
						|
      PredTerm->removeFromParent();
 | 
						|
      NewBB->getInstList().insert(NewBB->end(), PredTerm);
 | 
						|
      // Create a conditional branch and update PHI nodes.
 | 
						|
      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
 | 
						|
      CondLHS->setIncomingValue(I, SI->getFalseValue());
 | 
						|
      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
 | 
						|
      // The select is now dead.
 | 
						|
      SI->eraseFromParent();
 | 
						|
 | 
						|
      // Update any other PHI nodes in BB.
 | 
						|
      for (BasicBlock::iterator BI = BB->begin();
 | 
						|
           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
        if (Phi != CondLHS)
 | 
						|
          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 |