mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Patch by Howard Hinnant! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90365 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2512 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2512 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file declares the SDNode class and derived classes, which are used to
 | |
| // represent the nodes and operations present in a SelectionDAG.  These nodes
 | |
| // and operations are machine code level operations, with some similarities to
 | |
| // the GCC RTL representation.
 | |
| //
 | |
| // Clients should include the SelectionDAG.h file instead of this file directly.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
 | |
| #define LLVM_CODEGEN_SELECTIONDAGNODES_H
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/ilist_node.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/System/DataTypes.h"
 | |
| #include "llvm/Support/DebugLoc.h"
 | |
| #include <cassert>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class SelectionDAG;
 | |
| class GlobalValue;
 | |
| class MachineBasicBlock;
 | |
| class MachineConstantPoolValue;
 | |
| class SDNode;
 | |
| class Value;
 | |
| template <typename T> struct DenseMapInfo;
 | |
| template <typename T> struct simplify_type;
 | |
| template <typename T> struct ilist_traits;
 | |
| 
 | |
| /// SDVTList - This represents a list of ValueType's that has been intern'd by
 | |
| /// a SelectionDAG.  Instances of this simple value class are returned by
 | |
| /// SelectionDAG::getVTList(...).
 | |
| ///
 | |
| struct SDVTList {
 | |
|   const EVT *VTs;
 | |
|   unsigned int NumVTs;
 | |
| };
 | |
| 
 | |
| /// ISD namespace - This namespace contains an enum which represents all of the
 | |
| /// SelectionDAG node types and value types.
 | |
| ///
 | |
| namespace ISD {
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISD::NodeType enum - This enum defines the target-independent operators
 | |
|   /// for a SelectionDAG.
 | |
|   ///
 | |
|   /// Targets may also define target-dependent operator codes for SDNodes. For
 | |
|   /// example, on x86, these are the enum values in the X86ISD namespace.
 | |
|   /// Targets should aim to use target-independent operators to model their
 | |
|   /// instruction sets as much as possible, and only use target-dependent
 | |
|   /// operators when they have special requirements.
 | |
|   ///
 | |
|   /// Finally, during and after selection proper, SNodes may use special
 | |
|   /// operator codes that correspond directly with MachineInstr opcodes. These
 | |
|   /// are used to represent selected instructions. See the isMachineOpcode()
 | |
|   /// and getMachineOpcode() member functions of SDNode.
 | |
|   ///
 | |
|   enum NodeType {
 | |
|     // DELETED_NODE - This is an illegal value that is used to catch
 | |
|     // errors.  This opcode is not a legal opcode for any node.
 | |
|     DELETED_NODE,
 | |
| 
 | |
|     // EntryToken - This is the marker used to indicate the start of the region.
 | |
|     EntryToken,
 | |
| 
 | |
|     // TokenFactor - This node takes multiple tokens as input and produces a
 | |
|     // single token result.  This is used to represent the fact that the operand
 | |
|     // operators are independent of each other.
 | |
|     TokenFactor,
 | |
| 
 | |
|     // AssertSext, AssertZext - These nodes record if a register contains a
 | |
|     // value that has already been zero or sign extended from a narrower type.
 | |
|     // These nodes take two operands.  The first is the node that has already
 | |
|     // been extended, and the second is a value type node indicating the width
 | |
|     // of the extension
 | |
|     AssertSext, AssertZext,
 | |
| 
 | |
|     // Various leaf nodes.
 | |
|     BasicBlock, VALUETYPE, CONDCODE, Register,
 | |
|     Constant, ConstantFP,
 | |
|     GlobalAddress, GlobalTLSAddress, FrameIndex,
 | |
|     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
 | |
| 
 | |
|     // The address of the GOT
 | |
|     GLOBAL_OFFSET_TABLE,
 | |
| 
 | |
|     // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
 | |
|     // llvm.returnaddress on the DAG.  These nodes take one operand, the index
 | |
|     // of the frame or return address to return.  An index of zero corresponds
 | |
|     // to the current function's frame or return address, an index of one to the
 | |
|     // parent's frame or return address, and so on.
 | |
|     FRAMEADDR, RETURNADDR,
 | |
| 
 | |
|     // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
 | |
|     // first (possible) on-stack argument. This is needed for correct stack
 | |
|     // adjustment during unwind.
 | |
|     FRAME_TO_ARGS_OFFSET,
 | |
| 
 | |
|     // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
 | |
|     // address of the exception block on entry to an landing pad block.
 | |
|     EXCEPTIONADDR,
 | |
| 
 | |
|     // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
 | |
|     // address of the Language Specific Data Area for the enclosing function.
 | |
|     LSDAADDR,
 | |
| 
 | |
|     // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
 | |
|     // the selection index of the exception thrown.
 | |
|     EHSELECTION,
 | |
| 
 | |
|     // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
 | |
|     // 'eh_return' gcc dwarf builtin, which is used to return from
 | |
|     // exception. The general meaning is: adjust stack by OFFSET and pass
 | |
|     // execution to HANDLER. Many platform-related details also :)
 | |
|     EH_RETURN,
 | |
| 
 | |
|     // TargetConstant* - Like Constant*, but the DAG does not do any folding or
 | |
|     // simplification of the constant.
 | |
|     TargetConstant,
 | |
|     TargetConstantFP,
 | |
| 
 | |
|     // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
 | |
|     // anything else with this node, and this is valid in the target-specific
 | |
|     // dag, turning into a GlobalAddress operand.
 | |
|     TargetGlobalAddress,
 | |
|     TargetGlobalTLSAddress,
 | |
|     TargetFrameIndex,
 | |
|     TargetJumpTable,
 | |
|     TargetConstantPool,
 | |
|     TargetExternalSymbol,
 | |
|     TargetBlockAddress,
 | |
| 
 | |
|     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
 | |
|     /// This node represents a target intrinsic function with no side effects.
 | |
|     /// The first operand is the ID number of the intrinsic from the
 | |
|     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
 | |
|     /// node has returns the result of the intrinsic.
 | |
|     INTRINSIC_WO_CHAIN,
 | |
| 
 | |
|     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
 | |
|     /// This node represents a target intrinsic function with side effects that
 | |
|     /// returns a result.  The first operand is a chain pointer.  The second is
 | |
|     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
 | |
|     /// operands to the intrinsic follow.  The node has two results, the result
 | |
|     /// of the intrinsic and an output chain.
 | |
|     INTRINSIC_W_CHAIN,
 | |
| 
 | |
|     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
 | |
|     /// This node represents a target intrinsic function with side effects that
 | |
|     /// does not return a result.  The first operand is a chain pointer.  The
 | |
|     /// second is the ID number of the intrinsic from the llvm::Intrinsic
 | |
|     /// namespace.  The operands to the intrinsic follow.
 | |
|     INTRINSIC_VOID,
 | |
| 
 | |
|     // CopyToReg - This node has three operands: a chain, a register number to
 | |
|     // set to this value, and a value.
 | |
|     CopyToReg,
 | |
| 
 | |
|     // CopyFromReg - This node indicates that the input value is a virtual or
 | |
|     // physical register that is defined outside of the scope of this
 | |
|     // SelectionDAG.  The register is available from the RegisterSDNode object.
 | |
|     CopyFromReg,
 | |
| 
 | |
|     // UNDEF - An undefined node
 | |
|     UNDEF,
 | |
| 
 | |
|     // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
 | |
|     // a Constant, which is required to be operand #1) half of the integer or
 | |
|     // float value specified as operand #0.  This is only for use before
 | |
|     // legalization, for values that will be broken into multiple registers.
 | |
|     EXTRACT_ELEMENT,
 | |
| 
 | |
|     // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
 | |
|     // two values of the same integer value type, this produces a value twice as
 | |
|     // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
 | |
|     BUILD_PAIR,
 | |
| 
 | |
|     // MERGE_VALUES - This node takes multiple discrete operands and returns
 | |
|     // them all as its individual results.  This nodes has exactly the same
 | |
|     // number of inputs and outputs. This node is useful for some pieces of the
 | |
|     // code generator that want to think about a single node with multiple
 | |
|     // results, not multiple nodes.
 | |
|     MERGE_VALUES,
 | |
| 
 | |
|     // Simple integer binary arithmetic operators.
 | |
|     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
 | |
| 
 | |
|     // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
 | |
|     // a signed/unsigned value of type i[2*N], and return the full value as
 | |
|     // two results, each of type iN.
 | |
|     SMUL_LOHI, UMUL_LOHI,
 | |
| 
 | |
|     // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
 | |
|     // remainder result.
 | |
|     SDIVREM, UDIVREM,
 | |
| 
 | |
|     // CARRY_FALSE - This node is used when folding other nodes,
 | |
|     // like ADDC/SUBC, which indicate the carry result is always false.
 | |
|     CARRY_FALSE,
 | |
| 
 | |
|     // Carry-setting nodes for multiple precision addition and subtraction.
 | |
|     // These nodes take two operands of the same value type, and produce two
 | |
|     // results.  The first result is the normal add or sub result, the second
 | |
|     // result is the carry flag result.
 | |
|     ADDC, SUBC,
 | |
| 
 | |
|     // Carry-using nodes for multiple precision addition and subtraction.  These
 | |
|     // nodes take three operands: The first two are the normal lhs and rhs to
 | |
|     // the add or sub, and the third is the input carry flag.  These nodes
 | |
|     // produce two results; the normal result of the add or sub, and the output
 | |
|     // carry flag.  These nodes both read and write a carry flag to allow them
 | |
|     // to them to be chained together for add and sub of arbitrarily large
 | |
|     // values.
 | |
|     ADDE, SUBE,
 | |
| 
 | |
|     // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
 | |
|     // These nodes take two operands: the normal LHS and RHS to the add. They
 | |
|     // produce two results: the normal result of the add, and a boolean that
 | |
|     // indicates if an overflow occured (*not* a flag, because it may be stored
 | |
|     // to memory, etc.).  If the type of the boolean is not i1 then the high
 | |
|     // bits conform to getBooleanContents.
 | |
|     // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
 | |
|     SADDO, UADDO,
 | |
| 
 | |
|     // Same for subtraction
 | |
|     SSUBO, USUBO,
 | |
| 
 | |
|     // Same for multiplication
 | |
|     SMULO, UMULO,
 | |
| 
 | |
|     // Simple binary floating point operators.
 | |
|     FADD, FSUB, FMUL, FDIV, FREM,
 | |
| 
 | |
|     // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
 | |
|     // DAG node does not require that X and Y have the same type, just that they
 | |
|     // are both floating point.  X and the result must have the same type.
 | |
|     // FCOPYSIGN(f32, f64) is allowed.
 | |
|     FCOPYSIGN,
 | |
| 
 | |
|     // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
 | |
|     // value as an integer 0/1 value.
