mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
3a41ddb1b9
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90816 91177308-0d34-0410-b5e6-96231b3b80d8
394 lines
15 KiB
C++
394 lines
15 KiB
C++
//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
|
|
// class in lib/Transforms/Utils.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineSSAUpdater.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
|
|
typedef std::vector<std::pair<MachineBasicBlock*, unsigned> >
|
|
IncomingPredInfoTy;
|
|
|
|
static AvailableValsTy &getAvailableVals(void *AV) {
|
|
return *static_cast<AvailableValsTy*>(AV);
|
|
}
|
|
|
|
static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
|
|
return *static_cast<IncomingPredInfoTy*>(IPI);
|
|
}
|
|
|
|
|
|
MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
|
|
SmallVectorImpl<MachineInstr*> *NewPHI)
|
|
: AV(0), IPI(0), InsertedPHIs(NewPHI) {
|
|
TII = MF.getTarget().getInstrInfo();
|
|
MRI = &MF.getRegInfo();
|
|
}
|
|
|
|
MachineSSAUpdater::~MachineSSAUpdater() {
|
|
delete &getAvailableVals(AV);
|
|
delete &getIncomingPredInfo(IPI);
|
|
}
|
|
|
|
/// Initialize - Reset this object to get ready for a new set of SSA
|
|
/// updates. ProtoValue is the value used to name PHI nodes.
|
|
void MachineSSAUpdater::Initialize(unsigned V) {
|
|
if (AV == 0)
|
|
AV = new AvailableValsTy();
|
|
else
|
|
getAvailableVals(AV).clear();
|
|
|
|
if (IPI == 0)
|
|
IPI = new IncomingPredInfoTy();
|
|
else
|
|
getIncomingPredInfo(IPI).clear();
|
|
|
|
VR = V;
|
|
VRC = MRI->getRegClass(VR);
|
|
}
|
|
|
|
/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
|
|
/// the specified block.
|
|
bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
|
|
return getAvailableVals(AV).count(BB);
|
|
}
|
|
|
|
/// AddAvailableValue - Indicate that a rewritten value is available in the
|
|
/// specified block with the specified value.
|
|
void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
|
|
getAvailableVals(AV)[BB] = V;
|
|
}
|
|
|
|
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
|
|
/// live at the end of the specified block.
|
|
unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
|
|
return GetValueAtEndOfBlockInternal(BB);
|
|
}
|
|
|
|
static
|
|
unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
|
|
SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
|
|
if (BB->empty())
|
|
return 0;
|
|
|
|
MachineBasicBlock::iterator I = BB->front();
|
|
if (I->getOpcode() != TargetInstrInfo::PHI)
|
|
return 0;
|
|
|
|
AvailableValsTy AVals;
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
|
|
AVals[PredValues[i].first] = PredValues[i].second;
|
|
while (I != BB->end() && I->getOpcode() == TargetInstrInfo::PHI) {
|
|
bool Same = true;
|
|
for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
|
|
unsigned SrcReg = I->getOperand(i).getReg();
|
|
MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
|
|
if (AVals[SrcBB] != SrcReg) {
|
|
Same = false;
|
|
break;
|
|
}
|
|
}
|
|
if (Same)
|
|
return I->getOperand(0).getReg();
|
|
++I;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
|
|
/// a value of the given register class at the start of the specified basic
|
|
/// block. It returns the virtual register defined by the instruction.
|
|
static
|
|
MachineInstr *InsertNewDef(unsigned Opcode,
|
|
MachineBasicBlock *BB, MachineBasicBlock::iterator I,
|
|
const TargetRegisterClass *RC,
|
|
MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
|
|
unsigned NewVR = MRI->createVirtualRegister(RC);
|
|
return BuildMI(*BB, I, DebugLoc::getUnknownLoc(), TII->get(Opcode), NewVR);
|
|
}
|
|
|
|
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
|
|
/// is live in the middle of the specified block.
|
|
///
|
|
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
|
|
/// important case: if there is a definition of the rewritten value after the
|
|
/// 'use' in BB. Consider code like this:
|
|
///
|
|
/// X1 = ...
|
|
/// SomeBB:
|
|
/// use(X)
|
|
/// X2 = ...
|
|
/// br Cond, SomeBB, OutBB
|
|
///
|
|
/// In this case, there are two values (X1 and X2) added to the AvailableVals
|
|
/// set by the client of the rewriter, and those values are both live out of
|
|
/// their respective blocks. However, the use of X happens in the *middle* of
|
|
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
|
|
/// merge the appropriate values, and this value isn't live out of the block.
