llvm-6502/lib/Bitcode/Writer/BitcodeWriter.cpp
Duncan P. N. Exon Smith 7bd3d1d3bd AsmWriter/Bitcode: MDNamespace
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229018 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 01:32:09 +00:00

2382 lines
90 KiB
C++

//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/ReaderWriter.h"
#include "ValueEnumerator.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <map>
using namespace llvm;
/// These are manifest constants used by the bitcode writer. They do not need to
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev,
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
FUNCTION_INST_BINOP_FLAGS_ABBREV,
FUNCTION_INST_CAST_ABBREV,
FUNCTION_INST_RET_VOID_ABBREV,
FUNCTION_INST_RET_VAL_ABBREV,
FUNCTION_INST_UNREACHABLE_ABBREV
};
static unsigned GetEncodedCastOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown cast instruction!");
case Instruction::Trunc : return bitc::CAST_TRUNC;
case Instruction::ZExt : return bitc::CAST_ZEXT;
case Instruction::SExt : return bitc::CAST_SEXT;
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
case Instruction::UIToFP : return bitc::CAST_UITOFP;
case Instruction::SIToFP : return bitc::CAST_SITOFP;
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
case Instruction::FPExt : return bitc::CAST_FPEXT;
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
case Instruction::BitCast : return bitc::CAST_BITCAST;
case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
}
}
static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown binary instruction!");
case Instruction::Add:
case Instruction::FAdd: return bitc::BINOP_ADD;
case Instruction::Sub:
case Instruction::FSub: return bitc::BINOP_SUB;
case Instruction::Mul:
case Instruction::FMul: return bitc::BINOP_MUL;
case Instruction::UDiv: return bitc::BINOP_UDIV;
case Instruction::FDiv:
case Instruction::SDiv: return bitc::BINOP_SDIV;
case Instruction::URem: return bitc::BINOP_UREM;
case Instruction::FRem:
case Instruction::SRem: return bitc::BINOP_SREM;
case Instruction::Shl: return bitc::BINOP_SHL;
case Instruction::LShr: return bitc::BINOP_LSHR;
case Instruction::AShr: return bitc::BINOP_ASHR;
case Instruction::And: return bitc::BINOP_AND;
case Instruction::Or: return bitc::BINOP_OR;
case Instruction::Xor: return bitc::BINOP_XOR;
}
}
static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
switch (Op) {
default: llvm_unreachable("Unknown RMW operation!");
case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
case AtomicRMWInst::Add: return bitc::RMW_ADD;
case AtomicRMWInst::Sub: return bitc::RMW_SUB;
case AtomicRMWInst::And: return bitc::RMW_AND;
case AtomicRMWInst::Nand: return bitc::RMW_NAND;
case AtomicRMWInst::Or: return bitc::RMW_OR;
case AtomicRMWInst::Xor: return bitc::RMW_XOR;
case AtomicRMWInst::Max: return bitc::RMW_MAX;
case AtomicRMWInst::Min: return bitc::RMW_MIN;
case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
}
}
static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
switch (Ordering) {
case NotAtomic: return bitc::ORDERING_NOTATOMIC;
case Unordered: return bitc::ORDERING_UNORDERED;
case Monotonic: return bitc::ORDERING_MONOTONIC;
case Acquire: return bitc::ORDERING_ACQUIRE;
case Release: return bitc::ORDERING_RELEASE;
case AcquireRelease: return bitc::ORDERING_ACQREL;
case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
}
llvm_unreachable("Invalid ordering");
}
static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
switch (SynchScope) {
case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
}
llvm_unreachable("Invalid synch scope");
}
static void WriteStringRecord(unsigned Code, StringRef Str,
unsigned AbbrevToUse, BitstreamWriter &Stream) {
SmallVector<unsigned, 64> Vals;
// Code: [strchar x N]
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
AbbrevToUse = 0;
Vals.push_back(Str[i]);
}
// Emit the finished record.
Stream.EmitRecord(Code, Vals, AbbrevToUse);
}
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
switch (Kind) {
case Attribute::Alignment:
return bitc::ATTR_KIND_ALIGNMENT;
case Attribute::AlwaysInline:
return bitc::ATTR_KIND_ALWAYS_INLINE;
case Attribute::Builtin:
return bitc::ATTR_KIND_BUILTIN;
case Attribute::ByVal:
return bitc::ATTR_KIND_BY_VAL;
case Attribute::InAlloca:
return bitc::ATTR_KIND_IN_ALLOCA;
case Attribute::Cold:
return bitc::ATTR_KIND_COLD;
case Attribute::InlineHint:
return bitc::ATTR_KIND_INLINE_HINT;
case Attribute::InReg:
return bitc::ATTR_KIND_IN_REG;
case Attribute::JumpTable:
return bitc::ATTR_KIND_JUMP_TABLE;
case Attribute::MinSize:
return bitc::ATTR_KIND_MIN_SIZE;
case Attribute::Naked:
return bitc::ATTR_KIND_NAKED;
case Attribute::Nest:
return bitc::ATTR_KIND_NEST;
case Attribute::NoAlias:
return bitc::ATTR_KIND_NO_ALIAS;
case Attribute::NoBuiltin:
return bitc::ATTR_KIND_NO_BUILTIN;
case Attribute::NoCapture:
return bitc::ATTR_KIND_NO_CAPTURE;
case Attribute::NoDuplicate:
return bitc::ATTR_KIND_NO_DUPLICATE;
case Attribute::NoImplicitFloat:
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
case Attribute::NoInline:
return bitc::ATTR_KIND_NO_INLINE;
case Attribute::NonLazyBind:
return bitc::ATTR_KIND_NON_LAZY_BIND;
case Attribute::NonNull:
return bitc::ATTR_KIND_NON_NULL;
case Attribute::Dereferenceable:
return bitc::ATTR_KIND_DEREFERENCEABLE;
case Attribute::NoRedZone:
return bitc::ATTR_KIND_NO_RED_ZONE;
case Attribute::NoReturn:
return bitc::ATTR_KIND_NO_RETURN;
case Attribute::NoUnwind:
return bitc::ATTR_KIND_NO_UNWIND;
case Attribute::OptimizeForSize:
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