 | |
|     FGETSIGN,
 | |
| 
 | |
|     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
 | |
|     /// specified, possibly variable, elements.  The number of elements is
 | |
|     /// required to be a power of two.  The types of the operands must all be
 | |
|     /// the same and must match the vector element type, except that integer
 | |
|     /// types are allowed to be larger than the element type, in which case
 | |
|     /// the operands are implicitly truncated.
 | |
|     BUILD_VECTOR,
 | |
| 
 | |
|     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
 | |
|     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
 | |
|     /// element type then VAL is truncated before replacement.
 | |
|     INSERT_VECTOR_ELT,
 | |
| 
 | |
|     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
 | |
|     /// identified by the (potentially variable) element number IDX.  If the
 | |
|     /// return type is an integer type larger than the element type of the
 | |
|     /// vector, the result is extended to the width of the return type.
 | |
|     EXTRACT_VECTOR_ELT,
 | |
| 
 | |
|     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
 | |
|     /// vector type with the same length and element type, this produces a
 | |
|     /// concatenated vector result value, with length equal to the sum of the
 | |
|     /// lengths of the input vectors.
 | |
|     CONCAT_VECTORS,
 | |
| 
 | |
|     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
 | |
|     /// vector value) starting with the (potentially variable) element number
 | |
|     /// IDX, which must be a multiple of the result vector length.
 | |
|     EXTRACT_SUBVECTOR,
 | |
| 
 | |
|     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as 
 | |
|     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
 | |
|     /// values that indicate which value (or undef) each result element will
 | |
|     /// get.  These constant ints are accessible through the 
 | |
|     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec 
 | |
|     /// 'vperm' instruction, except that the indices must be constants and are
 | |
|     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
 | |
|     VECTOR_SHUFFLE,
 | |
| 
 | |
|     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
 | |
|     /// scalar value into element 0 of the resultant vector type.  The top
 | |
|     /// elements 1 to N-1 of the N-element vector are undefined.  The type
 | |
|     /// of the operand must match the vector element type, except when they
 | |
|     /// are integer types.  In this case the operand is allowed to be wider
 | |
|     /// than the vector element type, and is implicitly truncated to it.
 | |
|     SCALAR_TO_VECTOR,
 | |
| 
 | |
|     // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
 | |
|     // an unsigned/signed value of type i[2*N], then return the top part.
 | |
|     MULHU, MULHS,
 | |
| 
 | |
|     // Bitwise operators - logical and, logical or, logical xor, shift left,
 | |
|     // shift right algebraic (shift in sign bits), shift right logical (shift in
 | |
|     // zeroes), rotate left, rotate right, and byteswap.
 | |
|     AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
 | |
| 
 | |
|     // Counting operators
 | |
|     CTTZ, CTLZ, CTPOP,
 | |
| 
 | |
|     // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
 | |
|     // i1 then the high bits must conform to getBooleanContents.
 | |
|     SELECT,
 | |
| 
 | |
|     // Select with condition operator - This selects between a true value and
 | |
|     // a false value (ops #2 and #3) based on the boolean result of comparing
 | |
|     // the lhs and rhs (ops #0 and #1) of a conditional expression with the
 | |
|     // condition code in op #4, a CondCodeSDNode.
 | |
|     SELECT_CC,
 | |
| 
 | |
|     // SetCC operator - This evaluates to a true value iff the condition is
 | |
|     // true.  If the result value type is not i1 then the high bits conform
 | |
|     // to getBooleanContents.  The operands to this are the left and right
 | |
|     // operands to compare (ops #0, and #1) and the condition code to compare
 | |
|     // them with (op #2) as a CondCodeSDNode.
 | |
|     SETCC,
 | |
| 
 | |
|     // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
 | |
|     // integer elements with all bits of the result elements set to true if the
 | |
|     // comparison is true or all cleared if the comparison is false.  The
 | |
|     // operands to this are the left and right operands to compare (LHS/RHS) and
 | |
|     // the condition code to compare them with (COND) as a CondCodeSDNode.
 | |
|     VSETCC,
 | |
| 
 | |
|     // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
 | |
|     // integer shift operations, just like ADD/SUB_PARTS.  The operation
 | |
|     // ordering is:
 | |
|     //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
 | |
|     SHL_PARTS, SRA_PARTS, SRL_PARTS,
 | |
| 
 | |
|     // Conversion operators.  These are all single input single output
 | |
|     // operations.  For all of these, the result type must be strictly
 | |
|     // wider or narrower (depending on the operation) than the source
 | |
|     // type.
 | |
| 
 | |
|     // SIGN_EXTEND - Used for integer types, replicating the sign bit
 | |
|     // into new bits.
 | |
|     SIGN_EXTEND,
 | |
| 
 | |
|     // ZERO_EXTEND - Used for integer types, zeroing the new bits.
 | |
|     ZERO_EXTEND,
 | |
| 
 | |
|     // ANY_EXTEND - Used for integer types.  The high bits are undefined.
 | |
|     ANY_EXTEND,
 | |
| 
 | |
|     // TRUNCATE - Completely drop the high bits.
 | |
|     TRUNCATE,
 | |
| 
 | |
|     // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
 | |
|     // depends on the first letter) to floating point.
 | |
|     SINT_TO_FP,
 | |
|     UINT_TO_FP,
 | |
| 
 | |
|     // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
 | |
|     // sign extend a small value in a large integer register (e.g. sign
 | |
|     // extending the low 8 bits of a 32-bit register to fill the top 24 bits
 | |
|     // with the 7th bit).  The size of the smaller type is indicated by the 1th
 | |
|     // operand, a ValueType node.
 | |
|     SIGN_EXTEND_INREG,
 | |
| 
 | |
|     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
 | |
|     /// integer.
 | |
|     FP_TO_SINT,
 | |
|     FP_TO_UINT,
 | |
| 
 | |
|     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
 | |
|     /// down to the precision of the destination VT.  TRUNC is a flag, which is
 | |
|     /// always an integer that is zero or one.  If TRUNC is 0, this is a
 | |
|     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
 | |
|     /// value of Y.
 | |
|     ///
 | |
|     /// The TRUNC = 1 case is used in cases where we know that the value will
 | |
|     /// not be modified by the node, because Y is not using any of the extra
 | |
|     /// precision of source type.  This allows certain transformations like
 | |
|     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
 | |
|     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
 | |
|     FP_ROUND,
 | |
| 
 | |
|     // FLT_ROUNDS_ - Returns current rounding mode:
 | |
|     // -1 Undefined
 | |
|     //  0 Round to 0
 | |
|     //  1 Round to nearest
 | |
|     //  2 Round to +inf
 | |
|     //  3 Round to -inf
 | |
|     FLT_ROUNDS_,
 | |
| 
 | |
|     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
 | |
|     /// rounds it to a floating point value.  It then promotes it and returns it
 | |
|     /// in a register of the same size.  This operation effectively just
 | |
|     /// discards excess precision.  The type to round down to is specified by
 | |
|     /// the VT operand, a VTSDNode.
 | |
|     FP_ROUND_INREG,
 | |
| 
 | |
|     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
 | |
|     FP_EXTEND,
 | |
| 
 | |
|     // BIT_CONVERT - Theis operator converts between integer and FP values, as
 | |
|     // if one was stored to memory as integer and the other was loaded from the
 | |
|     // same address (or equivalently for vector format conversions, etc).  The
 | |
|     // source and result are required to have the same bit size (e.g.
 | |
|     // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
 | |
|     // conversions, but that is a noop, deleted by getNode().
 | |
|     BIT_CONVERT,
 | |
| 
 | |
|     // CONVERT_RNDSAT - This operator is used to support various conversions
 | |
|     // between various types (float, signed, unsigned and vectors of those
 | |
|     // types) with rounding and saturation. NOTE: Avoid using this operator as
 | |
|     // most target don't support it and the operator might be removed in the
 | |
|     // future. It takes the following arguments:
 | |
|     //   0) value
 | |
|     //   1) dest type (type to convert to)
 | |
|     //   2) src type (type to convert from)
 | |
|     //   3) rounding imm
 | |
|     //   4) saturation imm
 | |
|     //   5) ISD::CvtCode indicating the type of conversion to do
 | |
|     CONVERT_RNDSAT,
 | |
| 
 | |
|     // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
 | |
|     // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
 | |
|     // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
 | |
|     // point operations. These are inspired by libm.
 | |
|     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
 | |
|     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
 | |
|     FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
 | |
| 
 | |
|     // LOAD and STORE have token chains as their first operand, then the same
 | |
|     // operands as an LLVM load/store instruction, then an offset node that
 | |
|     // is added / subtracted from the base pointer to form the address (for
 | |
|     // indexed memory ops).
 | |
|     LOAD, STORE,
 | |
| 
 | |
|     // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
 | |
|     // to a specified boundary.  This node always has two return values: a new
 | |
|     // stack pointer value and a chain. The first operand is the token chain,
 | |
|     // the second is the number of bytes to allocate, and the third is the
 | |
|     // alignment boundary.  The size is guaranteed to be a multiple of the stack
 | |
|     // alignment, and the alignment is guaranteed to be bigger than the stack
 | |
|     // alignment (if required) or 0 to get standard stack alignment.
 | |
|     DYNAMIC_STACKALLOC,
 | |
| 
 | |
|     // Control flow instructions.  These all have token chains.
 | |
| 
 | |
|     // BR - Unconditional branch.  The first operand is the chain
 | |
|     // operand, the second is the MBB to branch to.
 | |
|     BR,
 | |
| 
 | |
|     // BRIND - Indirect branch.  The first operand is the chain, the second
 | |
|     // is the value to branch to, which must be of the same type as the target's
 | |
|     // pointer type.
 | |
|     BRIND,
 | |
| 
 | |
|     // BR_JT - Jumptable branch. The first operand is the chain, the second
 | |
|     // is the jumptable index, the last one is the jumptable entry index.
 | |
|     BR_JT,
 | |
| 
 | |
|     // BRCOND - Conditional branch.  The first operand is the chain, the
 | |
|     // second is the condition, the third is the block to branch to if the
 | |
|     // condition is true.  If the type of the condition is not i1, then the
 | |
|     // high bits must conform to getBooleanContents.
 | |
|     BRCOND,
 | |
| 
 | |
|     // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
 | |
|     // that the condition is represented as condition code, and two nodes to
 | |
|     // compare, rather than as a combined SetCC node.  The operands in order are
 | |
|     // chain, cc, lhs, rhs, block to branch to if condition is true.
 | |
|     BR_CC,
 | |
| 
 | |
|     // INLINEASM - Represents an inline asm block.  This node always has two
 | |
|     // return values: a chain and a flag result.  The inputs are as follows:
 | |
|     //   Operand #0   : Input chain.
 | |
|     //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
 | |
|     //   Operand #2n+2: A RegisterNode.
 | |
|     //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
 | |
|     //   Operand #last: Optional, an incoming flag.