|
|
///
|
|
unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
|
|
// If there is no definition of the renamed variable in this block, just use
|
|
// GetValueAtEndOfBlock to do our work.
|
|
if (!getAvailableVals(AV).count(BB))
|
|
return GetValueAtEndOfBlockInternal(BB);
|
|
|
|
// If there are no predecessors, just return undef.
|
|
if (BB->pred_empty()) {
|
|
// Insert an implicit_def to represent an undef value.
|
|
MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
|
|
BB, BB->getFirstTerminator(),
|
|
VRC, MRI, TII);
|
|
return NewDef->getOperand(0).getReg();
|
|
}
|
|
|
|
// Otherwise, we have the hard case. Get the live-in values for each
|
|
// predecessor.
|
|
SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
|
|
unsigned SingularValue = 0;
|
|
|
|
bool isFirstPred = true;
|
|
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
|
E = BB->pred_end(); PI != E; ++PI) {
|
|
MachineBasicBlock *PredBB = *PI;
|
|
unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
|
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
|
|
|
// Compute SingularValue.
|
|
if (isFirstPred) {
|
|
SingularValue = PredVal;
|
|
isFirstPred = false;
|
|
} else if (PredVal != SingularValue)
|
|
SingularValue = 0;
|
|
}
|
|
|
|
// Otherwise, if all the merged values are the same, just use it.
|
|
if (SingularValue != 0)
|
|
return SingularValue;
|
|
|
|
// If an identical PHI is already in BB, just reuse it.
|
|
unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
|
|
if (DupPHI)
|
|
return DupPHI;
|
|
|
|
// Otherwise, we do need a PHI: insert one now.
|
|
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
|
|
MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB,
|
|
Loc, VRC, MRI, TII);
|
|
|
|
// Fill in all the predecessors of the PHI.
|
|
MachineInstrBuilder MIB(InsertedPHI);
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
|
|
MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
|
|
|
|
// See if the PHI node can be merged to a single value. This can happen in
|
|
// loop cases when we get a PHI of itself and one other value.
|
|
if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
|
|
InsertedPHI->eraseFromParent();
|
|
return ConstVal;
|
|
}
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
|
|
|
DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
|
return InsertedPHI->getOperand(0).getReg();
|
|
}
|
|
|
|
static
|
|
MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
|
|
MachineOperand *U) {
|
|
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
|
|
if (&MI->getOperand(i) == U)
|
|
return MI->getOperand(i+1).getMBB();
|
|
}
|
|
|
|
llvm_unreachable("MachineOperand::getParent() failure?");
|
|
return 0;
|
|
}
|
|
|
|
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
|
|
/// which use their value in the corresponding predecessor.
|
|
void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
|
|
MachineInstr *UseMI = U.getParent();
|
|
unsigned NewVR = 0;
|
|
if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
|
|
MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
|
|
NewVR = GetValueAtEndOfBlockInternal(SourceBB);
|
|
} else {
|
|
NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
|
|
}
|
|
|
|
U.setReg(NewVR);
|
|
}
|
|
|
|
void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
|
|
MRI->replaceRegWith(OldReg, NewReg);
|
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
for (DenseMap<MachineBasicBlock*, unsigned>::iterator
|
|
I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
|
|
if (I->second == OldReg)
|
|
I->second = NewReg;
|
|
}
|
|
|
|
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
|
/// for the specified BB and if so, return it. If not, construct SSA form by
|
|
/// walking predecessors inserting PHI nodes as needed until we get to a block
|
|
/// where the value is available.
|
|
///
|
|
unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
// Query AvailableVals by doing an insertion of null.
|
|
std::pair<AvailableValsTy::iterator, bool> InsertRes =
|
|
AvailableVals.insert(std::make_pair(BB, 0));
|
|
|
|
// Handle the case when the insertion fails because we have already seen BB.
|
|
if (!InsertRes.second) {
|
|
// If the insertion failed, there are two cases. The first case is that the
|
|
// value is already available for the specified block. If we get this, just
|
|
// return the value.
|
|
if (InsertRes.first->second != 0)
|
|
return InsertRes.first->second;
|
|
|
|
// Otherwise, if the value we find is null, then this is the value is not
|
|
// known but it is being computed elsewhere in our recursion. This means
|
|
// that we have a cycle. Handle this by inserting a PHI node and returning
|
|
// it. When we get back to the first instance of the recursion we will fill
|
|
// in the PHI node.
|
|
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
|
|
MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
|
|
VRC, MRI,TII);
|
|
unsigned NewVR = NewPHI->getOperand(0).getReg();
|
|
InsertRes.first->second = NewVR;
|
|
return NewVR;
|
|
}
|
|
|
|
// If there are no predecessors, then we must have found an unreachable block
|
|
// just return 'undef'. Since there are no predecessors, InsertRes must not
|
|
// be invalidated.
|
|
if (BB->pred_empty()) {
|
|
// Insert an implicit_def to represent an undef value.
|
|
MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF,
|
|
BB, BB->getFirstTerminator(),
|
|
VRC, MRI, TII);
|
|
return InsertRes.first->second = NewDef->getOperand(0).getReg();
|
|
}
|
|
|
|
// Okay, the value isn't in the map and we just inserted a null in the entry
|
|
// to indicate that we're processing the block. Since we have no idea what
|
|
// value is in this block, we have to recurse through our predecessors.
|
|
//
|
|
// While we're walking our predecessors, we keep track of them in a vector,
|
|
// then insert a PHI node in the end if we actually need one. We could use a
|
|
// smallvector here, but that would take a lot of stack space for every level
|
|
// of the recursion, just use IncomingPredInfo as an explicit stack.
|
|
IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
|
|
unsigned FirstPredInfoEntry = IncomingPredInfo.size();
|
|
|
|
// As we're walking the predecessors, keep track of whether they are all
|
|
// producing the same value. If so, this value will capture it, if not, it
|
|
// will get reset to null. We distinguish the no-predecessor case explicitly
|
|
// below.
|
|
unsigned SingularValue = 0;
|
|
bool isFirstPred = true;
|
|
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
|
E = BB->pred_end(); PI != E; ++PI) {
|
|
MachineBasicBlock *PredBB = *PI;
|
|
unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
|
|
IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
|
|
|
|
// Compute SingularValue.
|
|
if (isFirstPred) {
|
|
SingularValue = PredVal;
|
|
isFirstPred = false;
|
|
} else if (PredVal != SingularValue)
|
|
SingularValue = 0;
|
|
}
|
|
|
|
/// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
|
|
/// this block is involved in a loop, a no-entry PHI node will have been
|
|
/// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
|
|
/// above.
|
|
unsigned &InsertedVal = AvailableVals[BB];
|
|
|
|
// If all the predecessor values are the same then we don't need to insert a
|
|
// PHI. This is the simple and common case.
|
|
if (SingularValue) {
|
|
// If a PHI node got inserted, replace it with the singlar value and delete
|
|
// it.
|
|
if (InsertedVal) {
|
|
MachineInstr *OldVal = MRI->getVRegDef(InsertedVal);
|
|
// Be careful about dead loops. These RAUW's also update InsertedVal.
|
|
assert(InsertedVal != SingularValue && "Dead loop?");
|
|
ReplaceRegWith(InsertedVal, SingularValue);
|
|
OldVal->eraseFromParent();
|
|
}
|
|
|
|
InsertedVal = SingularValue;
|
|
|
|
// Drop the entries we added in IncomingPredInfo to restore the stack.
|
|
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
|
|
IncomingPredInfo.end());
|
|
return InsertedVal;
|
|
}
|
|
|
|
|
|
// Otherwise, we do need a PHI: insert one now if we don't already have one.
|
|
MachineInstr *InsertedPHI;
|
|
if (InsertedVal == 0) {
|
|
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
|
|
InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, Loc,
|
|
VRC, MRI, TII);
|
|
InsertedVal = InsertedPHI->getOperand(0).getReg();
|
|
} else {
|
|
InsertedPHI = MRI->getVRegDef(InsertedVal);
|
|
}
|
|
|
|
// Fill in all the predecessors of the PHI.
|
|
MachineInstrBuilder MIB(InsertedPHI);
|
|
for (IncomingPredInfoTy::iterator I =
|
|
IncomingPredInfo.begin()+FirstPredInfoEntry,
|
|
E = IncomingPredInfo.end(); I != E; ++I)
|
|
MIB.addReg(I->second).addMBB(I->first);
|
|
|
|
// Drop the entries we added in IncomingPredInfo to restore the stack.
|
|
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
|
|
IncomingPredInfo.end());
|
|
|
|
// See if the PHI node can be merged to a single value. This can happen in
|
|
// loop cases when we get a PHI of itself and one other value.
|
|
if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
|
|
MRI->replaceRegWith(InsertedVal, ConstVal);
|
|
InsertedPHI->eraseFromParent();
|
|
InsertedVal = ConstVal;
|
|
} else {
|
|
DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
|
}
|
|
|
|
return InsertedVal;
|
|
}
|