case Attribute::OptimizeNone:
return bitc::ATTR_KIND_OPTIMIZE_NONE;
case Attribute::ReadNone:
return bitc::ATTR_KIND_READ_NONE;
case Attribute::ReadOnly:
return bitc::ATTR_KIND_READ_ONLY;
case Attribute::Returned:
return bitc::ATTR_KIND_RETURNED;
case Attribute::ReturnsTwice:
return bitc::ATTR_KIND_RETURNS_TWICE;
case Attribute::SExt:
return bitc::ATTR_KIND_S_EXT;
case Attribute::StackAlignment:
return bitc::ATTR_KIND_STACK_ALIGNMENT;
case Attribute::StackProtect:
return bitc::ATTR_KIND_STACK_PROTECT;
case Attribute::StackProtectReq:
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
case Attribute::StackProtectStrong:
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
case Attribute::StructRet:
return bitc::ATTR_KIND_STRUCT_RET;
case Attribute::SanitizeAddress:
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
case Attribute::SanitizeThread:
return bitc::ATTR_KIND_SANITIZE_THREAD;
case Attribute::SanitizeMemory:
return bitc::ATTR_KIND_SANITIZE_MEMORY;
case Attribute::UWTable:
return bitc::ATTR_KIND_UW_TABLE;
case Attribute::ZExt:
return bitc::ATTR_KIND_Z_EXT;
case Attribute::EndAttrKinds:
llvm_unreachable("Can not encode end-attribute kinds marker.");
case Attribute::None:
llvm_unreachable("Can not encode none-attribute.");
}
llvm_unreachable("Trying to encode unknown attribute");
}
static void WriteAttributeGroupTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
if (AttrGrps.empty()) return;
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
AttributeSet AS = AttrGrps[i];
for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
AttributeSet A = AS.getSlotAttributes(i);
Record.push_back(VE.getAttributeGroupID(A));
Record.push_back(AS.getSlotIndex(i));
for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
I != E; ++I) {
Attribute Attr = *I;
if (Attr.isEnumAttribute()) {
Record.push_back(0);
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
} else if (Attr.isIntAttribute()) {
Record.push_back(1);
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
Record.push_back(Attr.getValueAsInt());
} else {
StringRef Kind = Attr.getKindAsString();
StringRef Val = Attr.getValueAsString();
Record.push_back(Val.empty() ? 3 : 4);
Record.append(Kind.begin(), Kind.end());
Record.push_back(0);
if (!Val.empty()) {
Record.append(Val.begin(), Val.end());
Record.push_back(0);
}
}
}
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
Record.clear();
}
}
Stream.ExitBlock();
}
static void WriteAttributeTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const std::vector<AttributeSet> &Attrs = VE.getAttributes();
if (Attrs.empty()) return;
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
const AttributeSet &A = Attrs[i];
for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
Record.clear();
}
Stream.ExitBlock();
}
/// WriteTypeTable - Write out the type table for a module.
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
SmallVector<uint64_t, 64> TypeVals;
uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
// Abbrev for TYPE_CODE_POINTER.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_STRUCT_ANON.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_STRUCT_NAME.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_STRUCT_NAMED.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for TYPE_CODE_ARRAY.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
// Loop over all of the types, emitting each in turn.
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Type *T = TypeList[i];
int AbbrevToUse = 0;
unsigned Code = 0;
switch (T->getTypeID()) {
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
case Type::IntegerTyID:
// INTEGER: [width]
Code = bitc::TYPE_CODE_INTEGER;
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
break;
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(T);
// POINTER: [pointee type, address space]
Code = bitc::TYPE_CODE_POINTER;
TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
unsigned AddressSpace = PTy->getAddressSpace();
TypeVals.push_back(AddressSpace);
if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
break;
}
case Type::FunctionTyID: {
FunctionType *FT = cast<FunctionType>(T);
// FUNCTION: [isvararg, retty, paramty x N]
Code = bitc::TYPE_CODE_FUNCTION;
TypeVals.push_back(FT->isVarArg());
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
AbbrevToUse = FunctionAbbrev;
break;
}
case Type::StructTyID: {
StructType *ST = cast<StructType>(T);
// STRUCT: [ispacked, eltty x N]
TypeVals.push_back(ST->isPacked());
// Output all of the element types.
for (StructType::element_iterator I = ST->element_begin(),
E = ST->element_end(); I != E; ++I)
TypeVals.push_back(VE.getTypeID(*I));
if (ST->isLiteral()) {
Code = bitc::TYPE_CODE_STRUCT_ANON;
AbbrevToUse = StructAnonAbbrev;
} else {
if (ST->isOpaque()) {
Code = bitc::TYPE_CODE_OPAQUE;
} else {
Code = bitc::TYPE_CODE_STRUCT_NAMED;
AbbrevToUse = StructNamedAbbrev;
}
// Emit the name if it is present.
if (!ST->getName().empty())
WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
StructNameAbbrev, Stream);
}
break;
}
case Type::ArrayTyID: {
ArrayType *AT = cast<ArrayType>(T);
// ARRAY: [numelts, eltty]
Code = bitc::TYPE_CODE_ARRAY;
TypeVals.push_back(AT->getNumElements());
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
AbbrevToUse = ArrayAbbrev;
break;
}
case Type::VectorTyID: {
VectorType *VT = cast<VectorType>(T);
// VECTOR [numelts, eltty]
Code = bitc::TYPE_CODE_VECTOR;
TypeVals.push_back(VT->getNumElements());
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
break;
}
}
// Emit the finished record.
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
Stream.ExitBlock();
}
static unsigned getEncodedLinkage(const GlobalValue &GV) {
switch (GV.getLinkage()) {
case GlobalValue::ExternalLinkage:
return 0;
case GlobalValue::WeakAnyLinkage:
return 16;
case GlobalValue::AppendingLinkage:
return 2;
case GlobalValue::InternalLinkage:
return 3;
case GlobalValue::LinkOnceAnyLinkage:
return 18;
case GlobalValue::ExternalWeakLinkage:
return 7;
case GlobalValue::CommonLinkage:
return 8;
case GlobalValue::PrivateLinkage:
return 9;
case GlobalValue::WeakODRLinkage:
return 17;
case GlobalValue::LinkOnceODRLinkage:
return 19;
case GlobalValue::AvailableExternallyLinkage:
return 12;
}
llvm_unreachable("Invalid linkage");
}
static unsigned getEncodedVisibility(const GlobalValue &GV) {
switch (GV.getVisibility()) {
case GlobalValue::DefaultVisibility: return 0;
case GlobalValue::HiddenVisibility: return 1;
case GlobalValue::ProtectedVisibility: return 2;
}
llvm_unreachable("Invalid visibility");
}
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
switch (GV.getDLLStorageClass()) {
case GlobalValue::DefaultStorageClass: return 0;
case GlobalValue::DLLImportStorageClass: return 1;
case GlobalValue::DLLExportStorageClass: return 2;
}
llvm_unreachable("Invalid DLL storage class");
}
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
switch (GV.getThreadLocalMode()) {
case GlobalVariable::NotThreadLocal: return 0;
case GlobalVariable::GeneralDynamicTLSModel: return 1;
case GlobalVariable::LocalDynamicTLSModel: return 2;
case GlobalVariable::InitialExecTLSModel: return 3;
case GlobalVariable::LocalExecTLSModel: return 4;
}
llvm_unreachable("Invalid TLS model");
}
static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
switch (C.getSelectionKind()) {
case Comdat::Any:
return bitc::COMDAT_SELECTION_KIND_ANY;
case Comdat::ExactMatch:
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
case Comdat::Largest:
return bitc::COMDAT_SELECTION_KIND_LARGEST;
case Comdat::NoDuplicates:
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
case Comdat::SameSize:
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
}
llvm_unreachable("Invalid selection kind");
}
static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
SmallVector<uint16_t, 64> Vals;
for (const Comdat *C : VE.getComdats()) {
// COMDAT: [selection_kind, name]
Vals.push_back(getEncodedComdatSelectionKind(*C));
size_t Size = C->getName().size();
assert(isUInt<16>(Size));
Vals.push_back(Size);
for (char Chr : C->getName())
Vals.push_back((unsigned char)Chr);
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
Vals.clear();
}
}
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
BitstreamWriter &Stream) {
// Emit various pieces of data attached to a module.
if (!M->getTargetTriple().empty())
WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
0/*TODO*/, Stream);
const std::string &DL = M->getDataLayoutStr();
if (!DL.empty())
WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
if (!M->getModuleInlineAsm().empty())
WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
0/*TODO*/, Stream);
// Emit information about sections and GC, computing how many there are. Also
// compute the maximum alignment value.
std::map<std::string, unsigned> SectionMap;
std::map<std::string, unsigned> GCMap;
unsigned MaxAlignment = 0;
unsigned MaxGlobalType = 0;
for (const GlobalValue &GV : M->globals()) {
MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
if (GV.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[GV.getSection()];
if (!Entry) {
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
0/*TODO*/, Stream);
Entry = SectionMap.size();
}
}
}
for (const Function &F : *M) {
MaxAlignment = std::max(MaxAlignment, F.getAlignment());
if (F.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[F.getSection()];
if (!Entry) {
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
0/*TODO*/, Stream);
Entry = SectionMap.size();
}
}
if (F.hasGC()) {
// Same for GC names.
unsigned &Entry = GCMap[F.getGC()];
if (!Entry) {
WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
0/*TODO*/, Stream);
Entry = GCMap.size();
}
}
}
// Emit abbrev for globals, now that we know # sections and max alignment.
unsigned SimpleGVarAbbrev = 0;
if (!M->global_empty()) {
// Add an abbrev for common globals with no visibility or thread localness.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxGlobalType+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
if (MaxAlignment == 0) // Alignment.
Abbv->Add(BitCodeAbbrevOp(0));
else {
unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxEncAlignment+1)));
}
if (SectionMap.empty()) // Section.
Abbv->Add(BitCodeAbbrevOp(0));
else
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(SectionMap.size()+1)));
// Don't bother emitting vis + thread local.
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
}
// Emit the global variable information.
SmallVector<unsigned, 64> Vals;
for (const GlobalVariable &GV : M->globals()) {
unsigned AbbrevToUse = 0;
// GLOBALVAR: [type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal,
// unnamed_addr, externally_initialized, dllstorageclass,
// comdat]
Vals.push_back(VE.getTypeID(GV.getType()));
Vals.push_back(GV.isConstant());
Vals.push_back(GV.isDeclaration() ? 0 :
(VE.getValueID(GV.getInitializer()) + 1));
Vals.push_back(getEncodedLinkage(GV));
Vals.push_back(Log2_32(GV.getAlignment())+1);
Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
if (GV.isThreadLocal() ||
GV.getVisibility() != GlobalValue::DefaultVisibility ||
GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
GV.hasComdat()) {
Vals.push_back(getEncodedVisibility(GV));
Vals.push_back(getEncodedThreadLocalMode(GV));
Vals.push_back(GV.hasUnnamedAddr());
Vals.push_back(GV.isExternallyInitialized());
Vals.push_back(getEncodedDLLStorageClass(GV));
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
} else {
AbbrevToUse = SimpleGVarAbbrev;
}
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the function proto information.
for (const Function &F : *M) {
// FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
// section, visibility, gc, unnamed_addr, prologuedata,
// dllstorageclass, comdat, prefixdata]
Vals.push_back(VE.getTypeID(F.getType()));
Vals.push_back(F.getCallingConv());
Vals.push_back(F.isDeclaration());
Vals.push_back(getEncodedLinkage(F));
Vals.push_back(VE.getAttributeID(F.getAttributes()));
Vals.push_back(Log2_32(F.getAlignment())+1);
Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
Vals.push_back(F.hasUnnamedAddr());
Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
: 0);
Vals.push_back(getEncodedDLLStorageClass(F));
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
: 0);
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the alias information.
for (const GlobalAlias &A : M->aliases()) {
// ALIAS: [alias type, aliasee val#, linkage, visibility]
Vals.push_back(VE.getTypeID(A.getType()));
Vals.push_back(VE.getValueID(A.getAliasee()));
Vals.push_back(getEncodedLinkage(A));
Vals.push_back(getEncodedVisibility(A));
Vals.push_back(getEncodedDLLStorageClass(A));
Vals.push_back(getEncodedThreadLocalMode(A));
Vals.push_back(A.hasUnnamedAddr());
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
Vals.clear();
}
}
static uint64_t GetOptimizationFlags(const Value *V) {
uint64_t Flags = 0;
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
if (OBO->hasNoSignedWrap())
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
if (OBO->hasNoUnsignedWrap())
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
if (PEO->isExact())
Flags |= 1 << bitc::PEO_EXACT;
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
if (FPMO->hasUnsafeAlgebra())
Flags |= FastMathFlags::UnsafeAlgebra;
if (FPMO->hasNoNaNs())
Flags |= FastMathFlags::NoNaNs;
if (FPMO->hasNoInfs())
Flags |= FastMathFlags::NoInfs;
if (FPMO->hasNoSignedZeros())
Flags |= FastMathFlags::NoSignedZeros;
if (FPMO->hasAllowReciprocal())
Flags |= FastMathFlags::AllowReciprocal;
}
return Flags;
}
static void WriteValueAsMetadata(const ValueAsMetadata *MD,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record) {
// Mimic an MDNode with a value as one operand.
Value *V = MD->getValue();
Record.push_back(VE.getTypeID(V->getType()));
Record.push_back(VE.getValueID(V));
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
Record.clear();
}
static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
Metadata *MD = N->getOperand(i);
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
"Unexpected function-local metadata");
Record.push_back(VE.getMetadataOrNullID(MD));
}
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
: bitc::METADATA_NODE,
Record, Abbrev);
Record.clear();
}
static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Record.push_back(VE.getMetadataID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
Record.clear();
}
static void WriteGenericDebugNode(const GenericDebugNode *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(0); // Per-tag version field; unused for now.
for (auto &I : N->operands())
Record.push_back(VE.getMetadataOrNullID(I));
Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
Record.clear();
}
static uint64_t rotateSign(int64_t I) {
uint64_t U = I;
return I < 0 ? ~(U << 1) : U << 1;
}
static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getCount());
Record.push_back(rotateSign(N->getLo()));
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
Record.clear();
}
static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(rotateSign(N->getValue()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
Record.clear();
}
static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getEncoding());
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
Record.clear();
}
static void WriteMDDerivedType(const MDDerivedType *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
Record.clear();
}
static void WriteMDCompositeType(const MDCompositeType *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getElements()));
Record.push_back(N->getRuntimeLang());
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
Record.clear();
}
static void WriteMDSubroutineType(const MDSubroutineType *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray()));
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
Record.clear();
}
static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
Record.clear();
}
static void WriteMDCompileUnit(const MDCompileUnit *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getSourceLanguage());
Record.push_back(VE.getMetadataID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
Record.push_back(N->isOptimized());
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
Record.push_back(N->getRuntimeVersion());
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
Record.push_back(N->getEmissionKind());
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes()));
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes()));
Record.push_back(VE.getMetadataOrNullID(N->getSubprograms()));
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables()));
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities()));
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
Record.clear();
}
static void WriteMDSubprogram(const MDSubprogram *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isLocalToUnit());
Record.push_back(N->isDefinition());
Record.push_back(N->getScopeLine());
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
Record.push_back(N->getVirtuality());
Record.push_back(N->getVirtualIndex());
Record.push_back(N->getFlags());
Record.push_back(N->isOptimized());
Record.push_back(VE.getMetadataOrNullID(N->getFunction()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
Record.push_back(VE.getMetadataOrNullID(N->getVariables()));
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
Record.clear();
}
static void WriteMDLexicalBlock(const MDLexicalBlock *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
Record.clear();
}
static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N,
const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getDiscriminator());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
Record.clear();
}
static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE,
BitstreamWriter &Stream,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(N->getLine());
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
Record.clear();
}
static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *,
const ValueEnumerator &,
BitstreamWriter &,
SmallVectorImpl<uint64_t> &,
unsigned) {
llvm_unreachable("write not implemented");
}
static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *,
const ValueEnumerator &,
BitstreamWriter &,
SmallVectorImpl<uint64_t> &,
unsigned) {
llvm_unreachable("write not implemented");
}
static void WriteMDGlobalVariable(const MDGlobalVariable *,
const ValueEnumerator &, BitstreamWriter &,
SmallVectorImpl<uint64_t> &, unsigned) {
llvm_unreachable("write not implemented");
}
static void WriteMDLocalVariable(const MDLocalVariable *,
const ValueEnumerator &, BitstreamWriter &,
SmallVectorImpl<uint64_t> &, unsigned) {
llvm_unreachable("write not implemented");
}
static void WriteMDExpression(const MDExpression *, const ValueEnumerator &,
BitstreamWriter &, SmallVectorImpl<uint64_t> &,
unsigned) {
llvm_unreachable("write not implemented");
}
static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &,
BitstreamWriter &, SmallVectorImpl<uint64_t> &,
unsigned) {
llvm_unreachable("write not implemented");
}
static void WriteMDImportedEntity(const MDImportedEntity *,
const ValueEnumerator &, BitstreamWriter &,
SmallVectorImpl<uint64_t> &, unsigned) {
llvm_unreachable("write not implemented");
}
static void WriteModuleMetadata(const Module *M,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const auto &MDs = VE.getMDs();
if (MDs.empty() && M->named_metadata_empty())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
unsigned MDSAbbrev = 0;
if (VE.hasMDString()) {
// Abbrev for METADATA_STRING.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
MDSAbbrev = Stream.EmitAbbrev(Abbv);
}
// Initialize MDNode abbreviations.
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
#include "llvm/IR/Metadata.def"
if (VE.hasMDLocation()) {
// Abbrev for METADATA_LOCATION.
//
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
}
if (VE.hasGenericDebugNode()) {
// Abbrev for METADATA_GENERIC_DEBUG.
//
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
}
unsigned NameAbbrev = 0;
if (!M->named_metadata_empty()) {
// Abbrev for METADATA_NAME.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
NameAbbrev = Stream.EmitAbbrev(Abbv);
}
SmallVector<uint64_t, 64> Record;
for (const Metadata *MD : MDs) {
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
switch (N->getMetadataID()) {
default:
llvm_unreachable("Invalid MDNode subclass");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
continue;
#include "llvm/IR/Metadata.def"
}
}
if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
WriteValueAsMetadata(MDC, VE, Stream, Record);
continue;
}
const MDString *MDS = cast<MDString>(MD);
// Code: [strchar x N]
Record.append(MDS->bytes_begin(), MDS->bytes_end());
// Emit the finished record.
Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
Record.clear();
}
// Write named metadata.
for (const NamedMDNode &NMD : M->named_metadata()) {
// Write name.
StringRef Str = NMD.getName();
Record.append(Str.bytes_begin(), Str.bytes_end());
Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
Record.clear();
// Write named metadata operands.
for (const MDNode *N : NMD.operands())
Record.push_back(VE.getMetadataID(N));
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
static void WriteFunctionLocalMetadata(const Function &F,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
bool StartedMetadataBlock = false;
SmallVector<uint64_t, 64> Record;
const SmallVectorImpl<const LocalAsMetadata *> &MDs =
VE.getFunctionLocalMDs();
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
assert(MDs[i] && "Expected valid function-local metadata");
if (!StartedMetadataBlock) {
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
StartedMetadataBlock = true;
}
WriteValueAsMetadata(MDs[i], VE, Stream, Record);
}
if (StartedMetadataBlock)
Stream.ExitBlock();
}
static void WriteMetadataAttachment(const Function &F,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
SmallVector<uint64_t, 64> Record;
// Write metadata attachments
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
MDs.clear();
I->getAllMetadataOtherThanDebugLoc(MDs);
// If no metadata, ignore instruction.
if (MDs.empty()) continue;
Record.push_back(VE.getInstructionID(I));
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
Record.push_back(MDs[i].first);
Record.push_back(VE.getMetadataID(MDs[i].second));
}
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
SmallVector<uint64_t, 64> Record;
// Write metadata kinds
// METADATA_KIND - [n x [id, name]]
SmallVector<StringRef, 8> Names;
M->getMDKindNames(Names);
if (Names.empty()) return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
Record.push_back(MDKindID);
StringRef KName = Names[MDKindID];
Record.append(KName.begin(), KName.end());
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
if ((int64_t)V >= 0)
Vals.push_back(V << 1);
else
Vals.push_back((-V << 1) | 1);
}
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
const ValueEnumerator &VE,
BitstreamWriter &Stream, bool isGlobal) {
if (FirstVal == LastVal) return;
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
unsigned String8Abbrev = 0;
unsigned CString7Abbrev = 0;
unsigned CString6Abbrev = 0;
// If this is a constant pool for the module, emit module-specific abbrevs.
if (isGlobal) {
// Abbrev for CST_CODE_AGGREGATE.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
AggregateAbbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_STRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
String8Abbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_CSTRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
CString7Abbrev = Stream.EmitAbbrev(Abbv);
// Abbrev for CST_CODE_CSTRING.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
CString6Abbrev = Stream.EmitAbbrev(Abbv);
}
SmallVector<uint64_t, 64> Record;
const ValueEnumerator::ValueList &Vals = VE.getValues();
Type *LastTy = nullptr;
for (unsigned i = FirstVal; i != LastVal; ++i) {
const Value *V = Vals[i].first;
// If we need to switch types, do so now.
if (V->getType() != LastTy) {
LastTy = V->getType();
Record.push_back(VE.getTypeID(LastTy));
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Record.push_back(unsigned(IA->hasSideEffects()) |
unsigned(IA->isAlignStack()) << 1 |
unsigned(IA->getDialect()&1) << 2);
// Add the asm string.
const std::string &AsmStr = IA->getAsmString();
Record.push_back(AsmStr.size());
for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
Record.push_back(AsmStr[i]);
// Add the constraint string.
const std::string &ConstraintStr = IA->getConstraintString();
Record.push_back(ConstraintStr.size());
for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
Record.push_back(ConstraintStr[i]);
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
Record.clear();
continue;
}
const Constant *C = cast<Constant>(V);
unsigned Code = -1U;
unsigned AbbrevToUse = 0;
if (C->isNullValue()) {
Code = bitc::CST_CODE_NULL;
} else if (isa<UndefValue>(C)) {
Code = bitc::CST_CODE_UNDEF;
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
if (IV->getBitWidth() <= 64) {
uint64_t V = IV->getSExtValue();
emitSignedInt64(Record, V);
Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size.
// We have an arbitrary precision integer value to write whose
// bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
unsigned NWords = IV->getValue().getActiveWords();
const uint64_t *RawWords = IV->getValue().getRawData();
for (unsigned i = 0; i != NWords; ++i) {
emitSignedInt64(Record, RawWords[i]);
}
Code = bitc::CST_CODE_WIDE_INTEGER;
}
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Code = bitc::CST_CODE_FLOAT;
Type *Ty = CFP->getType();
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
} else if (Ty->isX86_FP80Ty()) {
// api needed to prevent premature destruction
// bits are not in the same order as a normal i80 APInt, compensate.
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back((p[1] << 48) | (p[0] >> 16));
Record.push_back(p[0] & 0xffffLL);
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back(p[1]);
} else {
assert (0 && "Unknown FP type!");
}
} else if (isa<ConstantDataSequential>(C) &&
cast<ConstantDataSequential>(C)->isString()) {
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
// Emit constant strings specially.
unsigned NumElts = Str->getNumElements();
// If this is a null-terminated string, use the denser CSTRING encoding.
if (Str->isCString()) {
Code = bitc::CST_CODE_CSTRING;
--NumElts; // Don't encode the null, which isn't allowed by char6.
} else {
Code = bitc::CST_CODE_STRING;
AbbrevToUse = String8Abbrev;
}
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
for (unsigned i = 0; i != NumElts; ++i) {
unsigned char V = Str->getElementAsInteger(i);
Record.push_back(V);
isCStr7 &= (V & 128) == 0;
if (isCStrChar6)
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
}
if (isCStrChar6)
AbbrevToUse = CString6Abbrev;
else if (isCStr7)
AbbrevToUse = CString7Abbrev;
} else if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(C)) {
Code = bitc::CST_CODE_DATA;
Type *EltTy = CDS->getType()->getElementType();
if (isa<IntegerType>(EltTy)) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
Record.push_back(CDS->getElementAsInteger(i));
} else if (EltTy->isFloatTy()) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union { float F; uint32_t I; };
F = CDS->getElementAsFloat(i);
Record.push_back(I);
}
} else {
assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union { double F; uint64_t I; };
F = CDS->getElementAsDouble(i);
Record.push_back(I);
}
}
} else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
isa<ConstantVector>(C)) {
Code = bitc::CST_CODE_AGGREGATE;
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
Record.push_back(VE.getValueID(C->getOperand(i)));
AbbrevToUse = AggregateAbbrev;
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
default:
if (Instruction::isCast(CE->getOpcode())) {
Code = bitc::CST_CODE_CE_CAST;
Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
} else {
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_BINOP;
Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
uint64_t Flags = GetOptimizationFlags(CE);
if (Flags != 0)
Record.push_back(Flags);
}
break;
case Instruction::GetElementPtr:
Code = bitc::CST_CODE_CE_GEP;
if (cast<GEPOperator>(C)->isInBounds())
Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
Record.push_back(VE.getValueID(C->getOperand(i)));
}
break;
case Instruction::Select:
Code = bitc::CST_CODE_CE_SELECT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ExtractElement:
Code = bitc::CST_CODE_CE_EXTRACTELT;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
Record.push_back(VE.getValueID(C->getOperand(1)));
break;
case Instruction::InsertElement:
Code = bitc::CST_CODE_CE_INSERTELT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ShuffleVector:
// If the return type and argument types are the same, this is a
// standard shufflevector instruction. If the types are different,
// then the shuffle is widening or truncating the input vectors, and
// the argument type must also be encoded.
if (C->getType() == C->getOperand(0)->getType()) {
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
} else {
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
}
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ICmp:
case Instruction::FCmp:
Code = bitc::CST_CODE_CE_CMP;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(CE->getPredicate());
break;
}
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
Code = bitc::CST_CODE_BLOCKADDRESS;
Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
Record.push_back(VE.getValueID(BA->getFunction()));
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
} else {
#ifndef NDEBUG
C->dump();
#endif
llvm_unreachable("Unknown constant!");
}
Stream.EmitRecord(Code, Record, AbbrevToUse);
Record.clear();
}
Stream.ExitBlock();
}
static void WriteModuleConstants(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const ValueEnumerator::ValueList &Vals = VE.getValues();
// Find the first constant to emit, which is the first non-globalvalue value.
// We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
if (!isa<GlobalValue>(Vals[i].first)) {
WriteConstants(i, Vals.size(), VE, Stream, true);
return;
}
}
}
/// PushValueAndType - The file has to encode both the value and type id for
/// many values, because we need to know what type to create for forward
/// references. However, most operands are not forward references, so this type
/// field is not needed.
///
/// This function adds V's value ID to Vals. If the value ID is higher than the
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID. The value ID that is written is encoded relative to the InstID.
static bool PushValueAndType(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals,
ValueEnumerator &VE) {
unsigned ValID = VE.getValueID(V);
// Make encoding relative to the InstID.
Vals.push_back(InstID - ValID);
if (ValID >= InstID) {
Vals.push_back(VE.getTypeID(V->getType()));
return true;
}
return false;
}
/// pushValue - Like PushValueAndType, but where the type of the value is
/// omitted (perhaps it was already encoded in an earlier operand).
static void pushValue(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals,
ValueEnumerator &VE) {
unsigned ValID = VE.getValueID(V);
Vals.push_back(InstID - ValID);
}
static void pushValueSigned(const Value *V, unsigned InstID,
SmallVectorImpl<uint64_t> &Vals,
ValueEnumerator &VE) {
unsigned ValID = VE.getValueID(V);
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
emitSignedInt64(Vals, diff);
}
/// WriteInstruction - Emit an instruction to the specified stream.
static void WriteInstruction(const Instruction &I, unsigned InstID,
ValueEnumerator &VE, BitstreamWriter &Stream,
SmallVectorImpl<unsigned> &Vals) {
unsigned Code = 0;
unsigned AbbrevToUse = 0;
VE.setInstructionID(&I);
switch (I.getOpcode()) {
default:
if (Instruction::isCast(I.getOpcode())) {
Code = bitc::FUNC_CODE_INST_CAST;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
} else {
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
Code = bitc::FUNC_CODE_INST_BINOP;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
pushValue(I.getOperand(1), InstID, Vals, VE);
Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
uint64_t Flags = GetOptimizationFlags(&I);
if (Flags != 0) {
if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
Vals.push_back(Flags);
}
}
break;
case Instruction::GetElementPtr:
Code = bitc::FUNC_CODE_INST_GEP;
if (cast<GEPOperator>(&I)->isInBounds())
Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
break;
case Instruction::ExtractValue: {
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Vals.push_back(*i);
break;
}
case Instruction::InsertValue: {
Code = bitc::FUNC_CODE_INST_INSERTVAL;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Vals.push_back(*i);
break;
}
case Instruction::Select:
Code = bitc::FUNC_CODE_INST_VSELECT;
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
pushValue(I.getOperand(2), InstID, Vals, VE);
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
break;
case Instruction::ExtractElement:
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
break;
case Instruction::InsertElement:
Code = bitc::FUNC_CODE_INST_INSERTELT;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
pushValue(I.getOperand(1), InstID, Vals, VE);
PushValueAndType(I.getOperand(2), InstID, Vals, VE);
break;
case Instruction::ShuffleVector:
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
pushValue(I.getOperand(1), InstID, Vals, VE);
pushValue(I.getOperand(2), InstID, Vals, VE);
break;
case Instruction::ICmp:
case Instruction::FCmp:
// compare returning Int1Ty or vector of Int1Ty
Code = bitc::FUNC_CODE_INST_CMP2;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
pushValue(I.getOperand(1), InstID, Vals, VE);
Vals.push_back(cast<CmpInst>(I).getPredicate());
break;
case Instruction::Ret:
{
Code = bitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
if (NumOperands == 0)
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
else if (NumOperands == 1) {
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
} else {
for (unsigned i = 0, e = NumOperands; i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
}
}
break;
case Instruction::Br:
{
Code = bitc::FUNC_CODE_INST_BR;
const BranchInst &II = cast<BranchInst>(I);
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
if (II.isConditional()) {
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
pushValue(II.getCondition(), InstID, Vals, VE);
}
}
break;
case Instruction::Switch:
{
Code = bitc::FUNC_CODE_INST_SWITCH;
const SwitchInst &SI = cast<SwitchInst>(I);
Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
pushValue(SI.getCondition(), InstID, Vals, VE);
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
i != e; ++i) {
Vals.push_back(VE.getValueID(i.getCaseValue()));
Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
}
}
break;
case Instruction::IndirectBr:
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
// Encode the address operand as relative, but not the basic blocks.
pushValue(I.getOperand(0), InstID, Vals, VE);
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
case Instruction::Invoke: {
const InvokeInst *II = cast<InvokeInst>(&I);
const Value *Callee(II->getCalledValue());
PointerType *PTy = cast<PointerType>(Callee->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_INVOKE;
Vals.push_back(VE.getAttributeID(II->getAttributes()));
Vals.push_back(II->getCallingConv());
Vals.push_back(VE.getValueID(II->getNormalDest()));
Vals.push_back(VE.getValueID(II->getUnwindDest()));
PushValueAndType(Callee, InstID, Vals, VE);
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
}
break;
}
case Instruction::Resume:
Code = bitc::FUNC_CODE_INST_RESUME;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
break;
case Instruction::Unreachable:
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
break;
case Instruction::PHI: {
const PHINode &PN = cast<PHINode>(I);
Code = bitc::FUNC_CODE_INST_PHI;
// With the newer instruction encoding, forward references could give
// negative valued IDs. This is most common for PHIs, so we use
// signed VBRs.
SmallVector<uint64_t, 128> Vals64;
Vals64.push_back(VE.getTypeID(PN.getType()));
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
}
// Emit a Vals64 vector and exit.
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
Vals64.clear();
return;
}
case Instruction::LandingPad: {
const LandingPadInst &LP = cast<LandingPadInst>(I);
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
Vals.push_back(VE.getTypeID(LP.getType()));
PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
Vals.push_back(LP.isCleanup());
Vals.push_back(LP.getNumClauses());
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
if (LP.isCatch(I))
Vals.push_back(LandingPadInst::Catch);
else
Vals.push_back(LandingPadInst::Filter);
PushValueAndType(LP.getClause(I), InstID, Vals, VE);
}
break;
}
case Instruction::Alloca: {
Code = bitc::FUNC_CODE_INST_ALLOCA;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
const AllocaInst &AI = cast<AllocaInst>(I);
unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
"not enough bits for maximum alignment");
assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
AlignRecord |= AI.isUsedWithInAlloca() << 5;
Vals.push_back(AlignRecord);
break;
}
case Instruction::Load:
if (cast<LoadInst>(I).isAtomic()) {
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
} else {
Code = bitc::FUNC_CODE_INST_LOAD;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
}
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
Vals.push_back(cast<LoadInst>(I).isVolatile());
if (cast<LoadInst>(I).isAtomic()) {
Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
}
break;
case Instruction::Store:
if (cast<StoreInst>(I).isAtomic())
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
else
Code = bitc::FUNC_CODE_INST_STORE;
PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
pushValue(I.getOperand(0), InstID, Vals, VE); // val.
Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
Vals.push_back(cast<StoreInst>(I).isVolatile());
if (cast<StoreInst>(I).isAtomic()) {
Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
}
break;
case Instruction::AtomicCmpXchg:
Code = bitc::FUNC_CODE_INST_CMPXCHG;
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
Vals.push_back(GetEncodedOrdering(
cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
Vals.push_back(GetEncodedSynchScope(
cast<AtomicCmpXchgInst>(I).getSynchScope()));
Vals.push_back(GetEncodedOrdering(
cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
break;
case Instruction::AtomicRMW:
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
pushValue(I.getOperand(1), InstID, Vals, VE); // val.
Vals.push_back(GetEncodedRMWOperation(
cast<AtomicRMWInst>(I).getOperation()));
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
Vals.push_back(GetEncodedSynchScope(
cast<AtomicRMWInst>(I).getSynchScope()));
break;
case Instruction::Fence:
Code = bitc::FUNC_CODE_INST_FENCE;
Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
break;
case Instruction::Call: {
const CallInst &CI = cast<CallInst>(I);
PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_CALL;
Vals.push_back(VE.getAttributeID(CI.getAttributes()));
Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
unsigned(CI.isMustTailCall()) << 14);
PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
// Check for labels (can happen with asm labels).
if (FTy->getParamType(i)->isLabelTy())
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
else
pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
}
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
i != e; ++i)
PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
}
break;
}
case Instruction::VAArg:
Code = bitc::FUNC_CODE_INST_VAARG;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
Vals.push_back(VE.getTypeID(I.getType())); // restype.
break;
}
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
}
// Emit names for globals/functions etc.
static void WriteValueSymbolTable(const ValueSymbolTable &VST,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
if (VST.empty()) return;
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
// FIXME: Set up the abbrev, we know how many values there are!
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<unsigned, 64> NameVals;
for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
SI != SE; ++SI) {
const ValueName &Name = *SI;
// Figure out the encoding to use for the name.
bool is7Bit = true;
bool isChar6 = true;
for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
C != E; ++C) {
if (isChar6)
isChar6 = BitCodeAbbrevOp::isChar6(*C);
if ((unsigned char)*C & 128) {
is7Bit = false;
break; // don't bother scanning the rest.
}
}
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
// VST_ENTRY: [valueid, namechar x N]
// VST_BBENTRY: [bbid, namechar x N]
unsigned Code;
if (isa<BasicBlock>(SI->getValue())) {
Code = bitc::VST_CODE_BBENTRY;
if (isChar6)
AbbrevToUse = VST_BBENTRY_6_ABBREV;
} else {
Code = bitc::VST_CODE_ENTRY;
if (isChar6)
AbbrevToUse = VST_ENTRY_6_ABBREV;
else if (is7Bit)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
NameVals.push_back(VE.getValueID(SI->getValue()));
for (const char *P = Name.getKeyData(),
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
NameVals.push_back((unsigned char)*P);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
}
Stream.ExitBlock();
}
static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
BitstreamWriter &Stream) {
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
unsigned Code;
if (isa<BasicBlock>(Order.V))
Code = bitc::USELIST_CODE_BB;
else
Code = bitc::USELIST_CODE_DEFAULT;
SmallVector<uint64_t, 64> Record;
for (unsigned I : Order.Shuffle)
Record.push_back(I);
Record.push_back(VE.getValueID(Order.V));
Stream.EmitRecord(Code, Record);
}
static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
BitstreamWriter &Stream) {
auto hasMore = [&]() {
return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
};
if (!hasMore())
// Nothing to do.
return;
Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
while (hasMore()) {
WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
VE.UseListOrders.pop_back();
}
Stream.ExitBlock();
}
/// WriteFunction - Emit a function body to the module stream.
static void WriteFunction(const Function &F, ValueEnumerator &VE,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
WriteConstants(CstStart, CstEnd, VE, Stream, false);
// If there is function-local metadata, emit it now.
WriteFunctionLocalMetadata(F, VE, Stream);
// Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
bool NeedsMetadataAttachment = false;
DebugLoc LastDL;
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
WriteInstruction(*I, InstID, VE, Stream, Vals);
if (!I->getType()->isVoidTy())
++InstID;
// If the instruction has metadata, write a metadata attachment later.
NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
// If the instruction has a debug location, emit it.
DebugLoc DL = I->getDebugLoc();
if (DL.isUnknown()) {
// nothing todo.
} else if (DL == LastDL) {
// Just repeat the same debug loc as last time.
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
} else {
MDNode *Scope, *IA;
DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
assert(Scope && "Expected valid scope");
Vals.push_back(DL.getLine());
Vals.push_back(DL.getCol());
Vals.push_back(VE.getMetadataOrNullID(Scope));
Vals.push_back(VE.getMetadataOrNullID(IA));
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
Vals.clear();
LastDL = DL;
}
}
// Emit names for all the instructions etc.
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
if (NeedsMetadataAttachment)
WriteMetadataAttachment(F, VE, Stream);
if (shouldPreserveBitcodeUseListOrder())
WriteUseListBlock(&F, VE, Stream);
VE.purgeFunction();
Stream.ExitBlock();
}
// Emit blockinfo, which defines the standard abbreviations etc.
static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
// We only want to emit block info records for blocks that have multiple
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
// Other blocks can define their abbrevs inline.
Stream.EnterBlockInfoBlock(2);
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_8_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 7-bit fixed width VST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_7_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_BBENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_SETTYPE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INTEGER abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_INTEGER_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_CE_CAST_Abbrev)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // NULL abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_NULL_Abbrev)
llvm_unreachable("Unexpected abbrev ordering!");
}
// FIXME: This should only use space for first class types!
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_LOAD_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_BINOP_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_CAST abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_CAST_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
Stream.ExitBlock();
}
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
SmallVector<unsigned, 1> Vals;
unsigned CurVersion = 1;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
// Analyze the module, enumerating globals, functions, etc.
ValueEnumerator VE(*M);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(VE, Stream);
// Emit information about attribute groups.
WriteAttributeGroupTable(VE, Stream);
// Emit information about parameter attributes.
WriteAttributeTable(VE, Stream);
// Emit information describing all of the types in the module.
WriteTypeTable(VE, Stream);
writeComdats(VE, Stream);
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
WriteModuleInfo(M, VE, Stream);
// Emit constants.
WriteModuleConstants(VE, Stream);
// Emit metadata.
WriteModuleMetadata(M, VE, Stream);
// Emit metadata.
WriteModuleMetadataStore(M, Stream);
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
// Emit module-level use-lists.
if (shouldPreserveBitcodeUseListOrder())
WriteUseListBlock(nullptr, VE, Stream);
// Emit function bodies.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
if (!F->isDeclaration())
WriteFunction(*F, VE, Stream);
Stream.ExitBlock();
}
/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
/// header and trailer to make it compatible with the system archiver. To do
/// this we emit the following header, and then emit a trailer that pads the
/// file out to be a multiple of 16 bytes.
///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
/// uint32_t CPUType; // CPU specifier.
/// ... potentially more later ...
/// };
enum {
DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
DarwinBCHeaderSize = 5*4
};
static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
uint32_t &Position) {
Buffer[Position + 0] = (unsigned char) (Value >> 0);
Buffer[Position + 1] = (unsigned char) (Value >> 8);
Buffer[Position + 2] = (unsigned char) (Value >> 16);
Buffer[Position + 3] = (unsigned char) (Value >> 24);
Position += 4;
}
static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
const Triple &TT) {
unsigned CPUType = ~0U;
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
// armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
// number from /usr/include/mach/machine.h. It is ok to reproduce the
// specific constants here because they are implicitly part of the Darwin ABI.
enum {
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
DARWIN_CPU_TYPE_X86 = 7,
DARWIN_CPU_TYPE_ARM = 12,
DARWIN_CPU_TYPE_POWERPC = 18
};
Triple::ArchType Arch = TT.getArch();
if (Arch == Triple::x86_64)
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
else if (Arch == Triple::x86)
CPUType = DARWIN_CPU_TYPE_X86;
else if (Arch == Triple::ppc)
CPUType = DARWIN_CPU_TYPE_POWERPC;
else if (Arch == Triple::ppc64)
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
else if (Arch == Triple::arm || Arch == Triple::thumb)
CPUType = DARWIN_CPU_TYPE_ARM;
// Traditional Bitcode starts after header.
assert(Buffer.size() >= DarwinBCHeaderSize &&
"Expected header size to be reserved");
unsigned BCOffset = DarwinBCHeaderSize;
unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
// Write the magic and version.
unsigned Position = 0;
WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
WriteInt32ToBuffer(0 , Buffer, Position); // Version.
WriteInt32ToBuffer(BCOffset , Buffer, Position);
WriteInt32ToBuffer(BCSize , Buffer, Position);
WriteInt32ToBuffer(CPUType , Buffer, Position);
// If the file is not a multiple of 16 bytes, insert dummy padding.
while (Buffer.size() & 15)
Buffer.push_back(0);
}
/// WriteBitcodeToFile - Write the specified module to the specified output
/// stream.
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256*1024);
// If this is darwin or another generic macho target, reserve space for the
// header.
Triple TT(M->getTargetTriple());
if (TT.isOSDarwin())
Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
// Emit the module into the buffer.
{
BitstreamWriter Stream(Buffer);
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit(0x0, 4);
Stream.Emit(0xC, 4);
Stream.Emit(0xE, 4);
Stream.Emit(0xD, 4);
// Emit the module.
WriteModule(M, Stream);
}
if (TT.isOSDarwin())
EmitDarwinBCHeaderAndTrailer(Buffer, TT);
// Write the generated bitstream to "Out".
Out.write((char*)&Buffer.front(), Buffer.size());
}