 | |
|     INLINEASM,
 | |
| 
 | |
|     // EH_LABEL - Represents a label in mid basic block used to track
 | |
|     // locations needed for debug and exception handling tables.  These nodes
 | |
|     // take a chain as input and return a chain.
 | |
|     EH_LABEL,
 | |
| 
 | |
|     // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
 | |
|     // value, the same type as the pointer type for the system, and an output
 | |
|     // chain.
 | |
|     STACKSAVE,
 | |
| 
 | |
|     // STACKRESTORE has two operands, an input chain and a pointer to restore to
 | |
|     // it returns an output chain.
 | |
|     STACKRESTORE,
 | |
| 
 | |
|     // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
 | |
|     // a call sequence, and carry arbitrary information that target might want
 | |
|     // to know.  The first operand is a chain, the rest are specified by the
 | |
|     // target and not touched by the DAG optimizers.
 | |
|     // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
 | |
|     CALLSEQ_START,  // Beginning of a call sequence
 | |
|     CALLSEQ_END,    // End of a call sequence
 | |
| 
 | |
|     // VAARG - VAARG has three operands: an input chain, a pointer, and a
 | |
|     // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
 | |
|     VAARG,
 | |
| 
 | |
|     // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
 | |
|     // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
 | |
|     // source.
 | |
|     VACOPY,
 | |
| 
 | |
|     // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
 | |
|     // pointer, and a SRCVALUE.
 | |
|     VAEND, VASTART,
 | |
| 
 | |
|     // SRCVALUE - This is a node type that holds a Value* that is used to
 | |
|     // make reference to a value in the LLVM IR.
 | |
|     SRCVALUE,
 | |
| 
 | |
|     // PCMARKER - This corresponds to the pcmarker intrinsic.
 | |
|     PCMARKER,
 | |
| 
 | |
|     // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
 | |
|     // The only operand is a chain and a value and a chain are produced.  The
 | |
|     // value is the contents of the architecture specific cycle counter like
 | |
|     // register (or other high accuracy low latency clock source)
 | |
|     READCYCLECOUNTER,
 | |
| 
 | |
|     // HANDLENODE node - Used as a handle for various purposes.
 | |
|     HANDLENODE,
 | |
| 
 | |
|     // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
 | |
|     // It takes as input a token chain, the pointer to the trampoline,
 | |
|     // the pointer to the nested function, the pointer to pass for the
 | |
|     // 'nest' parameter, a SRCVALUE for the trampoline and another for
 | |
|     // the nested function (allowing targets to access the original
 | |
|     // Function*).  It produces the result of the intrinsic and a token
 | |
|     // chain as output.
 | |
|     TRAMPOLINE,
 | |
| 
 | |
|     // TRAP - Trapping instruction
 | |
|     TRAP,
 | |
| 
 | |
|     // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
 | |
|     // their first operand. The other operands are the address to prefetch,
 | |
|     // read / write specifier, and locality specifier.
 | |
|     PREFETCH,
 | |
| 
 | |
|     // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
 | |
|     //                       store-store, device)
 | |
|     // This corresponds to the memory.barrier intrinsic.
 | |
|     // it takes an input chain, 4 operands to specify the type of barrier, an
 | |
|     // operand specifying if the barrier applies to device and uncached memory
 | |
|     // and produces an output chain.
 | |
|     MEMBARRIER,
 | |
| 
 | |
|     // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
 | |
|     // this corresponds to the atomic.lcs intrinsic.
 | |
|     // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
 | |
|     // the return is always the original value in *ptr
 | |
|     ATOMIC_CMP_SWAP,
 | |
| 
 | |
|     // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
 | |
|     // this corresponds to the atomic.swap intrinsic.
 | |
|     // amt is stored to *ptr atomically.
 | |
|     // the return is always the original value in *ptr
 | |
|     ATOMIC_SWAP,
 | |
| 
 | |
|     // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
 | |
|     // this corresponds to the atomic.load.[OpName] intrinsic.
 | |
|     // op(*ptr, amt) is stored to *ptr atomically.
 | |
|     // the return is always the original value in *ptr
 | |
|     ATOMIC_LOAD_ADD,
 | |
|     ATOMIC_LOAD_SUB,
 | |
|     ATOMIC_LOAD_AND,
 | |
|     ATOMIC_LOAD_OR,
 | |
|     ATOMIC_LOAD_XOR,
 | |
|     ATOMIC_LOAD_NAND,
 | |
|     ATOMIC_LOAD_MIN,
 | |
|     ATOMIC_LOAD_MAX,
 | |
|     ATOMIC_LOAD_UMIN,
 | |
|     ATOMIC_LOAD_UMAX,
 | |
| 
 | |
|     /// BUILTIN_OP_END - This must be the last enum value in this list.
 | |
|     /// The target-specific pre-isel opcode values start here.
 | |
|     BUILTIN_OP_END
 | |
|   };
 | |
| 
 | |
|   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
 | |
|   /// which do not reference a specific memory location should be less than
 | |
|   /// this value. Those that do must not be less than this value, and can
 | |
|   /// be used with SelectionDAG::getMemIntrinsicNode.
 | |
|   static const int FIRST_TARGET_MEMORY_OPCODE = 1 << 14;
 | |
| 
 | |
|   /// Node predicates
 | |
| 
 | |
|   /// isBuildVectorAllOnes - Return true if the specified node is a
 | |
|   /// BUILD_VECTOR where all of the elements are ~0 or undef.
 | |
|   bool isBuildVectorAllOnes(const SDNode *N);
 | |
| 
 | |
|   /// isBuildVectorAllZeros - Return true if the specified node is a
 | |
|   /// BUILD_VECTOR where all of the elements are 0 or undef.
 | |
|   bool isBuildVectorAllZeros(const SDNode *N);
 | |
| 
 | |
|   /// isScalarToVector - Return true if the specified node is a
 | |
|   /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
 | |
|   /// element is not an undef.
 | |
|   bool isScalarToVector(const SDNode *N);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// MemIndexedMode enum - This enum defines the load / store indexed
 | |
|   /// addressing modes.
 | |
|   ///
 | |
|   /// UNINDEXED    "Normal" load / store. The effective address is already
 | |
|   ///              computed and is available in the base pointer. The offset
 | |
|   ///              operand is always undefined. In addition to producing a
 | |
|   ///              chain, an unindexed load produces one value (result of the
 | |
|   ///              load); an unindexed store does not produce a value.
 | |
|   ///
 | |
|   /// PRE_INC      Similar to the unindexed mode where the effective address is
 | |
|   /// PRE_DEC      the value of the base pointer add / subtract the offset.
 | |
|   ///              It considers the computation as being folded into the load /
 | |
|   ///              store operation (i.e. the load / store does the address
 | |
|   ///              computation as well as performing the memory transaction).
 | |
|   ///              The base operand is always undefined. In addition to
 | |
|   ///              producing a chain, pre-indexed load produces two values
 | |
|   ///              (result of the load and the result of the address
 | |
|   ///              computation); a pre-indexed store produces one value (result
 | |
|   ///              of the address computation).
 | |
|   ///
 | |
|   /// POST_INC     The effective address is the value of the base pointer. The
 | |
|   /// POST_DEC     value of the offset operand is then added to / subtracted
 | |
|   ///              from the base after memory transaction. In addition to
 | |
|   ///              producing a chain, post-indexed load produces two values
 | |
|   ///              (the result of the load and the result of the base +/- offset
 | |
|   ///              computation); a post-indexed store produces one value (the
 | |
|   ///              the result of the base +/- offset computation).
 | |
|   ///
 | |
|   enum MemIndexedMode {
 | |
|     UNINDEXED = 0,
 | |
|     PRE_INC,
 | |
|     PRE_DEC,
 | |
|     POST_INC,
 | |
|     POST_DEC,
 | |
|     LAST_INDEXED_MODE
 | |
|   };
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// LoadExtType enum - This enum defines the three variants of LOADEXT
 | |
|   /// (load with extension).
 | |
|   ///
 | |
|   /// SEXTLOAD loads the integer operand and sign extends it to a larger
 | |
|   ///          integer result type.
 | |
|   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
 | |
|   ///          integer result type.
 | |
|   /// EXTLOAD  is used for three things: floating point extending loads,
 | |
|   ///          integer extending loads [the top bits are undefined], and vector
 | |
|   ///          extending loads [load into low elt].
 | |
|   ///
 | |
|   enum LoadExtType {
 | |
|     NON_EXTLOAD = 0,
 | |
|     EXTLOAD,
 | |
|     SEXTLOAD,
 | |
|     ZEXTLOAD,
 | |
|     LAST_LOADEXT_TYPE
 | |
|   };
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
 | |
|   /// below work out, when considering SETFALSE (something that never exists
 | |
|   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
 | |
|   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
 | |
|   /// to.  If the "N" column is 1, the result of the comparison is undefined if
 | |
|   /// the input is a NAN.
 | |
|   ///
 | |
|   /// All of these (except for the 'always folded ops') should be handled for
 | |
|   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
 | |
|   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
 | |
|   ///
 | |
|   /// Note that these are laid out in a specific order to allow bit-twiddling
 | |
|   /// to transform conditions.
 | |
|   enum CondCode {
 | |
|     // Opcode          N U L G E       Intuitive operation
 | |
|     SETFALSE,      //    0 0 0 0       Always false (always folded)
 | |
|     SETOEQ,        //    0 0 0 1       True if ordered and equal
 | |
|     SETOGT,        //    0 0 1 0       True if ordered and greater than
 | |
|     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
 | |
|     SETOLT,        //    0 1 0 0       True if ordered and less than
 | |
|     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
 | |
|     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
 | |
|     SETO,          //    0 1 1 1       True if ordered (no nans)
 | |
|     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
 | |
|     SETUEQ,        //    1 0 0 1       True if unordered or equal
 | |
|     SETUGT,        //    1 0 1 0       True if unordered or greater than
 | |
|     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
 | |
|     SETULT,        //    1 1 0 0       True if unordered or less than
 | |
|     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
 | |
|     SETUNE,        //    1 1 1 0       True if unordered or not equal
 | |
|     SETTRUE,       //    1 1 1 1       Always true (always folded)
 | |
|     // Don't care operations: undefined if the input is a nan.
 | |
|     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
 | |
|     SETEQ,         //  1 X 0 0 1       True if equal
 | |
|     SETGT,         //  1 X 0 1 0       True if greater than
 | |
|     SETGE,         //  1 X 0 1 1       True if greater than or equal
 | |
|     SETLT,         //  1 X 1 0 0       True if less than
 | |
|     SETLE,         //  1 X 1 0 1       True if less than or equal
 | |
|     SETNE,         //  1 X 1 1 0       True if not equal
 | |
|     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
 | |
| 
 | |
|     SETCC_INVALID       // Marker value.
 | |
|   };
 | |
| 
 | |
|   /// isSignedIntSetCC - Return true if this is a setcc instruction that
 | |
|   /// performs a signed comparison when used with integer operands.
 | |
|   inline bool isSignedIntSetCC(CondCode Code) {
 | |
|     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
 | |
|   }
 | |
| 
 | |
|   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
 | |
|   /// performs an unsigned comparison when used with integer operands.
 | |
|   inline bool isUnsignedIntSetCC(CondCode Code) {
 | |
|     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
 | |
|   }
 | |
| 
 | |
|   /// isTrueWhenEqual - Return true if the specified condition returns true if
 | |
|   /// the two operands to the condition are equal.  Note that if one of the two
 | |
|   /// operands is a NaN, this value is meaningless.
 | |
|   inline bool isTrueWhenEqual(CondCode Cond) {
 | |
|     return ((int)Cond & 1) != 0;
 | |
|   }
 | |
| 
 | |
|   /// getUnorderedFlavor - This function returns 0 if the condition is always
 | |
|   /// false if an operand is a NaN, 1 if the condition is always true if the
 | |
|   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
 | |
|   /// NaN.
 | |
|   inline unsigned getUnorderedFlavor(CondCode Cond) {
 | |
|     return ((int)Cond >> 3) & 3;
 | |
|   }
 | |
| 
 | |
|   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
 | |
|   /// 'op' is a valid SetCC operation.
 | |
|   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
 | |
| 
 | |
|   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
 | |
|   /// when given the operation for (X op Y).
 | |
|   CondCode getSetCCSwappedOperands(CondCode Operation);
 | |
| 
 | |
|   /// getSetCCOrOperation - Return the result of a logical OR between different
 | |
|   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
 | |
|   /// function returns SETCC_INVALID if it is not possible to represent the
 | |
|   /// resultant comparison.
 | |
|   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | |
| 
 | |
|   /// getSetCCAndOperation - Return the result of a logical AND between
 | |
|   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
 | |
|   /// function returns SETCC_INVALID if it is not possible to represent the
 | |
|   /// resultant comparison.
 | |
|   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
 | |
|   /// supports.
 | |
|   enum CvtCode {
 | |
|     CVT_FF,     // Float from Float
 | |
|     CVT_FS,     // Float from Signed
 | |
|     CVT_FU,     // Float from Unsigned
 | |
|     CVT_SF,     // Signed from Float
 | |
|     CVT_UF,     // Unsigned from Float
 | |
|     CVT_SS,     // Signed from Signed
 | |
|     CVT_SU,     // Signed from Unsigned
 | |
|     CVT_US,     // Unsigned from Signed
 | |
|     CVT_UU,     // Unsigned from Unsigned
 | |
|     CVT_INVALID // Marker - Invalid opcode
 | |
|   };
 | |
| }  // end llvm::ISD namespace
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
 | |
| /// values as the result of a computation.  Many nodes return multiple values,
 | |
| /// from loads (which define a token and a return value) to ADDC (which returns
 | |
| /// a result and a carry value), to calls (which may return an arbitrary number
 | |
| /// of values).
 | |
| ///
 | |
| /// As such, each use of a SelectionDAG computation must indicate the node that
 | |
| /// computes it as well as which return value to use from that node.  This pair
 | |
| /// of information is represented with the SDValue value type.
 | |
| ///
 | |
| class SDValue {
 | |
|   SDNode *Node;       // The node defining the value we are using.
 | |
|   unsigned ResNo;     // Which return value of the node we are using.
 | |
| public:
 | |
|   SDValue() : Node(0), ResNo(0) {}
 | |
|   SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
 | |
| 
 | |
|   /// get the index which selects a specific result in the SDNode
 | |
|   unsigned getResNo() const { return ResNo; }
 | |
| 
 | |
|   /// get the SDNode which holds the desired result
 | |
|   SDNode *getNode() const { return Node; }
 | |
| 
 | |
|   /// set the SDNode
 | |
|   void setNode(SDNode *N) { Node = N; }
 | |
| 
 | |
|   bool operator==(const SDValue &O) const {
 | |
|     return Node == O.Node && ResNo == O.ResNo;
 | |
|   }
 | |
|   bool operator!=(const SDValue &O) const {
 | |
|     return !operator==(O);
 | |
|   }
 | |
|   bool operator<(const SDValue &O) const {
 | |
|     return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
 | |
|   }
 | |
| 
 | |
|   SDValue getValue(unsigned R) const {
 | |
|     return SDValue(Node, R);
 | |
|   }
 | |
| 
 | |
|   // isOperandOf - Return true if this node is an operand of N.
 | |
|   bool isOperandOf(SDNode *N) const;
 | |
| 
 | |
|   /// getValueType - Return the ValueType of the referenced return value.
 | |
|   ///
 | |
|   inline EVT getValueType() const;
 | |
| 
 | |
|   /// getValueSizeInBits - Returns the size of the value in bits.
 | |
|   ///
 | |
|   unsigned getValueSizeInBits() const {
 | |
|     return getValueType().getSizeInBits();
 | |
|   }
 | |
| 
 | |
|   // Forwarding methods - These forward to the corresponding methods in SDNode.
 | |
|   inline unsigned getOpcode() const;
 | |
|   inline unsigned getNumOperands() const;
 | |
|   inline const SDValue &getOperand(unsigned i) const;
 | |
|   inline uint64_t getConstantOperandVal(unsigned i) const;
 | |
|   inline bool isTargetMemoryOpcode() const;
 | |
|   inline bool isTargetOpcode() const;
 | |
|   inline bool isMachineOpcode() const;
 | |
|   inline unsigned getMachineOpcode() const;
 | |
|   inline const DebugLoc getDebugLoc() const;
 | |
| 
 | |
| 
 | |
|   /// reachesChainWithoutSideEffects - Return true if this operand (which must
 | |
|   /// be a chain) reaches the specified operand without crossing any
 | |
|   /// side-effecting instructions.  In practice, this looks through token
 | |
|   /// factors and non-volatile loads.  In order to remain efficient, this only
 | |
|   /// looks a couple of nodes in, it does not do an exhaustive search.
 | |
|   bool reachesChainWithoutSideEffects(SDValue Dest,
 | |
|                                       unsigned Depth = 2) const;
 | |
| 
 | |
|   /// use_empty - Return true if there are no nodes using value ResNo
 | |
|   /// of Node.
 | |
|   ///
 | |
|   inline bool use_empty() const;
 | |
| 
 | |
|   /// hasOneUse - Return true if there is exactly one node using value
 | |
|   /// ResNo of Node.
 | |
|   ///
 | |
|   inline bool hasOneUse() const;
 | |
| };
 | |
| 
 | |
| 
 | |
| template<> struct DenseMapInfo<SDValue> {
 | |
|   static inline SDValue getEmptyKey() {
 | |
|     return SDValue((SDNode*)-1, -1U);
 | |
|   }
 | |
|   static inline SDValue getTombstoneKey() {
 | |
|     return SDValue((SDNode*)-1, 0);
 | |
|   }
 | |
|   static unsigned getHashValue(const SDValue &Val) {
 | |
|     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
 | |
|             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
 | |
|   }
 | |
|   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
|   static bool isPod() { return true; }
 | |
| };
 | |
| 
 | |
| /// simplify_type specializations - Allow casting operators to work directly on
 | |
| /// SDValues as if they were SDNode*'s.
 | |
| template<> struct simplify_type<SDValue> {
 | |
|   typedef SDNode* SimpleType;
 | |
|   static SimpleType getSimplifiedValue(const SDValue &Val) {
 | |
|     return static_cast<SimpleType>(Val.getNode());
 | |
|   }
 | |
| };
 | |
| template<> struct simplify_type<const SDValue> {
 | |
|   typedef SDNode* SimpleType;
 | |
|   static SimpleType getSimplifiedValue(const SDValue &Val) {
 | |
|     return static_cast<SimpleType>(Val.getNode());
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SDUse - Represents a use of a SDNode. This class holds an SDValue,
 | |
| /// which records the SDNode being used and the result number, a
 | |
| /// pointer to the SDNode using the value, and Next and Prev pointers,
 | |
| /// which link together all the uses of an SDNode.
 | |
| ///
 | |
| class SDUse {
 | |
|   /// Val - The value being used.
 | |
|   SDValue Val;
 | |
|   /// User - The user of this value.
 | |
|   SDNode *User;
 | |
|   /// Prev, Next - Pointers to the uses list of the SDNode referred by
 | |
|   /// this operand.
 | |
|   SDUse **Prev, *Next;
 | |
| 
 | |
|   SDUse(const SDUse &U);          // Do not implement
 | |
|   void operator=(const SDUse &U); // Do not implement
 | |
| 
 | |
| public:
 | |
|   SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
 | |
| 
 | |
|   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
 | |
|   operator const SDValue&() const { return Val; }
 | |
| 
 | |
|   /// If implicit conversion to SDValue doesn't work, the get() method returns
 | |
|   /// the SDValue.
 | |
|   const SDValue &get() const { return Val; }
 | |
| 
 | |
|   /// getUser - This returns the SDNode that contains this Use.
 | |
|   SDNode *getUser() { return User; }
 | |
| 
 | |
|   /// getNext - Get the next SDUse in the use list.
 | |
|   SDUse *getNext() const { return Next; }
 | |
| 
 | |
|   /// getNode - Convenience function for get().getNode().
 | |
|   SDNode *getNode() const { return Val.getNode(); }
 | |
|   /// getResNo - Convenience function for get().getResNo().
 | |
|   unsigned getResNo() const { return Val.getResNo(); }
 | |
|   /// getValueType - Convenience function for get().getValueType().
 | |
|   EVT getValueType() const { return Val.getValueType(); }
 | |
| 
 | |
|   /// operator== - Convenience function for get().operator==
 | |
|   bool operator==(const SDValue &V) const {
 | |
|     return Val == V;
 | |
|   }
 | |
| 
 | |
|   /// operator!= - Convenience function for get().operator!=
 | |
|   bool operator!=(const SDValue &V) const {
 | |
|     return Val != V;
 | |
|   }
 | |
| 
 | |
|   /// operator< - Convenience function for get().operator<
 | |
|   bool operator<(const SDValue &V) const {
 | |
|     return Val < V;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   friend class SelectionDAG;
 | |
|   friend class SDNode;
 | |
| 
 | |
|   void setUser(SDNode *p) { User = p; }
 | |
| 
 | |
|   /// set - Remove this use from its existing use list, assign it the
 | |
|   /// given value, and add it to the new value's node's use list.
 | |
|   inline void set(const SDValue &V);
 | |
|   /// setInitial - like set, but only supports initializing a newly-allocated
 | |
|   /// SDUse with a non-null value.
 | |
|   inline void setInitial(const SDValue &V);
 | |
|   /// setNode - like set, but only sets the Node portion of the value,
 | |
|   /// leaving the ResNo portion unmodified.
 | |
|   inline void setNode(SDNode *N);
 | |
| 
 | |
|   void addToList(SDUse **List) {
 | |
|     Next = *List;
 | |
|     if (Next) Next->Prev = &Next;
 | |
|     Prev = List;
 | |
|     *List = this;
 | |
|   }
 | |
| 
 | |
|   void removeFromList() {
 | |
|     *Prev = Next;
 | |
|     if (Next) Next->Prev = Prev;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// simplify_type specializations - Allow casting operators to work directly on
 | |
| /// SDValues as if they were SDNode*'s.
 | |
| template<> struct simplify_type<SDUse> {
 | |
|   typedef SDNode* SimpleType;
 | |
|   static SimpleType getSimplifiedValue(const SDUse &Val) {
 | |
|     return static_cast<SimpleType>(Val.getNode());
 | |
|   }
 | |
| };
 | |
| template<> struct simplify_type<const SDUse> {
 | |
|   typedef SDNode* SimpleType;
 | |
|   static SimpleType getSimplifiedValue(const SDUse &Val) {
 | |
|     return static_cast<SimpleType>(Val.getNode());
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// SDNode - Represents one node in the SelectionDAG.
 | |
| ///
 | |
| class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
 | |
| private:
 | |
|   /// NodeType - The operation that this node performs.
 | |
|   ///
 | |
|   int16_t NodeType;
 | |
| 
 | |
|   /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
 | |
|   /// then they will be delete[]'d when the node is destroyed.
 | |
|   uint16_t OperandsNeedDelete : 1;
 | |
| 
 | |
| protected:
 | |
|   /// SubclassData - This member is defined by this class, but is not used for
 | |
|   /// anything.  Subclasses can use it to hold whatever state they find useful.
 | |
|   /// This field is initialized to zero by the ctor.
 | |
|   uint16_t SubclassData : 15;
 | |
| 
 | |
| private:
 | |
|   /// NodeId - Unique id per SDNode in the DAG.
 | |
|   int NodeId;
 | |
| 
 | |
|   /// OperandList - The values that are used by this operation.
 | |
|   ///
 | |
|   SDUse *OperandList;
 | |
| 
 | |
|   /// ValueList - The types of the values this node defines.  SDNode's may
 | |
|   /// define multiple values simultaneously.
 | |
|   const EVT *ValueList;
 | |
| 
 | |
|   /// UseList - List of uses for this SDNode.
 | |
|   SDUse *UseList;
 | |
| 
 | |
|   /// NumOperands/NumValues - The number of entries in the Operand/Value list.
 | |
|   unsigned short NumOperands, NumValues;
 | |
| 
 | |
|   /// debugLoc - source line information.
 | |
|   DebugLoc debugLoc;
 | |
| 
 | |
|   /// getValueTypeList - Return a pointer to the specified value type.
 | |
|   static const EVT *getValueTypeList(EVT VT);
 | |
| 
 | |
|   friend class SelectionDAG;
 | |
|   friend struct ilist_traits<SDNode>;
 | |
| 
 | |
| public:
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //  Accessors
 | |
|   //
 | |
| 
 | |
|   /// getOpcode - Return the SelectionDAG opcode value for this node. For
 | |
|   /// pre-isel nodes (those for which isMachineOpcode returns false), these
 | |
|   /// are the opcode values in the ISD and <target>ISD namespaces. For
 | |
|   /// post-isel opcodes, see getMachineOpcode.
 | |
|   unsigned getOpcode()  const { return (unsigned short)NodeType; }
 | |
| 
 | |
|   /// isTargetOpcode - Test if this node has a target-specific opcode (in the
 | |
|   /// \<target\>ISD namespace).
 | |
|   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
 | |
| 
 | |
|   /// isTargetMemoryOpcode - Test if this node has a target-specific 
 | |
|   /// memory-referencing opcode (in the \<target\>ISD namespace and
 | |
|   /// greater than FIRST_TARGET_MEMORY_OPCODE).
 | |
|   bool isTargetMemoryOpcode() const {
 | |
|     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
 | |
|   }
 | |
| 
 | |
|   /// isMachineOpcode - Test if this node has a post-isel opcode, directly
 | |
|   /// corresponding to a MachineInstr opcode.
 | |
|   bool isMachineOpcode() const { return NodeType < 0; }
 | |
| 
 | |
|   /// getMachineOpcode - This may only be called if isMachineOpcode returns
 | |
|   /// true. It returns the MachineInstr opcode value that the node's opcode
 | |
|   /// corresponds to.
 | |
|   unsigned getMachineOpcode() const {
 | |
|     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
 | |
|     return ~NodeType;
 | |
|   }
 | |
| 
 | |
|   /// use_empty - Return true if there are no uses of this node.
 | |
|   ///
 | |
|   bool use_empty() const { return UseList == NULL; }
 | |
| 
 | |
|   /// hasOneUse - Return true if there is exactly one use of this node.
 | |
|   ///
 | |
|   bool hasOneUse() const {
 | |
|     return !use_empty() && llvm::next(use_begin()) == use_end();
 | |
|   }
 | |
| 
 | |
|   /// use_size - Return the number of uses of this node. This method takes
 | |
|   /// time proportional to the number of uses.
 | |
|   ///
 | |
|   size_t use_size() const { return std::distance(use_begin(), use_end()); }
 | |
| 
 | |
|   /// getNodeId - Return the unique node id.
 | |
|   ///
 | |
|   int getNodeId() const { return NodeId; }
 | |
| 
 | |
|   /// setNodeId - Set unique node id.
 | |
|   void setNodeId(int Id) { NodeId = Id; }
 | |
| 
 | |
|   /// getDebugLoc - Return the source location info.
 | |
|   const DebugLoc getDebugLoc() const { return debugLoc; }
 | |
| 
 | |
|   /// setDebugLoc - Set source location info.  Try to avoid this, putting
 | |
|   /// it in the constructor is preferable.
 | |
|   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
 | |
| 
 | |
|   /// use_iterator - This class provides iterator support for SDUse
 | |
|   /// operands that use a specific SDNode.
 | |
|   class use_iterator
 | |
|     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
 | |
|     SDUse *Op;
 | |
|     explicit use_iterator(SDUse *op) : Op(op) {
 | |
|     }
 | |
|     friend class SDNode;
 | |
|   public:
 | |
|     typedef std::iterator<std::forward_iterator_tag,
 | |
|                           SDUse, ptrdiff_t>::reference reference;
 | |
|     typedef std::iterator<std::forward_iterator_tag,
 | |
|                           SDUse, ptrdiff_t>::pointer pointer;
 | |
| 
 | |
|     use_iterator(const use_iterator &I) : Op(I.Op) {}
 | |
|     use_iterator() : Op(0) {}
 | |
| 
 | |
|     bool operator==(const use_iterator &x) const {
 | |
|       return Op == x.Op;
 | |
|     }
 | |
|     bool operator!=(const use_iterator &x) const {
 | |
|       return !operator==(x);
 | |
|     }
 | |
| 
 | |
|     /// atEnd - return true if this iterator is at the end of uses list.
 | |
|     bool atEnd() const { return Op == 0; }
 | |
| 
 | |
|     // Iterator traversal: forward iteration only.
 | |
|     use_iterator &operator++() {          // Preincrement
 | |
|       assert(Op && "Cannot increment end iterator!");
 | |
|       Op = Op->getNext();
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     use_iterator operator++(int) {        // Postincrement
 | |
|       use_iterator tmp = *this; ++*this; return tmp;
 | |
|     }
 | |
| 
 | |
|     /// Retrieve a pointer to the current user node.
 | |
|     SDNode *operator*() const {
 | |
|       assert(Op && "Cannot dereference end iterator!");
 | |
|       return Op->getUser();
 | |
|     }
 | |
| 
 | |
|     SDNode *operator->() const { return operator*(); }
 | |
| 
 | |
|     SDUse &getUse() const { return *Op; }
 | |
| 
 | |
|     /// getOperandNo - Retrieve the operand # of this use in its user.
 | |
|     ///
 | |
|     unsigned getOperandNo() const {
 | |
|       assert(Op && "Cannot dereference end iterator!");
 | |
|       return (unsigned)(Op - Op->getUser()->OperandList);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// use_begin/use_end - Provide iteration support to walk over all uses
 | |
|   /// of an SDNode.
 | |
| 
 | |
|   use_iterator use_begin() const {
 | |
|     return use_iterator(UseList);
 | |
|   }
 | |
| 
 | |
|   static use_iterator use_end() { return use_iterator(0); }
 | |
| 
 | |
| 
 | |
|   /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | |
|   /// indicated value.  This method ignores uses of other values defined by this
 | |
|   /// operation.
 | |
|   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
 | |
| 
 | |
|   /// hasAnyUseOfValue - Return true if there are any use of the indicated
 | |
|   /// value. This method ignores uses of other values defined by this operation.
 | |
|   bool hasAnyUseOfValue(unsigned Value) const;
 | |
| 
 | |
|   /// isOnlyUserOf - Return true if this node is the only use of N.
 | |
|   ///
 | |
|   bool isOnlyUserOf(SDNode *N) const;
 | |
| 
 | |
|   /// isOperandOf - Return true if this node is an operand of N.
 | |
|   ///
 | |
|   bool isOperandOf(SDNode *N) const;
 | |
| 
 | |
|   /// isPredecessorOf - Return true if this node is a predecessor of N. This
 | |
|   /// node is either an operand of N or it can be reached by recursively
 | |
|   /// traversing up the operands.
 | |
|   /// NOTE: this is an expensive method. Use it carefully.
 | |
|   bool isPredecessorOf(SDNode *N) const;
 | |
| 
 | |
|   /// getNumOperands - Return the number of values used by this operation.
 | |
|   ///
 | |
|   unsigned getNumOperands() const { return NumOperands; }
 | |
| 
 | |
|   /// getConstantOperandVal - Helper method returns the integer value of a
 | |
|   /// ConstantSDNode operand.
 | |
|   uint64_t getConstantOperandVal(unsigned Num) const;
 | |
| 
 | |
|   const SDValue &getOperand(unsigned Num) const {
 | |
|     assert(Num < NumOperands && "Invalid child # of SDNode!");
 | |
|     return OperandList[Num];
 | |
|   }
 | |
| 
 | |
|   typedef SDUse* op_iterator;
 | |
|   op_iterator op_begin() const { return OperandList; }
 | |
|   op_iterator op_end() const { return OperandList+NumOperands; }
 | |
| 
 | |
|   SDVTList getVTList() const {
 | |
|     SDVTList X = { ValueList, NumValues };
 | |
|     return X;
 | |
|   };
 | |
| 
 | |
|   /// getFlaggedNode - If this node has a flag operand, return the node
 | |
|   /// to which the flag operand points. Otherwise return NULL.
 | |
|   SDNode *getFlaggedNode() const {
 | |
|     if (getNumOperands() != 0 &&
 | |
|       getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
 | |
|       return getOperand(getNumOperands()-1).getNode();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If this is a pseudo op, like copyfromreg, look to see if there is a
 | |
|   // real target node flagged to it.  If so, return the target node.
 | |
|   const SDNode *getFlaggedMachineNode() const {
 | |
|     const SDNode *FoundNode = this;
 | |
| 
 | |
|     // Climb up flag edges until a machine-opcode node is found, or the
 | |
|     // end of the chain is reached.
 | |
|     while (!FoundNode->isMachineOpcode()) {
 | |
|       const SDNode *N = FoundNode->getFlaggedNode();
 | |
|       if (!N) break;
 | |
|       FoundNode = N;
 | |
|     }
 | |
| 
 | |
|     return FoundNode;
 | |
|   }
 | |
| 
 | |
|   /// getNumValues - Return the number of values defined/returned by this
 | |
|   /// operator.
 | |
|   ///
 | |
|   unsigned getNumValues() const { return NumValues; }
 | |
| 
 | |
|   /// getValueType - Return the type of a specified result.
 | |
|   ///
 | |
|   EVT getValueType(unsigned ResNo) const {
 | |
|     assert(ResNo < NumValues && "Illegal result number!");
 | |
|     return ValueList[ResNo];
 | |
|   }
 | |
| 
 | |
|   /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
 | |
|   ///
 | |
|   unsigned getValueSizeInBits(unsigned ResNo) const {
 | |
|     return getValueType(ResNo).getSizeInBits();
 | |
|   }
 | |
| 
 | |
|   typedef const EVT* value_iterator;
 | |
|   value_iterator value_begin() const { return ValueList; }
 | |
|   value_iterator value_end() const { return ValueList+NumValues; }
 | |
| 
 | |
|   /// getOperationName - Return the opcode of this operation for printing.
 | |
|   ///
 | |
|   std::string getOperationName(const SelectionDAG *G = 0) const;
 | |
|   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
 | |
|   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
 | |
|   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
 | |
|   void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
 | |
|   void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
 | |
|   void dump() const;
 | |
|   void dumpr() const;
 | |
|   void dump(const SelectionDAG *G) const;
 | |
|   void dumpr(const SelectionDAG *G) const;
 | |
| 
 | |
|   static bool classof(const SDNode *) { return true; }
 | |
| 
 | |
|   /// Profile - Gather unique data for the node.
 | |
|   ///
 | |
|   void Profile(FoldingSetNodeID &ID) const;
 | |
| 
 | |
|   /// addUse - This method should only be used by the SDUse class.
 | |
|   ///
 | |
|   void addUse(SDUse &U) { U.addToList(&UseList); }
 | |
| 
 | |
| protected:
 | |
|   static SDVTList getSDVTList(EVT VT) {
 | |
|     SDVTList Ret = { getValueTypeList(VT), 1 };
 | |
|     return Ret;
 | |
|   }
 | |
| 
 | |
|   SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
 | |
|          unsigned NumOps)
 | |
|     : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
 | |
|       NodeId(-1),
 | |
|       OperandList(NumOps ? new SDUse[NumOps] : 0),
 | |
|       ValueList(VTs.VTs), UseList(NULL),
 | |
|       NumOperands(NumOps), NumValues(VTs.NumVTs),
 | |
|       debugLoc(dl) {
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       OperandList[i].setUser(this);
 | |
|       OperandList[i].setInitial(Ops[i]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// This constructor adds no operands itself; operands can be
 | |
|   /// set later with InitOperands.
 | |
|   SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
 | |
|     : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
 | |
|       NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
 | |
|       NumOperands(0), NumValues(VTs.NumVTs),
 | |
|       debugLoc(dl) {}
 | |
| 
 | |
|   /// InitOperands - Initialize the operands list of this with 1 operand.
 | |
|   void InitOperands(SDUse *Ops, const SDValue &Op0) {
 | |
|     Ops[0].setUser(this);
 | |
|     Ops[0].setInitial(Op0);
 | |
|     NumOperands = 1;
 | |
|     OperandList = Ops;
 | |
|   }
 | |
| 
 | |
|   /// InitOperands - Initialize the operands list of this with 2 operands.
 | |
|   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
 | |
|     Ops[0].setUser(this);
 | |
|     Ops[0].setInitial(Op0);
 | |
|     Ops[1].setUser(this);
 | |
|     Ops[1].setInitial(Op1);
 | |
|     NumOperands = 2;
 | |
|     OperandList = Ops;
 | |
|   }
 | |
| 
 | |
|   /// InitOperands - Initialize the operands list of this with 3 operands.
 | |
|   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
 | |
|                     const SDValue &Op2) {
 | |
|     Ops[0].setUser(this);
 | |
|     Ops[0].setInitial(Op0);
 | |
|     Ops[1].setUser(this);
 | |
|     Ops[1].setInitial(Op1);
 | |
|     Ops[2].setUser(this);
 | |
|     Ops[2].setInitial(Op2);
 | |
|     NumOperands = 3;
 | |
|     OperandList = Ops;
 | |
|   }
 | |
| 
 | |
|   /// InitOperands - Initialize the operands list of this with 4 operands.
 | |
|   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
 | |
|                     const SDValue &Op2, const SDValue &Op3) {
 | |
|     Ops[0].setUser(this);
 | |
|     Ops[0].setInitial(Op0);
 | |
|     Ops[1].setUser(this);
 | |
|     Ops[1].setInitial(Op1);
 | |
|     Ops[2].setUser(this);
 | |
|     Ops[2].setInitial(Op2);
 | |
|     Ops[3].setUser(this);
 | |
|     Ops[3].setInitial(Op3);
 | |
|     NumOperands = 4;
 | |
|     OperandList = Ops;
 | |
|   }
 | |
| 
 | |
|   /// InitOperands - Initialize the operands list of this with N operands.
 | |
|   void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
 | |
|     for (unsigned i = 0; i != N; ++i) {
 | |
|       Ops[i].setUser(this);
 | |
|       Ops[i].setInitial(Vals[i]);
 | |
|     }
 | |
|     NumOperands = N;
 | |
|     OperandList = Ops;
 | |
|   }
 | |
| 
 | |
|   /// DropOperands - Release the operands and set this node to have
 | |
|   /// zero operands.
 | |
|   void DropOperands();
 | |
| };
 | |
| 
 | |
| 
 | |
| // Define inline functions from the SDValue class.
 | |
| 
 | |
| inline unsigned SDValue::getOpcode() const {
 | |
|   return Node->getOpcode();
 | |
| }
 | |
| inline EVT SDValue::getValueType() const {
 | |
|   return Node->getValueType(ResNo);
 | |
| }
 | |
| inline unsigned SDValue::getNumOperands() const {
 | |
|   return Node->getNumOperands();
 | |
| }
 | |
| inline const SDValue &SDValue::getOperand(unsigned i) const {
 | |
|   return Node->getOperand(i);
 | |
| }
 | |
| inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
 | |
|   return Node->getConstantOperandVal(i);
 | |
| }
 | |
| inline bool SDValue::isTargetOpcode() const {
 | |
|   return Node->isTargetOpcode();
 | |
| }
 | |
| inline bool SDValue::isTargetMemoryOpcode() const {
 | |
|   return Node->isTargetMemoryOpcode();
 | |
| }
 | |
| inline bool SDValue::isMachineOpcode() const {
 | |
|   return Node->isMachineOpcode();
 | |
| }
 | |
| inline unsigned SDValue::getMachineOpcode() const {
 | |
|   return Node->getMachineOpcode();
 | |
| }
 | |
| inline bool SDValue::use_empty() const {
 | |
|   return !Node->hasAnyUseOfValue(ResNo);
 | |
| }
 | |
| inline bool SDValue::hasOneUse() const {
 | |
|   return Node->hasNUsesOfValue(1, ResNo);
 | |
| }
 | |
| inline const DebugLoc SDValue::getDebugLoc() const {
 | |
|   return Node->getDebugLoc();
 | |
| }
 | |
| 
 | |
| // Define inline functions from the SDUse class.
 | |
| 
 | |
| inline void SDUse::set(const SDValue &V) {
 | |
|   if (Val.getNode()) removeFromList();
 | |
|   Val = V;
 | |
|   if (V.getNode()) V.getNode()->addUse(*this);
 | |
| }
 | |
| 
 | |
| inline void SDUse::setInitial(const SDValue &V) {
 | |
|   Val = V;
 | |
|   V.getNode()->addUse(*this);
 | |
| }
 | |
| 
 | |
| inline void SDUse::setNode(SDNode *N) {
 | |
|   if (Val.getNode()) removeFromList();
 | |
|   Val.setNode(N);
 | |
|   if (N) N->addUse(*this);
 | |
| }
 | |
| 
 | |
| /// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
 | |
| /// to allow co-allocation of node operands with the node itself.
 | |
| class UnarySDNode : public SDNode {
 | |
|   SDUse Op;
 | |
| public:
 | |
|   UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
 | |
|     : SDNode(Opc, dl, VTs) {
 | |
|     InitOperands(&Op, X);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
 | |
| /// to allow co-allocation of node operands with the node itself.
 | |
| class BinarySDNode : public SDNode {
 | |
|   SDUse Ops[2];
 | |
| public:
 | |
|   BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
 | |
|     : SDNode(Opc, dl, VTs) {
 | |
|     InitOperands(Ops, X, Y);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// TernarySDNode - This class is used for three-operand SDNodes. This is solely
 | |
| /// to allow co-allocation of node operands with the node itself.
 | |
| class TernarySDNode : public SDNode {
 | |
|   SDUse Ops[3];
 | |
| public:
 | |
|   TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
 | |
|                 SDValue Z)
 | |
|     : SDNode(Opc, dl, VTs) {
 | |
|     InitOperands(Ops, X, Y, Z);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// HandleSDNode - This class is used to form a handle around another node that
 | |
| /// is persistant and is updated across invocations of replaceAllUsesWith on its
 | |
| /// operand.  This node should be directly created by end-users and not added to
 | |
| /// the AllNodes list.
 | |
| class HandleSDNode : public SDNode {
 | |
|   SDUse Op;
 | |
| public:
 | |
|   // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
 | |
|   // fixed.
 | |
| #ifdef __GNUC__
 | |
|   explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
 | |
| #else
 | |
|   explicit HandleSDNode(SDValue X)
 | |
| #endif
 | |
|     : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(MVT::Other)) {
 | |
|     InitOperands(&Op, X);
 | |
|   }
 | |
|   ~HandleSDNode();
 | |
|   const SDValue &getValue() const { return Op; }
 | |
| };
 | |
| 
 | |
| /// Abstact virtual class for operations for memory operations
 | |
| class MemSDNode : public SDNode {
 | |
| private:
 | |
|   // MemoryVT - VT of in-memory value.
 | |
|   EVT MemoryVT;
 | |
| 
 | |
| protected:
 | |
|   /// MMO - Memory reference information.
 | |
|   MachineMemOperand *MMO;
 | |
| 
 | |
| public:
 | |
|   MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
 | |
|             MachineMemOperand *MMO);
 | |
| 
 | |
|   MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
 | |
|             unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
 | |
| 
 | |
|   bool readMem() const { return MMO->isLoad(); }
 | |
|   bool writeMem() const { return MMO->isStore(); }
 | |
| 
 | |
|   /// Returns alignment and volatility of the memory access
 | |
|   unsigned getOriginalAlignment() const { 
 | |
|     return MMO->getBaseAlignment();
 | |
|   }
 | |
|   unsigned getAlignment() const {
 | |
|     return MMO->getAlignment();
 | |
|   }
 | |
| 
 | |
|   /// getRawSubclassData - Return the SubclassData value, which contains an
 | |
|   /// encoding of the volatile flag, as well as bits used by subclasses. This
 | |
|   /// function should only be used to compute a FoldingSetNodeID value.
 | |
|   unsigned getRawSubclassData() const {
 | |
|     return SubclassData;
 | |
|   }
 | |
| 
 | |
|   bool isVolatile() const { return (SubclassData >> 5) & 1; }
 | |
| 
 | |
|   /// Returns the SrcValue and offset that describes the location of the access
 | |
|   const Value *getSrcValue() const { return MMO->getValue(); }
 | |
|   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
 | |
| 
 | |
|   /// getMemoryVT - Return the type of the in-memory value.
 | |
|   EVT getMemoryVT() const { return MemoryVT; }
 | |
| 
 | |
|   /// getMemOperand - Return a MachineMemOperand object describing the memory
 | |
|   /// reference performed by operation.
 | |
|   MachineMemOperand *getMemOperand() const { return MMO; }
 | |
| 
 | |
|   /// refineAlignment - Update this MemSDNode's MachineMemOperand information
 | |
|   /// to reflect the alignment of NewMMO, if it has a greater alignment.
 | |
|   /// This must only be used when the new alignment applies to all users of
 | |
|   /// this MachineMemOperand.
 | |
|   void refineAlignment(const MachineMemOperand *NewMMO) {
 | |
|     MMO->refineAlignment(NewMMO);
 | |
|   }
 | |
| 
 | |
|   const SDValue &getChain() const { return getOperand(0); }
 | |
|   const SDValue &getBasePtr() const {
 | |
|     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
 | |
|   }
 | |
| 
 | |
|   // Methods to support isa and dyn_cast
 | |
|   static bool classof(const MemSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
 | |
|     // with either an intrinsic or a target opcode.
 | |
|     return N->getOpcode() == ISD::LOAD                ||
 | |
|            N->getOpcode() == ISD::STORE               ||
 | |
|            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_SWAP         ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
 | |
|            N->isTargetMemoryOpcode();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// AtomicSDNode - A SDNode reprenting atomic operations.
 | |
| ///
 | |
| class AtomicSDNode : public MemSDNode {
 | |
|   SDUse Ops[4];
 | |
| 
 | |
| public:
 | |
|   // Opc:   opcode for atomic
 | |
|   // VTL:    value type list
 | |
|   // Chain:  memory chain for operaand
 | |
|   // Ptr:    address to update as a SDValue
 | |
|   // Cmp:    compare value
 | |
|   // Swp:    swap value
 | |
|   // SrcVal: address to update as a Value (used for MemOperand)
 | |
|   // Align:  alignment of memory
 | |
|   AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
 | |
|                SDValue Chain, SDValue Ptr,
 | |
|                SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
 | |
|     : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
 | |
|     assert(readMem() && "Atomic MachineMemOperand is not a load!");
 | |
|     assert(writeMem() && "Atomic MachineMemOperand is not a store!");
 | |
|     InitOperands(Ops, Chain, Ptr, Cmp, Swp);
 | |
|   }
 | |
|   AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
 | |
|                SDValue Chain, SDValue Ptr,
 | |
|                SDValue Val, MachineMemOperand *MMO)
 | |
|     : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
 | |
|     assert(readMem() && "Atomic MachineMemOperand is not a load!");
 | |
|     assert(writeMem() && "Atomic MachineMemOperand is not a store!");
 | |
|     InitOperands(Ops, Chain, Ptr, Val);
 | |
|   }
 | |
| 
 | |
|   const SDValue &getBasePtr() const { return getOperand(1); }
 | |
|   const SDValue &getVal() const { return getOperand(2); }
 | |
| 
 | |
|   bool isCompareAndSwap() const {
 | |
|     unsigned Op = getOpcode();
 | |
|     return Op == ISD::ATOMIC_CMP_SWAP;
 | |
|   }
 | |
| 
 | |
|   // Methods to support isa and dyn_cast
 | |
|   static bool classof(const AtomicSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_SWAP         ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
 | |
|            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
 | |
| /// memory and need an associated MachineMemOperand. Its opcode may be
 | |
| /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
 | |
| /// value not less than FIRST_TARGET_MEMORY_OPCODE.
 | |
| class MemIntrinsicSDNode : public MemSDNode {
 | |
| public:
 | |
|   MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
 | |
|                      const SDValue *Ops, unsigned NumOps,
 | |
|                      EVT MemoryVT, MachineMemOperand *MMO)
 | |
|     : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
 | |
|   }
 | |
| 
 | |
|   // Methods to support isa and dyn_cast
 | |
|   static bool classof(const MemIntrinsicSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     // We lower some target intrinsics to their target opcode
 | |
|     // early a node with a target opcode can be of this class
 | |
|     return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|            N->getOpcode() == ISD::INTRINSIC_VOID ||
 | |
|            N->isTargetMemoryOpcode();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ShuffleVectorSDNode - This SDNode is used to implement the code generator
 | |
| /// support for the llvm IR shufflevector instruction.  It combines elements
 | |
| /// from two input vectors into a new input vector, with the selection and
 | |
| /// ordering of elements determined by an array of integers, referred to as
 | |
| /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
 | |
| /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
 | |
| /// An index of -1 is treated as undef, such that the code generator may put
 | |
| /// any value in the corresponding element of the result.
 | |
| class ShuffleVectorSDNode : public SDNode {
 | |
|   SDUse Ops[2];
 | |
| 
 | |
|   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
 | |
|   // is freed when the SelectionDAG object is destroyed.
 | |
|   const int *Mask;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2, 
 | |
|                       const int *M)
 | |
|     : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
 | |
|     InitOperands(Ops, N1, N2);
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   void getMask(SmallVectorImpl<int> &M) const {
 | |
|     EVT VT = getValueType(0);
 | |
|     M.clear();
 | |
|     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
 | |
|       M.push_back(Mask[i]);
 | |
|   }
 | |
|   int getMaskElt(unsigned Idx) const {
 | |
|     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
 | |
|     return Mask[Idx];
 | |
|   }
 | |
|   
 | |
|   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
 | |
|   int  getSplatIndex() const { 
 | |
|     assert(isSplat() && "Cannot get splat index for non-splat!");
 | |
|     return Mask[0];
 | |
|   }
 | |
|   static bool isSplatMask(const int *Mask, EVT VT);
 | |
| 
 | |
|   static bool classof(const ShuffleVectorSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
 | |
|   }
 | |
| };
 | |
|   
 | |
| class ConstantSDNode : public SDNode {
 | |
|   const ConstantInt *Value;
 | |
|   friend class SelectionDAG;
 | |
|   ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
 | |
|     : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
 | |
|              DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   const ConstantInt *getConstantIntValue() const { return Value; }
 | |
|   const APInt &getAPIntValue() const { return Value->getValue(); }
 | |
|   uint64_t getZExtValue() const { return Value->getZExtValue(); }
 | |
|   int64_t getSExtValue() const { return Value->getSExtValue(); }
 | |
| 
 | |
|   bool isNullValue() const { return Value->isNullValue(); }
 | |
|   bool isAllOnesValue() const { return Value->isAllOnesValue(); }
 | |
| 
 | |
|   static bool classof(const ConstantSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::Constant ||
 | |
|            N->getOpcode() == ISD::TargetConstant;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConstantFPSDNode : public SDNode {
 | |
|   const ConstantFP *Value;
 | |
|   friend class SelectionDAG;
 | |
|   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
 | |
|              DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
 | |
|   const ConstantFP *getConstantFPValue() const { return Value; }
 | |
| 
 | |
|   /// isExactlyValue - We don't rely on operator== working on double values, as
 | |
|   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | |
|   /// As such, this method can be used to do an exact bit-for-bit comparison of
 | |
|   /// two floating point values.
 | |
| 
 | |
|   /// We leave the version with the double argument here because it's just so
 | |
|   /// convenient to write "2.0" and the like.  Without this function we'd
 | |
|   /// have to duplicate its logic everywhere it's called.
 | |
|   bool isExactlyValue(double V) const {
 | |
|     bool ignored;
 | |
|     // convert is not supported on this type
 | |
|     if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|       return false;
 | |
|     APFloat Tmp(V);
 | |
|     Tmp.convert(Value->getValueAPF().getSemantics(),
 | |
|                 APFloat::rmNearestTiesToEven, &ignored);
 | |
|     return isExactlyValue(Tmp);
 | |
|   }
 | |
|   bool isExactlyValue(const APFloat& V) const;
 | |
| 
 | |
|   bool isValueValidForType(EVT VT, const APFloat& Val);
 | |
| 
 | |
|   static bool classof(const ConstantFPSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::ConstantFP ||
 | |
|            N->getOpcode() == ISD::TargetConstantFP;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class GlobalAddressSDNode : public SDNode {
 | |
|   GlobalValue *TheGlobal;
 | |
|   int64_t Offset;
 | |
|   unsigned char TargetFlags;
 | |
|   friend class SelectionDAG;
 | |
|   GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
 | |
|                       int64_t o, unsigned char TargetFlags);
 | |
| public:
 | |
| 
 | |
|   GlobalValue *getGlobal() const { return TheGlobal; }
 | |
|   int64_t getOffset() const { return Offset; }
 | |
|   unsigned char getTargetFlags() const { return TargetFlags; }
 | |
|   // Return the address space this GlobalAddress belongs to.
 | |
|   unsigned getAddressSpace() const;
 | |
| 
 | |
|   static bool classof(const GlobalAddressSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::GlobalAddress ||
 | |
|            N->getOpcode() == ISD::TargetGlobalAddress ||
 | |
|            N->getOpcode() == ISD::GlobalTLSAddress ||
 | |
|            N->getOpcode() == ISD::TargetGlobalTLSAddress;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class FrameIndexSDNode : public SDNode {
 | |
|   int FI;
 | |
|   friend class SelectionDAG;
 | |
|   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
 | |
|     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
 | |
|       DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   int getIndex() const { return FI; }
 | |
| 
 | |
|   static bool classof(const FrameIndexSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::FrameIndex ||
 | |
|            N->getOpcode() == ISD::TargetFrameIndex;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class JumpTableSDNode : public SDNode {
 | |
|   int JTI;
 | |
|   unsigned char TargetFlags;
 | |
|   friend class SelectionDAG;
 | |
|   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
 | |
|     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
 | |
|       DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   int getIndex() const { return JTI; }
 | |
|   unsigned char getTargetFlags() const { return TargetFlags; }
 | |
| 
 | |
|   static bool classof(const JumpTableSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::JumpTable ||
 | |
|            N->getOpcode() == ISD::TargetJumpTable;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConstantPoolSDNode : public SDNode {
 | |
|   union {
 | |
|     Constant *ConstVal;
 | |
|     MachineConstantPoolValue *MachineCPVal;
 | |
|   } Val;
 | |
|   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
 | |
|   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
 | |
|   unsigned char TargetFlags;
 | |
|   friend class SelectionDAG;
 | |
|   ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
 | |
|                      unsigned char TF)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
 | |
|              DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
 | |
|     assert((int)Offset >= 0 && "Offset is too large");
 | |
|     Val.ConstVal = c;
 | |
|   }
 | |
|   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
 | |
|                      EVT VT, int o, unsigned Align, unsigned char TF)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
 | |
|              DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
 | |
|     assert((int)Offset >= 0 && "Offset is too large");
 | |
|     Val.MachineCPVal = v;
 | |
|     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
 | |
|   }
 | |
| public:
 | |
|   
 | |
| 
 | |
|   bool isMachineConstantPoolEntry() const {
 | |
|     return (int)Offset < 0;
 | |
|   }
 | |
| 
 | |
|   Constant *getConstVal() const {
 | |
|     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
 | |
|     return Val.ConstVal;
 | |
|   }
 | |
| 
 | |
|   MachineConstantPoolValue *getMachineCPVal() const {
 | |
|     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
 | |
|     return Val.MachineCPVal;
 | |
|   }
 | |
| 
 | |
|   int getOffset() const {
 | |
|     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
 | |
|   }
 | |
| 
 | |
|   // Return the alignment of this constant pool object, which is either 0 (for
 | |
|   // default alignment) or the desired value.
 | |
|   unsigned getAlignment() const { return Alignment; }
 | |
|   unsigned char getTargetFlags() const { return TargetFlags; }
 | |
| 
 | |
|   const Type *getType() const;
 | |
| 
 | |
|   static bool classof(const ConstantPoolSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::ConstantPool ||
 | |
|            N->getOpcode() == ISD::TargetConstantPool;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class BasicBlockSDNode : public SDNode {
 | |
|   MachineBasicBlock *MBB;
 | |
|   friend class SelectionDAG;
 | |
|   /// Debug info is meaningful and potentially useful here, but we create
 | |
|   /// blocks out of order when they're jumped to, which makes it a bit
 | |
|   /// harder.  Let's see if we need it first.
 | |
|   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
 | |
|     : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(MVT::Other)), MBB(mbb) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   MachineBasicBlock *getBasicBlock() const { return MBB; }
 | |
| 
 | |
|   static bool classof(const BasicBlockSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::BasicBlock;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// BuildVectorSDNode - A "pseudo-class" with methods for operating on
 | |
| /// BUILD_VECTORs.
 | |
| class BuildVectorSDNode : public SDNode {
 | |
|   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
 | |
|   explicit BuildVectorSDNode();        // Do not implement
 | |
| public:
 | |
|   /// isConstantSplat - Check if this is a constant splat, and if so, find the
 | |
|   /// smallest element size that splats the vector.  If MinSplatBits is
 | |
|   /// nonzero, the element size must be at least that large.  Note that the
 | |
|   /// splat element may be the entire vector (i.e., a one element vector).
 | |
|   /// Returns the splat element value in SplatValue.  Any undefined bits in
 | |
|   /// that value are zero, and the corresponding bits in the SplatUndef mask
 | |
|   /// are set.  The SplatBitSize value is set to the splat element size in
 | |
|   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
 | |
|   /// undefined.  isBigEndian describes the endianness of the target.
 | |
|   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
 | |
|                        unsigned &SplatBitSize, bool &HasAnyUndefs,
 | |
|                        unsigned MinSplatBits = 0, bool isBigEndian = false);
 | |
| 
 | |
|   static inline bool classof(const BuildVectorSDNode *) { return true; }
 | |
|   static inline bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::BUILD_VECTOR;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
 | |
| /// used when the SelectionDAG needs to make a simple reference to something
 | |
| /// in the LLVM IR representation.
 | |
| ///
 | |
| class SrcValueSDNode : public SDNode {
 | |
|   const Value *V;
 | |
|   friend class SelectionDAG;
 | |
|   /// Create a SrcValue for a general value.
 | |
|   explicit SrcValueSDNode(const Value *v)
 | |
|     : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(MVT::Other)), V(v) {}
 | |
| 
 | |
| public:
 | |
|   /// getValue - return the contained Value.
 | |
|   const Value *getValue() const { return V; }
 | |
| 
 | |
|   static bool classof(const SrcValueSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::SRCVALUE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| class RegisterSDNode : public SDNode {
 | |
|   unsigned Reg;
 | |
|   friend class SelectionDAG;
 | |
|   RegisterSDNode(unsigned reg, EVT VT)
 | |
|     : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(VT)), Reg(reg) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   unsigned getReg() const { return Reg; }
 | |
| 
 | |
|   static bool classof(const RegisterSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::Register;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class BlockAddressSDNode : public SDNode {
 | |
|   BlockAddress *BA;
 | |
|   unsigned char TargetFlags;
 | |
|   friend class SelectionDAG;
 | |
|   BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba,
 | |
|                      unsigned char Flags)
 | |
|     : SDNode(NodeTy, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
 | |
|              BA(ba), TargetFlags(Flags) {
 | |
|   }
 | |
| public:
 | |
|   BlockAddress *getBlockAddress() const { return BA; }
 | |
|   unsigned char getTargetFlags() const { return TargetFlags; }
 | |
| 
 | |
|   static bool classof(const BlockAddressSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::BlockAddress ||
 | |
|            N->getOpcode() == ISD::TargetBlockAddress;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class LabelSDNode : public SDNode {
 | |
|   SDUse Chain;
 | |
|   unsigned LabelID;
 | |
|   friend class SelectionDAG;
 | |
|   LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
 | |
|     : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
 | |
|     InitOperands(&Chain, ch);
 | |
|   }
 | |
| public:
 | |
|   unsigned getLabelID() const { return LabelID; }
 | |
| 
 | |
|   static bool classof(const LabelSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::EH_LABEL;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ExternalSymbolSDNode : public SDNode {
 | |
|   const char *Symbol;
 | |
|   unsigned char TargetFlags;
 | |
|   
 | |
|   friend class SelectionDAG;
 | |
|   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
 | |
|     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
 | |
|              DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   const char *getSymbol() const { return Symbol; }
 | |
|   unsigned char getTargetFlags() const { return TargetFlags; }
 | |
| 
 | |
|   static bool classof(const ExternalSymbolSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::ExternalSymbol ||
 | |
|            N->getOpcode() == ISD::TargetExternalSymbol;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class CondCodeSDNode : public SDNode {
 | |
|   ISD::CondCode Condition;
 | |
|   friend class SelectionDAG;
 | |
|   explicit CondCodeSDNode(ISD::CondCode Cond)
 | |
|     : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(MVT::Other)), Condition(Cond) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   ISD::CondCode get() const { return Condition; }
 | |
| 
 | |
|   static bool classof(const CondCodeSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::CONDCODE;
 | |
|   }
 | |
| };
 | |
|   
 | |
| /// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
 | |
| /// future and most targets don't support it.
 | |
| class CvtRndSatSDNode : public SDNode {
 | |
|   ISD::CvtCode CvtCode;
 | |
|   friend class SelectionDAG;
 | |
|   explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
 | |
|                            unsigned NumOps, ISD::CvtCode Code)
 | |
|     : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
 | |
|       CvtCode(Code) {
 | |
|     assert(NumOps == 5 && "wrong number of operations");
 | |
|   }
 | |
| public:
 | |
|   ISD::CvtCode getCvtCode() const { return CvtCode; }
 | |
| 
 | |
|   static bool classof(const CvtRndSatSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::CONVERT_RNDSAT;
 | |
|   }
 | |
| };
 | |
| 
 | |
| namespace ISD {
 | |
|   struct ArgFlagsTy {
 | |
|   private:
 | |
|     static const uint64_t NoFlagSet      = 0ULL;
 | |
|     static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
 | |
|     static const uint64_t ZExtOffs       = 0;
 | |
|     static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
 | |
|     static const uint64_t SExtOffs       = 1;
 | |
|     static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
 | |
|     static const uint64_t InRegOffs      = 2;
 | |
|     static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
 | |
|     static const uint64_t SRetOffs       = 3;
 | |
|     static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
 | |
|     static const uint64_t ByValOffs      = 4;
 | |
|     static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
 | |
|     static const uint64_t NestOffs       = 5;
 | |
|     static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
 | |
|     static const uint64_t ByValAlignOffs = 6;
 | |
|     static const uint64_t Split          = 1ULL << 10;
 | |
|     static const uint64_t SplitOffs      = 10;
 | |
|     static const uint64_t OrigAlign      = 0x1FULL<<27;
 | |
|     static const uint64_t OrigAlignOffs  = 27;
 | |
|     static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
 | |
|     static const uint64_t ByValSizeOffs  = 32;
 | |
| 
 | |
|     static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
 | |
| 
 | |
|     uint64_t Flags;
 | |
|   public:
 | |
|     ArgFlagsTy() : Flags(0) { }
 | |
| 
 | |
|     bool isZExt()   const { return Flags & ZExt; }
 | |
|     void setZExt()  { Flags |= One << ZExtOffs; }
 | |
| 
 | |
|     bool isSExt()   const { return Flags & SExt; }
 | |
|     void setSExt()  { Flags |= One << SExtOffs; }
 | |
| 
 | |
|     bool isInReg()  const { return Flags & InReg; }
 | |
|     void setInReg() { Flags |= One << InRegOffs; }
 | |
| 
 | |
|     bool isSRet()   const { return Flags & SRet; }
 | |
|     void setSRet()  { Flags |= One << SRetOffs; }
 | |
| 
 | |
|     bool isByVal()  const { return Flags & ByVal; }
 | |
|     void setByVal() { Flags |= One << ByValOffs; }
 | |
| 
 | |
|     bool isNest()   const { return Flags & Nest; }
 | |
|     void setNest()  { Flags |= One << NestOffs; }
 | |
| 
 | |
|     unsigned getByValAlign() const {
 | |
|       return (unsigned)
 | |
|         ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
 | |
|     }
 | |
|     void setByValAlign(unsigned A) {
 | |
|       Flags = (Flags & ~ByValAlign) |
 | |
|         (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
 | |
|     }
 | |
| 
 | |
|     bool isSplit()   const { return Flags & