mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92588 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1492 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1492 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the machine instruction level pre-register allocation
 | |
| // live interval splitting pass. It finds live interval barriers, i.e.
 | |
| // instructions which will kill all physical registers in certain register
 | |
| // classes, and split all live intervals which cross the barrier.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "pre-alloc-split"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegisterCoalescer.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
 | |
| static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
 | |
|                                    cl::Hidden);
 | |
| static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
 | |
|                                      cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumSplits, "Number of intervals split");
 | |
| STATISTIC(NumRemats, "Number of intervals split by rematerialization");
 | |
| STATISTIC(NumFolds, "Number of intervals split with spill folding");
 | |
| STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
 | |
| STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
 | |
| STATISTIC(NumDeadSpills, "Number of dead spills removed");
 | |
| 
 | |
| namespace {
 | |
|   class PreAllocSplitting : public MachineFunctionPass {
 | |
|     MachineFunction       *CurrMF;
 | |
|     const TargetMachine   *TM;
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo* TRI;
 | |
|     MachineFrameInfo      *MFI;
 | |
|     MachineRegisterInfo   *MRI;
 | |
|     SlotIndexes           *SIs;
 | |
|     LiveIntervals         *LIs;
 | |
|     LiveStacks            *LSs;
 | |
|     VirtRegMap            *VRM;
 | |
| 
 | |
|     // Barrier - Current barrier being processed.
 | |
|     MachineInstr          *Barrier;
 | |
| 
 | |
|     // BarrierMBB - Basic block where the barrier resides in.
 | |
|     MachineBasicBlock     *BarrierMBB;
 | |
| 
 | |
|     // Barrier - Current barrier index.
 | |
|     SlotIndex     BarrierIdx;
 | |
| 
 | |
|     // CurrLI - Current live interval being split.
 | |
|     LiveInterval          *CurrLI;
 | |
| 
 | |
|     // CurrSLI - Current stack slot live interval.
 | |
|     LiveInterval          *CurrSLI;
 | |
| 
 | |
|     // CurrSValNo - Current val# for the stack slot live interval.
 | |
|     VNInfo                *CurrSValNo;
 | |
| 
 | |
|     // IntervalSSMap - A map from live interval to spill slots.
 | |
|     DenseMap<unsigned, int> IntervalSSMap;
 | |
| 
 | |
|     // Def2SpillMap - A map from a def instruction index to spill index.
 | |
|     DenseMap<SlotIndex, SlotIndex> Def2SpillMap;
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     PreAllocSplitting()
 | |
|       : MachineFunctionPass(&ID) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<SlotIndexes>();
 | |
|       AU.addPreserved<SlotIndexes>();
 | |
|       AU.addRequired<LiveIntervals>();
 | |
|       AU.addPreserved<LiveIntervals>();
 | |
|       AU.addRequired<LiveStacks>();
 | |
|       AU.addPreserved<LiveStacks>();
 | |
|       AU.addPreserved<RegisterCoalescer>();
 | |
|       AU.addPreserved<CalculateSpillWeights>();
 | |
|       if (StrongPHIElim)
 | |
|         AU.addPreservedID(StrongPHIEliminationID);
 | |
|       else
 | |
|         AU.addPreservedID(PHIEliminationID);
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addRequired<VirtRegMap>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       AU.addPreserved<VirtRegMap>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|     
 | |
|     virtual void releaseMemory() {
 | |
|       IntervalSSMap.clear();
 | |
|       Def2SpillMap.clear();
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "Pre-Register Allocaton Live Interval Splitting";
 | |
|     }
 | |
| 
 | |
|     /// print - Implement the dump method.
 | |
|     virtual void print(raw_ostream &O, const Module* M = 0) const {
 | |
|       LIs->print(O, M);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     MachineBasicBlock::iterator
 | |
|       findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
 | |
|                      SmallPtrSet<MachineInstr*, 4>&);
 | |
| 
 | |
|     MachineBasicBlock::iterator
 | |
|       findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
 | |
|                      SmallPtrSet<MachineInstr*, 4>&);
 | |
| 
 | |
|     int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
 | |
| 
 | |
|     bool IsAvailableInStack(MachineBasicBlock*, unsigned,
 | |
|                             SlotIndex, SlotIndex,
 | |
|                             SlotIndex&, int&) const;
 | |
| 
 | |
|     void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);
 | |
| 
 | |
|     bool SplitRegLiveInterval(LiveInterval*);
 | |
| 
 | |
|     bool SplitRegLiveIntervals(const TargetRegisterClass **,
 | |
|                                SmallPtrSet<LiveInterval*, 8>&);
 | |
|     
 | |
|     bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
 | |
|                         MachineBasicBlock* BarrierMBB);
 | |
|     bool Rematerialize(unsigned vreg, VNInfo* ValNo,
 | |
|                        MachineInstr* DefMI,
 | |
|                        MachineBasicBlock::iterator RestorePt,
 | |
|                        SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
 | |
|     MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
 | |
|                             MachineInstr* DefMI,
 | |
|                             MachineInstr* Barrier,
 | |
|                             MachineBasicBlock* MBB,
 | |
|                             int& SS,
 | |
|                             SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
 | |
|     MachineInstr* FoldRestore(unsigned vreg, 
 | |
|                               const TargetRegisterClass* RC,
 | |
|                               MachineInstr* Barrier,
 | |
|                               MachineBasicBlock* MBB,
 | |
|                               int SS,
 | |
|                               SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
 | |
|     void RenumberValno(VNInfo* VN);
 | |
|     void ReconstructLiveInterval(LiveInterval* LI);
 | |
|     bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
 | |
|     unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
 | |
|                                unsigned Reg, int FrameIndex, bool& TwoAddr);
 | |
|     VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
 | |
|                                    MachineBasicBlock* MBB, LiveInterval* LI,
 | |
|                                    SmallPtrSet<MachineInstr*, 4>& Visited,
 | |
|             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | |
|             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | |
|                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | |
|                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | |
|                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | |
|                                         bool IsTopLevel, bool IsIntraBlock);
 | |
|     VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
 | |
|                                    MachineBasicBlock* MBB, LiveInterval* LI,
 | |
|                                    SmallPtrSet<MachineInstr*, 4>& Visited,
 | |
|             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | |
|             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | |
|                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | |
|                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | |
|                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | |
|                                         bool IsTopLevel, bool IsIntraBlock);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char PreAllocSplitting::ID = 0;
 | |
| 
 | |
| static RegisterPass<PreAllocSplitting>
 | |
| X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
 | |
| 
 | |
| const PassInfo *const llvm::PreAllocSplittingID = &X;
 | |
| 
 | |
| /// findSpillPoint - Find a gap as far away from the given MI that's suitable
 | |
| /// for spilling the current live interval. The index must be before any
 | |
| /// defs and uses of the live interval register in the mbb. Return begin() if
 | |
| /// none is found.
 | |
| MachineBasicBlock::iterator
 | |
| PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
 | |
|                                   MachineInstr *DefMI,
 | |
|                                   SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
 | |
|   MachineBasicBlock::iterator Pt = MBB->begin();
 | |
| 
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   MachineBasicBlock::iterator EndPt = DefMI
 | |
|     ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
 | |
|     
 | |
|   while (MII != EndPt && !RefsInMBB.count(MII) &&
 | |
|          MII->getOpcode() != TRI->getCallFrameSetupOpcode())
 | |
|     --MII;
 | |
|   if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
 | |
|     
 | |
|   while (MII != EndPt && !RefsInMBB.count(MII)) {
 | |
|     // We can't insert the spill between the barrier (a call), and its
 | |
|     // corresponding call frame setup.
 | |
|     if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
 | |
|       while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
 | |
|         --MII;
 | |
|         if (MII == EndPt) {
 | |
|           return Pt;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     } else {
 | |
|       Pt = MII;
 | |
|     }
 | |
|     
 | |
|     if (RefsInMBB.count(MII))
 | |
|       return Pt;
 | |
|     
 | |
|     
 | |
|     --MII;
 | |
|   }
 | |
| 
 | |
|   return Pt;
 | |
| }
 | |
| 
 | |
| /// findRestorePoint - Find a gap in the instruction index map that's suitable
 | |
| /// for restoring the current live interval value. The index must be before any
 | |
| /// uses of the live interval register in the mbb. Return end() if none is
 | |
| /// found.
 | |
| MachineBasicBlock::iterator
 | |
| PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
 | |
|                                     SlotIndex LastIdx,
 | |
|                                     SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
 | |
|   // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
 | |
|   // begin index accordingly.
 | |
|   MachineBasicBlock::iterator Pt = MBB->end();
 | |
|   MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
 | |
| 
 | |
|   // We start at the call, so walk forward until we find the call frame teardown
 | |
|   // since we can't insert restores before that.  Bail if we encounter a use
 | |
|   // during this time.
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   if (MII == EndPt) return Pt;
 | |
|   
 | |
|   while (MII != EndPt && !RefsInMBB.count(MII) &&
 | |
|          MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
 | |
|     ++MII;
 | |
|   if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
 | |
|   ++MII;
 | |
|   
 | |
|   // FIXME: Limit the number of instructions to examine to reduce
 | |
|   // compile time?
 | |
|   while (MII != EndPt) {
 | |
|     SlotIndex Index = LIs->getInstructionIndex(MII);
 | |
|     if (Index > LastIdx)
 | |
|       break;
 | |
|       
 | |
|     // We can't insert a restore between the barrier (a call) and its 
 | |
|     // corresponding call frame teardown.
 | |
|     if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
 | |
|       do {
 | |
|         if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
 | |
|         ++MII;
 | |
|       } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
 | |
|     } else {
 | |
|       Pt = MII;
 | |
|     }
 | |
|     
 | |
|     if (RefsInMBB.count(MII))
 | |
|       return Pt;
 | |
|     
 | |
|     ++MII;
 | |
|   }
 | |
| 
 | |
|   return Pt;
 | |
| }
 | |
| 
 | |
| /// CreateSpillStackSlot - Create a stack slot for the live interval being
 | |
| /// split. If the live interval was previously split, just reuse the same
 | |
| /// slot.
 | |
| int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
 | |
|                                             const TargetRegisterClass *RC) {
 | |
|   int SS;
 | |
|   DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
 | |
|   if (I != IntervalSSMap.end()) {
 | |
|     SS = I->second;
 | |
|   } else {
 | |
|     SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
 | |
|     IntervalSSMap[Reg] = SS;
 | |
|   }
 | |
| 
 | |
|   // Create live interval for stack slot.
 | |
|   CurrSLI = &LSs->getOrCreateInterval(SS, RC);
 | |
|   if (CurrSLI->hasAtLeastOneValue())
 | |
|     CurrSValNo = CurrSLI->getValNumInfo(0);
 | |
|   else
 | |
|     CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
 | |
|                                        LSs->getVNInfoAllocator());
 | |
|   return SS;
 | |
| }
 | |
| 
 | |
| /// IsAvailableInStack - Return true if register is available in a split stack
 | |
| /// slot at the specified index.
 | |
| bool
 | |
| PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
 | |
|                                     unsigned Reg, SlotIndex DefIndex,
 | |
|                                     SlotIndex RestoreIndex,
 | |
|                                     SlotIndex &SpillIndex,
 | |
|                                     int& SS) const {
 | |
|   if (!DefMBB)
 | |
|     return false;
 | |
| 
 | |
|   DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
 | |
|   if (I == IntervalSSMap.end())
 | |
|     return false;
 | |
|   DenseMap<SlotIndex, SlotIndex>::const_iterator
 | |
|     II = Def2SpillMap.find(DefIndex);
 | |
|   if (II == Def2SpillMap.end())
 | |
|     return false;
 | |
| 
 | |
|   // If last spill of def is in the same mbb as barrier mbb (where restore will
 | |
|   // be), make sure it's not below the intended restore index.
 | |
|   // FIXME: Undo the previous spill?
 | |
|   assert(LIs->getMBBFromIndex(II->second) == DefMBB);
 | |
|   if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
 | |
|     return false;
 | |
| 
 | |
|   SS = I->second;
 | |
|   SpillIndex = II->second;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// UpdateSpillSlotInterval - Given the specified val# of the register live
 | |
| /// interval being split, and the spill and restore indicies, update the live
 | |
| /// interval of the spill stack slot.
 | |
| void
 | |
| PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
 | |
|                                            SlotIndex RestoreIndex) {
 | |
|   assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
 | |
|          "Expect restore in the barrier mbb");
 | |
| 
 | |
|   MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
 | |
|   if (MBB == BarrierMBB) {
 | |
|     // Intra-block spill + restore. We are done.
 | |
|     LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
 | |
|     CurrSLI->addRange(SLR);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> Processed;
 | |
|   SlotIndex EndIdx = LIs->getMBBEndIdx(MBB);
 | |
|   LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
 | |
|   CurrSLI->addRange(SLR);
 | |
|   Processed.insert(MBB);
 | |
| 
 | |
|   // Start from the spill mbb, figure out the extend of the spill slot's
 | |
|   // live interval.
 | |
|   SmallVector<MachineBasicBlock*, 4> WorkList;
 | |
|   const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
 | |
|   if (LR->end > EndIdx)
 | |
|     // If live range extend beyond end of mbb, add successors to work list.
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|            SE = MBB->succ_end(); SI != SE; ++SI)
 | |
|       WorkList.push_back(*SI);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     MachineBasicBlock *MBB = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     if (Processed.count(MBB))
 | |
|       continue;
 | |
|     SlotIndex Idx = LIs->getMBBStartIdx(MBB);
 | |
|     LR = CurrLI->getLiveRangeContaining(Idx);
 | |
|     if (LR && LR->valno == ValNo) {
 | |
|       EndIdx = LIs->getMBBEndIdx(MBB);
 | |
|       if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
 | |
|         // Spill slot live interval stops at the restore.
 | |
|         LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
 | |
|         CurrSLI->addRange(SLR);
 | |
|       } else if (LR->end > EndIdx) {
 | |
|         // Live range extends beyond end of mbb, process successors.
 | |
|         LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo);
 | |
|         CurrSLI->addRange(SLR);
 | |
|         for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|                SE = MBB->succ_end(); SI != SE; ++SI)
 | |
|           WorkList.push_back(*SI);
 | |
|       } else {
 | |
|         LiveRange SLR(Idx, LR->end, CurrSValNo);
 | |
|         CurrSLI->addRange(SLR);
 | |
|       }
 | |
|       Processed.insert(MBB);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
 | |
| /// construction algorithm to compute the ranges and valnos for an interval.
 | |
| VNInfo*
 | |
| PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
 | |
|                                        MachineBasicBlock* MBB, LiveInterval* LI,
 | |
|                                        SmallPtrSet<MachineInstr*, 4>& Visited,
 | |
|              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | |
|              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | |
|                                        DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | |
|                                  DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | |
|                                  DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | |
|                                            bool IsTopLevel, bool IsIntraBlock) {
 | |
|   // Return memoized result if it's available.
 | |
|   if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
 | |
|     return NewVNs[UseI];
 | |
|   else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
 | |
|     return NewVNs[UseI];
 | |
|   else if (!IsIntraBlock && LiveOut.count(MBB))
 | |
|     return LiveOut[MBB];
 | |
|   
 | |
|   // Check if our block contains any uses or defs.
 | |
|   bool ContainsDefs = Defs.count(MBB);
 | |
|   bool ContainsUses = Uses.count(MBB);
 | |
|   
 | |
|   VNInfo* RetVNI = 0;
 | |
|   
 | |
|   // Enumerate the cases of use/def contaning blocks.
 | |
|   if (!ContainsDefs && !ContainsUses) {
 | |
|     return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
 | |
|                                           NewVNs, LiveOut, Phis,
 | |
|                                           IsTopLevel, IsIntraBlock);
 | |
|   } else if (ContainsDefs && !ContainsUses) {
 | |
|     SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
 | |
| 
 | |
|     // Search for the def in this block.  If we don't find it before the
 | |
|     // instruction we care about, go to the fallback case.  Note that that
 | |
|     // should never happen: this cannot be intrablock, so use should
 | |
|     // always be an end() iterator.
 | |
|     assert(UseI == MBB->end() && "No use marked in intrablock");
 | |
|     
 | |
|     MachineBasicBlock::iterator Walker = UseI;
 | |
|     --Walker;
 | |
|     while (Walker != MBB->begin()) {
 | |
|       if (BlockDefs.count(Walker))
 | |
|         break;
 | |
|       --Walker;
 | |
|     }
 | |
|     
 | |
|     // Once we've found it, extend its VNInfo to our instruction.
 | |
|     SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
 | |
|     DefIndex = DefIndex.getDefIndex();
 | |
|     SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
 | |
|     
 | |
|     RetVNI = NewVNs[Walker];
 | |
|     LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
 | |
|   } else if (!ContainsDefs && ContainsUses) {
 | |
|     SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
 | |
|     
 | |
|     // Search for the use in this block that precedes the instruction we care 
 | |
|     // about, going to the fallback case if we don't find it.    
 | |
|     if (UseI == MBB->begin())
 | |
|       return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
 | |
|                                             Uses, NewVNs, LiveOut, Phis,
 | |
|                                             IsTopLevel, IsIntraBlock);
 | |
|     
 | |
|     MachineBasicBlock::iterator Walker = UseI;
 | |
|     --Walker;
 | |
|     bool found = false;
 | |
|     while (Walker != MBB->begin()) {
 | |
|       if (BlockUses.count(Walker)) {
 | |
|         found = true;
 | |
|         break;
 | |
|       }
 | |
|       --Walker;
 | |
|     }
 | |
|         
 | |
|     // Must check begin() too.
 | |
|     if (!found) {
 | |
|       if (BlockUses.count(Walker))
 | |
|         found = true;
 | |
|       else
 | |
|         return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
 | |
|                                               Uses, NewVNs, LiveOut, Phis,
 | |
|                                               IsTopLevel, IsIntraBlock);
 | |
|     }
 | |
| 
 | |
|     SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
 | |
|     UseIndex = UseIndex.getUseIndex();
 | |
|     SlotIndex EndIndex;
 | |
|     if (IsIntraBlock) {
 | |
|       EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
 | |
|     } else
 | |
|       EndIndex = LIs->getMBBEndIdx(MBB);
 | |
| 
 | |
|     // Now, recursively phi construct the VNInfo for the use we found,
 | |
|     // and then extend it to include the instruction we care about
 | |
|     RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
 | |
|                                     NewVNs, LiveOut, Phis, false, true);
 | |
|     
 | |
|     LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
 | |
|     
 | |
|     // FIXME: Need to set kills properly for inter-block stuff.
 | |
|     if (RetVNI->isKill(UseIndex)) RetVNI->removeKill(UseIndex);
 | |
|     if (IsIntraBlock)
 | |
|       RetVNI->addKill(EndIndex);
 | |
|   } else if (ContainsDefs && ContainsUses) {
 | |
|     SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
 | |
|     SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
 | |
|     
 | |
|     // This case is basically a merging of the two preceding case, with the
 | |
|     // special note that checking for defs must take precedence over checking
 | |
|     // for uses, because of two-address instructions.
 | |
|     
 | |
|     if (UseI == MBB->begin())
 | |
|       return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
 | |
|                                             NewVNs, LiveOut, Phis,
 | |
|                                             IsTopLevel, IsIntraBlock);
 | |
|     
 | |
|     MachineBasicBlock::iterator Walker = UseI;
 | |
|     --Walker;
 | |
|     bool foundDef = false;
 | |
|     bool foundUse = false;
 | |
|     while (Walker != MBB->begin()) {
 | |
|       if (BlockDefs.count(Walker)) {
 | |
|         foundDef = true;
 | |
|         break;
 | |
|       } else if (BlockUses.count(Walker)) {
 | |
|         foundUse = true;
 | |
|         break;
 | |
|       }
 | |
|       --Walker;
 | |
|     }
 | |
|         
 | |
|     // Must check begin() too.
 | |
|     if (!foundDef && !foundUse) {
 | |
|       if (BlockDefs.count(Walker))
 | |
|         foundDef = true;
 | |
|       else if (BlockUses.count(Walker))
 | |
|         foundUse = true;
 | |
|       else
 | |
|         return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
 | |
|                                               Uses, NewVNs, LiveOut, Phis,
 | |
|                                               IsTopLevel, IsIntraBlock);
 | |
|     }
 | |
| 
 | |
|     SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
 | |
|     StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
 | |
|     SlotIndex EndIndex;
 | |
|     if (IsIntraBlock) {
 | |
|       EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
 | |
|     } else
 | |
|       EndIndex = LIs->getMBBEndIdx(MBB);
 | |
| 
 | |
|     if (foundDef)
 | |
|       RetVNI = NewVNs[Walker];
 | |
|     else
 | |
|       RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
 | |
|                                       NewVNs, LiveOut, Phis, false, true);
 | |
| 
 | |
|     LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
 | |
|     
 | |
|     if (foundUse && RetVNI->isKill(StartIndex))
 | |
|       RetVNI->removeKill(StartIndex);
 | |
|     if (IsIntraBlock) {
 | |
|       RetVNI->addKill(EndIndex);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Memoize results so we don't have to recompute them.
 | |
|   if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
 | |
|   else {
 | |
|     if (!NewVNs.count(UseI))
 | |
|       NewVNs[UseI] = RetVNI;
 | |
|     Visited.insert(UseI);
 | |
|   }
 | |
| 
 | |
|   return RetVNI;
 | |
| }
 | |
| 
 | |
| /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
 | |
| ///
 | |
| VNInfo*
 | |
| PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
 | |
|                                        MachineBasicBlock* MBB, LiveInterval* LI,
 | |
|                                        SmallPtrSet<MachineInstr*, 4>& Visited,
 | |
|              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
 | |
|              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
 | |
|                                        DenseMap<MachineInstr*, VNInfo*>& NewVNs,
 | |
|                                  DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
 | |
|                                  DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
 | |
|                                            bool IsTopLevel, bool IsIntraBlock) {
 | |
|   // NOTE: Because this is the fallback case from other cases, we do NOT
 | |
|   // assume that we are not intrablock here.
 | |
|   if (Phis.count(MBB)) return Phis[MBB]; 
 | |
| 
 | |
|   SlotIndex StartIndex = LIs->getMBBStartIdx(MBB);
 | |
|   VNInfo *RetVNI = Phis[MBB] =
 | |
|     LI->getNextValue(SlotIndex(), /*FIXME*/ 0, false,
 | |
|                      LIs->getVNInfoAllocator());
 | |
| 
 | |
|   if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
 | |
|     
 | |
|   // If there are no uses or defs between our starting point and the
 | |
|   // beginning of the block, then recursive perform phi construction
 | |
|   // on our predecessors.
 | |
|   DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
 | |
|   for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|          PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|     VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, 
 | |
|                                               Visited, Defs, Uses, NewVNs,
 | |
|                                               LiveOut, Phis, false, false);
 | |
|     if (Incoming != 0)
 | |
|       IncomingVNs[*PI] = Incoming;
 | |
|   }
 | |
|     
 | |
|   if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
 | |
|     VNInfo* OldVN = RetVNI;
 | |
|     VNInfo* NewVN = IncomingVNs.begin()->second;
 | |
|     VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
 | |
|     if (MergedVN == OldVN) std::swap(OldVN, NewVN);
 | |
|     
 | |
|     for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
 | |
|          LOE = LiveOut.end(); LOI != LOE; ++LOI)
 | |
|       if (LOI->second == OldVN)
 | |
|         LOI->second = MergedVN;
 | |
|     for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
 | |
|          NVE = NewVNs.end(); NVI != NVE; ++NVI)
 | |
|       if (NVI->second == OldVN)
 | |
|         NVI->second = MergedVN;
 | |
|     for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
 | |
|          PE = Phis.end(); PI != PE; ++PI)
 | |
|       if (PI->second == OldVN)
 | |
|         PI->second = MergedVN;
 | |
|     RetVNI = MergedVN;
 | |
|   } else {
 | |
|     // Otherwise, merge the incoming VNInfos with a phi join.  Create a new
 | |
|     // VNInfo to represent the joined value.
 | |
|     for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
 | |
|            IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
 | |
|       I->second->setHasPHIKill(true);
 | |
|       SlotIndex KillIndex(LIs->getMBBEndIdx(I->first), true);
 | |
|       if (!I->second->isKill(KillIndex))
 | |
|         I->second->addKill(KillIndex);
 | |
|     }
 | |
|   }
 | |
|       
 | |
|   SlotIndex EndIndex;
 | |
|   if (IsIntraBlock) {
 | |
|     EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
 | |
|   } else
 | |
|     EndIndex = LIs->getMBBEndIdx(MBB);
 | |
|   LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
 | |
|   if (IsIntraBlock)
 | |
|     RetVNI->addKill(EndIndex);
 | |
| 
 | |
|   // Memoize results so we don't have to recompute them.
 | |
|   if (!IsIntraBlock)
 | |
|     LiveOut[MBB] = RetVNI;
 | |
|   else {
 | |
|     if (!NewVNs.count(UseI))
 | |
|       NewVNs[UseI] = RetVNI;
 | |
|     Visited.insert(UseI);
 | |
|   }
 | |
| 
 | |
|   return RetVNI;
 | |
| }
 | |
| 
 | |
| /// ReconstructLiveInterval - Recompute a live interval from scratch.
 | |
| void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
 | |
|   BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
 | |
|   
 | |
|   // Clear the old ranges and valnos;
 | |
|   LI->clear();
 | |
|   
 | |
|   // Cache the uses and defs of the register
 | |
|   typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
 | |
|   RegMap Defs, Uses;
 | |
|   
 | |
|   // Keep track of the new VNs we're creating.
 | |
|   DenseMap<MachineInstr*, VNInfo*> NewVNs;
 | |
|   SmallPtrSet<VNInfo*, 2> PhiVNs;
 | |
|   
 | |
|   // Cache defs, and create a new VNInfo for each def.
 | |
|   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
 | |
|        DE = MRI->def_end(); DI != DE; ++DI) {
 | |
|     Defs[(*DI).getParent()].insert(&*DI);
 | |
|     
 | |
|     SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
 | |
|     DefIdx = DefIdx.getDefIndex();
 | |
|     
 | |
|     assert(DI->getOpcode() != TargetInstrInfo::PHI &&
 | |
|            "PHI instr in code during pre-alloc splitting.");
 | |
|     VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
 | |
|     
 | |
|     // If the def is a move, set the copy field.
 | |
|     unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
 | |
|     if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
 | |
|       if (DstReg == LI->reg)
 | |
|         NewVN->setCopy(&*DI);
 | |
|     
 | |
|     NewVNs[&*DI] = NewVN;
 | |
|   }
 | |
|   
 | |
|   // Cache uses as a separate pass from actually processing them.
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
 | |
|        UE = MRI->use_end(); UI != UE; ++UI)
 | |
|     Uses[(*UI).getParent()].insert(&*UI);
 | |
|     
 | |
|   // Now, actually process every use and use a phi construction algorithm
 | |
|   // to walk from it to its reaching definitions, building VNInfos along
 | |
|   // the way.
 | |
|   DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
 | |
|   DenseMap<MachineBasicBlock*, VNInfo*> Phis;
 | |
|   SmallPtrSet<MachineInstr*, 4> Visited;
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
 | |
|        UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|     PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
 | |
|                            Uses, NewVNs, LiveOut, Phis, true, true); 
 | |
|   }
 | |
|   
 | |
|   // Add ranges for dead defs
 | |
|   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
 | |
|        DE = MRI->def_end(); DI != DE; ++DI) {
 | |
|     SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
 | |
|     DefIdx = DefIdx.getDefIndex();
 | |
|     
 | |
|     if (LI->liveAt(DefIdx)) continue;
 | |
|     
 | |
|     VNInfo* DeadVN = NewVNs[&*DI];
 | |
|     LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
 | |
|     DeadVN->addKill(DefIdx);
 | |
|   }
 | |
| 
 | |
|   // Update kill markers.
 | |
|   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
 | |
|        VI != VE; ++VI) {
 | |
|     VNInfo* VNI = *VI;
 | |
|     for (unsigned i = 0, e = VNI->kills.size(); i != e; ++i) {
 | |
|       SlotIndex KillIdx = VNI->kills[i];
 | |
|       if (KillIdx.isPHI())
 | |
|         continue;
 | |
|       MachineInstr *KillMI = LIs->getInstructionFromIndex(KillIdx);
 | |
|       if (KillMI) {
 | |
|         MachineOperand *KillMO = KillMI->findRegisterUseOperand(CurrLI->reg);
 | |
|         if (KillMO)
 | |
|           // It could be a dead def.
 | |
|           KillMO->setIsKill();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RenumberValno - Split the given valno out into a new vreg, allowing it to
 | |
| /// be allocated to a different register.  This function creates a new vreg,
 | |
| /// copies the valno and its live ranges over to the new vreg's interval,
 | |
| /// removes them from the old interval, and rewrites all uses and defs of
 | |
| /// the original reg to the new vreg within those ranges.
 | |
| void PreAllocSplitting::RenumberValno(VNInfo* VN) {
 | |
|   SmallVector<VNInfo*, 4> Stack;
 | |
|   SmallVector<VNInfo*, 4> VNsToCopy;
 | |
|   Stack.push_back(VN);
 | |
| 
 | |
|   // Walk through and copy the valno we care about, and any other valnos
 | |
|   // that are two-address redefinitions of the one we care about.  These
 | |
|   // will need to be rewritten as well.  We also check for safety of the 
 | |
|   // renumbering here, by making sure that none of the valno involved has
 | |
|   // phi kills.
 | |
|   while (!Stack.empty()) {
 | |
|     VNInfo* OldVN = Stack.back();
 | |
|     Stack.pop_back();
 | |
|     
 | |
|     // Bail out if we ever encounter a valno that has a PHI kill.  We can't
 | |
|     // renumber these.
 | |
|     if (OldVN->hasPHIKill()) return;
 | |
|     
 | |
|     VNsToCopy.push_back(OldVN);
 | |
|     
 | |
|     // Locate two-address redefinitions
 | |
|     for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(),
 | |
|          KE = OldVN->kills.end(); KI != KE; ++KI) {
 | |
|       assert(!KI->isPHI() &&
 | |
|              "VN previously reported having no PHI kills.");
 | |
|       MachineInstr* MI = LIs->getInstructionFromIndex(*KI);
 | |
|       unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
 | |
|       if (DefIdx == ~0U) continue;
 | |
|       if (MI->isRegTiedToUseOperand(DefIdx)) {
 | |
|         VNInfo* NextVN =
 | |
|           CurrLI->findDefinedVNInfoForRegInt(KI->getDefIndex());
 | |
|         if (NextVN == OldVN) continue;
 | |
|         Stack.push_back(NextVN);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Create the new vreg
 | |
|   unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
 | |
|   
 | |
|   // Create the new live interval
 | |
|   LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
 | |
|   
 | |
|   for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = 
 | |
|        VNsToCopy.end(); OI != OE; ++OI) {
 | |
|     VNInfo* OldVN = *OI;
 | |
|     
 | |
|     // Copy the valno over
 | |
|     VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
 | |
|     NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
 | |
| 
 | |
|     // Remove the valno from the old interval
 | |
|     CurrLI->removeValNo(OldVN);
 | |
|   }
 | |
|   
 | |
|   // Rewrite defs and uses.  This is done in two stages to avoid invalidating
 | |
|   // the reg_iterator.
 | |
|   SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
 | |
|   
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
 | |
|          E = MRI->reg_end(); I != E; ++I) {
 | |
|     MachineOperand& MO = I.getOperand();
 | |
|     SlotIndex InstrIdx = LIs->getInstructionIndex(&*I);
 | |
|     
 | |
|     if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
 | |
|         (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
 | |
|       OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
 | |
|   }
 | |
|   
 | |
|   for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
 | |
|        OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
 | |
|     MachineInstr* Inst = I->first;
 | |
|     unsigned OpIdx = I->second;
 | |
|     MachineOperand& MO = Inst->getOperand(OpIdx);
 | |
|     MO.setReg(NewVReg);
 | |
|   }
 | |
|   
 | |
|   // Grow the VirtRegMap, since we've created a new vreg.
 | |
|   VRM->grow();
 | |
|   
 | |
|   // The renumbered vreg shares a stack slot with the old register.
 | |
|   if (IntervalSSMap.count(CurrLI->reg))
 | |
|     IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
 | |
|   
 | |
|   NumRenumbers++;
 | |
| }
 | |
| 
 | |
| bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
 | |
|                                       MachineInstr* DefMI,
 | |
|                                       MachineBasicBlock::iterator RestorePt,
 | |
|                                     SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
 | |
|   MachineBasicBlock& MBB = *RestorePt->getParent();
 | |
|   
 | |
|   MachineBasicBlock::iterator KillPt = BarrierMBB->end();
 | |
|   if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
 | |
|     KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
 | |
|   else
 | |
|     KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
 | |
|   
 | |
|   if (KillPt == DefMI->getParent()->end())
 | |
|     return false;
 | |
|   
 | |
|   TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, TRI);
 | |
|   SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
 | |
|   
 | |
|   ReconstructLiveInterval(CurrLI);
 | |
|   RematIdx = RematIdx.getDefIndex();
 | |
|   RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
 | |
|   
 | |
|   ++NumSplits;
 | |
|   ++NumRemats;
 | |
|   return true;  
 | |
| }
 | |
| 
 | |
| MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, 
 | |
|                                            const TargetRegisterClass* RC,
 | |
|                                            MachineInstr* DefMI,
 | |
|                                            MachineInstr* Barrier,
 | |
|                                            MachineBasicBlock* MBB,
 | |
|                                            int& SS,
 | |
|                                     SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
 | |
|   // Go top down if RefsInMBB is empty.
 | |
|   if (RefsInMBB.empty())
 | |
|     return 0;
 | |
|   
 | |
|   MachineBasicBlock::iterator FoldPt = Barrier;
 | |
|   while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
 | |
|          !RefsInMBB.count(FoldPt))
 | |
|     --FoldPt;
 | |
|   
 | |
|   int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
 | |
|   if (OpIdx == -1)
 | |
|     return 0;
 | |
|   
 | |
|   SmallVector<unsigned, 1> Ops;
 | |
|   Ops.push_back(OpIdx);
 | |
|   
 | |
|   if (!TII->canFoldMemoryOperand(FoldPt, Ops))
 | |
|     return 0;
 | |
|   
 | |
|   DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
 | |
|   if (I != IntervalSSMap.end()) {
 | |
|     SS = I->second;
 | |
|   } else {
 | |
|     SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
 | |
|   }
 | |
|   
 | |
|   MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
 | |
|                                              FoldPt, Ops, SS);
 | |
|   
 | |
|   if (FMI) {
 | |
|     LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
 | |
|     FMI = MBB->insert(MBB->erase(FoldPt), FMI);
 | |
|     ++NumFolds;
 | |
|     
 | |
|     IntervalSSMap[vreg] = SS;
 | |
|     CurrSLI = &LSs->getOrCreateInterval(SS, RC);
 | |
|     if (CurrSLI->hasAtLeastOneValue())
 | |
|       CurrSValNo = CurrSLI->getValNumInfo(0);
 | |
|     else
 | |
|       CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
 | |
|                                          LSs->getVNInfoAllocator());
 | |
|   }
 | |
|   
 | |
|   return FMI;
 | |
| }
 | |
| 
 | |
| MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, 
 | |
|                                              const TargetRegisterClass* RC,
 | |
|                                              MachineInstr* Barrier,
 | |
|                                              MachineBasicBlock* MBB,
 | |
|                                              int SS,
 | |
|                                      SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
 | |
|   if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
 | |
|     return 0;
 | |
|                                        
 | |
|   // Go top down if RefsInMBB is empty.
 | |
|   if (RefsInMBB.empty())
 | |
|     return 0;
 | |
|   
 | |
|   // Can't fold a restore between a call stack setup and teardown.
 | |
|   MachineBasicBlock::iterator FoldPt = Barrier;
 | |
|   
 | |
|   // Advance from barrier to call frame teardown.
 | |
|   while (FoldPt != MBB->getFirstTerminator() &&
 | |
|          FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
 | |
|     if (RefsInMBB.count(FoldPt))
 | |
|       return 0;
 | |
|     
 | |
|     ++FoldPt;
 | |
|   }
 | |
|   
 | |
|   if (FoldPt == MBB->getFirstTerminator())
 | |
|     return 0;
 | |
|   else
 | |
|     ++FoldPt;
 | |
|   
 | |
|   // Now find the restore point.
 | |
|   while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
 | |
|     if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
 | |
|       while (FoldPt != MBB->getFirstTerminator() &&
 | |
|              FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
 | |
|         if (RefsInMBB.count(FoldPt))
 | |
|           return 0;
 | |
|         
 | |
|         ++FoldPt;
 | |
|       }
 | |
|       
 | |
|       if (FoldPt == MBB->getFirstTerminator())
 | |
|         return 0;
 | |
|     } 
 | |
|     
 | |
|     ++FoldPt;
 | |
|   }
 | |
|   
 | |
|   if (FoldPt == MBB->getFirstTerminator())
 | |
|     return 0;
 | |
|   
 | |
|   int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
 | |
|   if (OpIdx == -1)
 | |
|     return 0;
 | |
|   
 | |
|   SmallVector<unsigned, 1> Ops;
 | |
|   Ops.push_back(OpIdx);
 | |
|   
 | |
|   if (!TII->canFoldMemoryOperand(FoldPt, Ops))
 | |
|     return 0;
 | |
|   
 | |
|   MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
 | |
|                                              FoldPt, Ops, SS);
 | |
|   
 | |
|   if (FMI) {
 | |
|     LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
 | |
|     FMI = MBB->insert(MBB->erase(FoldPt), FMI);
 | |
|     ++NumRestoreFolds;
 | |
|   }
 | |
|   
 | |
|   return FMI;
 | |
| }
 | |
| 
 | |
| /// SplitRegLiveInterval - Split (spill and restore) the given live interval
 | |
| /// so it would not cross the barrier that's being processed. Shrink wrap
 | |
| /// (minimize) the live interval to the last uses.
 | |
| bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
 | |
|   DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
 | |
|                << "  result: ");
 | |
| 
 | |
|   CurrLI = LI;
 | |
| 
 | |
|   // Find live range where current interval cross the barrier.
 | |
|   LiveInterval::iterator LR =
 | |
|     CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
 | |
|   VNInfo *ValNo = LR->valno;
 | |
| 
 | |
|   assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
 | |
| 
 | |
|   MachineInstr *DefMI = ValNo->isDefAccurate()
 | |
|     ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
 | |
| 
 | |
|   // If this would create a new join point, do not split.
 | |
|   if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
 | |
|     DEBUG(dbgs() << "FAILED (would create a new join point).\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Find all references in the barrier mbb.
 | |
|   SmallPtrSet<MachineInstr*, 4> RefsInMBB;
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
 | |
|          E = MRI->reg_end(); I != E; ++I) {
 | |
|     MachineInstr *RefMI = &*I;
 | |
|     if (RefMI->getParent() == BarrierMBB)
 | |
|       RefsInMBB.insert(RefMI);
 | |
|   }
 | |
| 
 | |
|   // Find a point to restore the value after the barrier.
 | |
|   MachineBasicBlock::iterator RestorePt =
 | |
|     findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
 | |
|   if (RestorePt == BarrierMBB->end()) {
 | |
|     DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
 | |
|     if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
 | |
|       DEBUG(dbgs() << "success (remat).\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // Add a spill either before the barrier or after the definition.
 | |
|   MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
 | |
|   const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
 | |
|   SlotIndex SpillIndex;
 | |
|   MachineInstr *SpillMI = NULL;
 | |
|   int SS = -1;
 | |
|   if (!ValNo->isDefAccurate()) {
 | |
|     // If we don't know where the def is we must split just before the barrier.
 | |
|     if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
 | |
|                             BarrierMBB, SS, RefsInMBB))) {
 | |
|       SpillIndex = LIs->getInstructionIndex(SpillMI);
 | |
|     } else {
 | |
|       MachineBasicBlock::iterator SpillPt = 
 | |
|         findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
 | |
|       if (SpillPt == BarrierMBB->begin()) {
 | |
|         DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
 | |
|         return false; // No gap to insert spill.
 | |
|       }
 | |
|       // Add spill.
 | |
|     
 | |
|       SS = CreateSpillStackSlot(CurrLI->reg, RC);
 | |
|       TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
 | |
|       SpillMI = prior(SpillPt);
 | |
|       SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
 | |
|     }
 | |
|   } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
 | |
|                                  LIs->getZeroIndex(), SpillIndex, SS)) {
 | |
|     // If it's already split, just restore the value. There is no need to spill
 | |
|     // the def again.
 | |
|     if (!DefMI) {
 | |
|       DEBUG(dbgs() << "FAILED (def is dead).\n");
 | |
|       return false; // Def is dead. Do nothing.
 | |
|     }
 | |
|     
 | |
|     if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
 | |
|                              BarrierMBB, SS, RefsInMBB))) {
 | |
|       SpillIndex = LIs->getInstructionIndex(SpillMI);
 | |
|     } else {
 | |
|       // Check if it's possible to insert a spill after the def MI.
 | |
|       MachineBasicBlock::iterator SpillPt;
 | |
|       if (DefMBB == BarrierMBB) {
 | |
|         // Add spill after the def and the last use before the barrier.
 | |
|         SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
 | |
|                                  RefsInMBB);
 | |
|         if (SpillPt == DefMBB->begin()) {
 | |
|           DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
 | |
|           return false; // No gap to insert spill.
 | |
|         }
 | |
|       } else {
 | |
|         SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
 | |
|         if (SpillPt == DefMBB->end()) {
 | |
|           DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
 | |
|           return false; // No gap to insert spill.
 | |
|         }
 | |
|       }
 | |
|       // Add spill. 
 | |
|       SS = CreateSpillStackSlot(CurrLI->reg, RC);
 | |
|       TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC);
 | |
|       SpillMI = prior(SpillPt);
 | |
|       SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remember def instruction index to spill index mapping.
 | |
|   if (DefMI && SpillMI)
 | |
|     Def2SpillMap[ValNo->def] = SpillIndex;
 | |
| 
 | |
|   // Add restore.
 | |
|   bool FoldedRestore = false;
 | |
|   SlotIndex RestoreIndex;
 | |
|   if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
 | |
|                                       BarrierMBB, SS, RefsInMBB)) {
 | |
|     RestorePt = LMI;
 | |
|     RestoreIndex = LIs->getInstructionIndex(RestorePt);
 | |
|     FoldedRestore = true;
 | |
|   } else {
 | |
|     TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
 | |
|     MachineInstr *LoadMI = prior(RestorePt);
 | |
|     RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
 | |
|   }
 | |
| 
 | |
|   // Update spill stack slot live interval.
 | |
|   UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
 | |
|                           RestoreIndex.getDefIndex());
 | |
| 
 | |
|   ReconstructLiveInterval(CurrLI);
 | |
| 
 | |
|   if (!FoldedRestore) {
 | |
|     SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
 | |
|     RestoreIdx = RestoreIdx.getDefIndex();
 | |
|     RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
 | |
|   }
 | |
|   
 | |
|   ++NumSplits;
 | |
|   DEBUG(dbgs() << "success.\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SplitRegLiveIntervals - Split all register live intervals that cross the
 | |
| /// barrier that's being processed.
 | |
| bool
 | |
| PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
 | |
|                                          SmallPtrSet<LiveInterval*, 8>& Split) {
 | |
|   // First find all the virtual registers whose live intervals are intercepted
 | |
|   // by the current barrier.
 | |
|   SmallVector<LiveInterval*, 8> Intervals;
 | |
|   for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
 | |
|     // FIXME: If it's not safe to move any instruction that defines the barrier
 | |
|     // register class, then it means there are some special dependencies which
 | |
|     // codegen is not modelling. Ignore these barriers for now.
 | |
|     if (!TII->isSafeToMoveRegClassDefs(*RC))
 | |
|       continue;
 | |
|     std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
 | |
|     for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
 | |
|       unsigned Reg = VRs[i];
 | |
|       if (!LIs->hasInterval(Reg))
 | |
|         continue;
 | |
|       LiveInterval *LI = &LIs->getInterval(Reg);
 | |
|       if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
 | |
|         // Virtual register live interval is intercepted by the barrier. We
 | |
|         // should split and shrink wrap its interval if possible.
 | |
|         Intervals.push_back(LI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process the affected live intervals.
 | |
|   bool Change = false;
 | |
|   while (!Intervals.empty()) {
 | |
|     if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
 | |
|       break;
 | |
|     LiveInterval *LI = Intervals.back();
 | |
|     Intervals.pop_back();
 | |
|     bool result = SplitRegLiveInterval(LI);
 | |
|     if (result) Split.insert(LI);
 | |
|     Change |= result;
 | |
|   }
 | |
| 
 | |
|   return Change;
 | |
| }
 | |
| 
 | |
| unsigned PreAllocSplitting::getNumberOfNonSpills(
 | |
|                                   SmallPtrSet<MachineInstr*, 4>& MIs,
 | |
|                                   unsigned Reg, int FrameIndex,
 | |
|                                   bool& FeedsTwoAddr) {
 | |
|   unsigned NonSpills = 0;
 | |
|   for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
 | |
|        UI != UE; ++UI) {
 | |
|     int StoreFrameIndex;
 | |
|     unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
 | |
|     if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
 | |
|       NonSpills++;
 | |
|     
 | |
|     int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
 | |
|     if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
 | |
|       FeedsTwoAddr = true;
 | |
|   }
 | |
|   
 | |
|   return NonSpills;
 | |
| }
 | |
| 
 | |
| /// removeDeadSpills - After doing splitting, filter through all intervals we've
 | |
| /// split, and see if any of the spills are unnecessary.  If so, remove them.
 | |
| bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
 | |
|   bool changed = false;
 | |
|   
 | |
|   // Walk over all of the live intervals that were touched by the splitter,
 | |
|   // and see if we can do any DCE and/or folding.
 | |
|   for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
 | |
|        LE = split.end(); LI != LE; ++LI) {
 | |
|     DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
 | |
|     
 | |
|     // First, collect all the uses of the vreg, and sort them by their
 | |
|     // reaching definition (VNInfo).
 | |
|     for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
 | |
|          UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|       SlotIndex index = LIs->getInstructionIndex(&*UI);
 | |
|       index = index.getUseIndex();
 | |
|       
 | |
|       const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
 | |
|       VNUseCount[LR->valno].insert(&*UI);
 | |
|     }
 | |
|     
 | |
|     // Now, take the definitions (VNInfo's) one at a time and try to DCE 
 | |
|     // and/or fold them away.
 | |
|     for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
 | |
|          VE = (*LI)->vni_end(); VI != VE; ++VI) {
 | |
|       
 | |
|       if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) 
 | |
|         return changed;
 | |
|       
 | |
|       VNInfo* CurrVN = *VI;
 | |
|       
 | |
|       // We don't currently try to handle definitions with PHI kills, because
 | |
|       // it would involve processing more than one VNInfo at once.
 | |
|       if (CurrVN->hasPHIKill()) continue;
 | |
|       
 | |
|       // We also don't try to handle the results of PHI joins, since there's
 | |
|       // no defining instruction to analyze.
 | |
|       if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
 | |
|     
 | |
|       // We're only interested in eliminating cruft introduced by the splitter,
 | |
|       // is of the form load-use or load-use-store.  First, check that the
 | |
|       // definition is a load, and remember what stack slot we loaded it from.
 | |
|       MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
 | |
|       int FrameIndex;
 | |
|       if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
 | |
|       
 | |
|       // If the definition has no uses at all, just DCE it.
 | |
|       if (VNUseCount[CurrVN].size() == 0) {
 | |
|         LIs->RemoveMachineInstrFromMaps(DefMI);
 | |
|         (*LI)->removeValNo(CurrVN);
 | |
|         DefMI->eraseFromParent();
 | |
|         VNUseCount.erase(CurrVN);
 | |
|         NumDeadSpills++;
 | |
|         changed = true;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Second, get the number of non-store uses of the definition, as well as
 | |
|       // a flag indicating whether it feeds into a later two-address definition.
 | |
|       bool FeedsTwoAddr = false;
 | |
|       unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
 | |
|                                                     (*LI)->reg, FrameIndex,
 | |
|                                                     FeedsTwoAddr);
 | |
|       
 | |
|       // If there's one non-store use and it doesn't feed a two-addr, then
 | |
|       // this is a load-use-store case that we can try to fold.
 | |
|       if (NonSpillCount == 1 && !FeedsTwoAddr) {
 | |
|         // Start by finding the non-store use MachineInstr.
 | |
|         SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
 | |
|         int StoreFrameIndex;
 | |
|         unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
 | |
|         while (UI != VNUseCount[CurrVN].end() &&
 | |
|                (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
 | |
|           ++UI;
 | |
|           if (UI != VNUseCount[CurrVN].end())
 | |
|             StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
 | |
|         }
 | |
|         if (UI == VNUseCount[CurrVN].end()) continue;
 | |
|         
 | |
|         MachineInstr* use = *UI;
 | |
|         
 | |
|         // Attempt to fold it away!
 | |
|         int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
 | |
|         if (OpIdx == -1) continue;
 | |
|         SmallVector<unsigned, 1> Ops;
 | |
|         Ops.push_back(OpIdx);
 | |
|         if (!TII->canFoldMemoryOperand(use, Ops)) continue;
 | |
| 
 | |
|         MachineInstr* NewMI =
 | |
|                           TII->foldMemoryOperand(*use->getParent()->getParent(),  
 | |
|                                                  use, Ops, FrameIndex);
 | |
| 
 | |
|         if (!NewMI) continue;
 | |
| 
 | |
|         // Update relevant analyses.
 | |
|         LIs->RemoveMachineInstrFromMaps(DefMI);
 | |
|         LIs->ReplaceMachineInstrInMaps(use, NewMI);
 | |
|         (*LI)->removeValNo(CurrVN);
 | |
| 
 | |
|         DefMI->eraseFromParent();
 | |
|         MachineBasicBlock* MBB = use->getParent();
 | |
|         NewMI = MBB->insert(MBB->erase(use), NewMI);
 | |
|         VNUseCount[CurrVN].erase(use);
 | |
|         
 | |
|         // Remove deleted instructions.  Note that we need to remove them from 
 | |
|         // the VNInfo->use map as well, just to be safe.
 | |
|         for (SmallPtrSet<MachineInstr*, 4>::iterator II = 
 | |
|              VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
 | |
|              II != IE; ++II) {
 | |
|           for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
 | |
|                VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; 
 | |
|                ++VNI)
 | |
|             if (VNI->first != CurrVN)
 | |
|               VNI->second.erase(*II);
 | |
|           LIs->RemoveMachineInstrFromMaps(*II);
 | |
|           (*II)->eraseFromParent();
 | |
|         }
 | |
|         
 | |
|         VNUseCount.erase(CurrVN);
 | |
| 
 | |
|         for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
 | |
|              VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
 | |
|           if (VI->second.erase(use))
 | |
|             VI->second.insert(NewMI);
 | |
| 
 | |
|         NumDeadSpills++;
 | |
|         changed = true;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // If there's more than one non-store instruction, we can't profitably
 | |
|       // fold it, so bail.
 | |
|       if (NonSpillCount) continue;
 | |
|         
 | |
|       // Otherwise, this is a load-store case, so DCE them.
 | |
|       for (SmallPtrSet<MachineInstr*, 4>::iterator UI = 
 | |
|            VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
 | |
|            UI != UE; ++UI) {
 | |
|         LIs->RemoveMachineInstrFromMaps(*UI);
 | |
|         (*UI)->eraseFromParent();
 | |
|       }
 | |
|         
 | |
|       VNUseCount.erase(CurrVN);
 | |
|         
 | |
|       LIs->RemoveMachineInstrFromMaps(DefMI);
 | |
|       (*LI)->removeValNo(CurrVN);
 | |
|       DefMI->eraseFromParent();
 | |
|       NumDeadSpills++;
 | |
|       changed = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return changed;
 | |
| }
 | |
| 
 | |
| bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
 | |
|                                        MachineBasicBlock* DefMBB,
 | |
|                                        MachineBasicBlock* BarrierMBB) {
 | |
|   if (DefMBB == BarrierMBB)
 | |
|     return false;
 | |
|   
 | |
|   if (LR->valno->hasPHIKill())
 | |
|     return false;
 | |
|   
 | |
|   SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
 | |
|   if (LR->end < MBBEnd)
 | |
|     return false;
 | |
|   
 | |
|   MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
 | |
|   if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
 | |
|     return true;
 | |
|   
 | |
|   MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> Visited;
 | |
|   typedef std::pair<MachineBasicBlock*,
 | |
|                     MachineBasicBlock::succ_iterator> ItPair;
 | |
|   SmallVector<ItPair, 4> Stack;
 | |
|   Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
 | |
|   
 | |
|   while (!Stack.empty()) {
 | |
|     ItPair P = Stack.back();
 | |
|     Stack.pop_back();
 | |
|     
 | |
|     MachineBasicBlock* PredMBB = P.first;
 | |
|     MachineBasicBlock::succ_iterator S = P.second;
 | |
|     
 | |
|     if (S == PredMBB->succ_end())
 | |
|       continue;
 | |
|     else if (Visited.count(*S)) {
 | |
|       Stack.push_back(std::make_pair(PredMBB, ++S));
 | |
|       continue;
 | |
|     } else
 | |
|       Stack.push_back(std::make_pair(PredMBB, S+1));
 | |
|     
 | |
|     MachineBasicBlock* MBB = *S;
 | |
|     Visited.insert(MBB);
 | |
|     
 | |
|     if (MBB == BarrierMBB)
 | |
|       return true;
 | |
|     
 | |
|     MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
 | |
|     MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
 | |
|     MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
 | |
|     while (MDTN) {
 | |
|       if (MDTN == DefMDTN)
 | |
|         return true;
 | |
|       else if (MDTN == BarrierMDTN)
 | |
|         break;
 | |
|       MDTN = MDTN->getIDom();
 | |
|     }
 | |
|     
 | |
|     MBBEnd = LIs->getMBBEndIdx(MBB);
 | |
|     if (LR->end > MBBEnd)
 | |
|       Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| } 
 | |
|   
 | |
| 
 | |
| bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
 | |
|   CurrMF = &MF;
 | |
|   TM     = &MF.getTarget();
 | |
|   TRI    = TM->getRegisterInfo();
 | |
|   TII    = TM->getInstrInfo();
 | |
|   MFI    = MF.getFrameInfo();
 | |
|   MRI    = &MF.getRegInfo();
 | |
|   SIs    = &getAnalysis<SlotIndexes>();
 | |
|   LIs    = &getAnalysis<LiveIntervals>();
 | |
|   LSs    = &getAnalysis<LiveStacks>();
 | |
|   VRM    = &getAnalysis<VirtRegMap>();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Make sure blocks are numbered in order.
 | |
|   MF.RenumberBlocks();
 | |
| 
 | |
|   MachineBasicBlock *Entry = MF.begin();
 | |
|   SmallPtrSet<MachineBasicBlock*,16> Visited;
 | |
| 
 | |
|   SmallPtrSet<LiveInterval*, 8> Split;
 | |
| 
 | |
|   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
 | |
|          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
 | |
|        DFI != E; ++DFI) {
 | |
|     BarrierMBB = *DFI;
 | |
|     for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
 | |
|            E = BarrierMBB->end(); I != E; ++I) {
 | |
|       Barrier = &*I;
 | |
|       const TargetRegisterClass **BarrierRCs =
 | |
|         Barrier->getDesc().getRegClassBarriers();
 | |
|       if (!BarrierRCs)
 | |
|         continue;
 | |
|       BarrierIdx = LIs->getInstructionIndex(Barrier);
 | |
|       MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MadeChange |= removeDeadSpills(Split);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 |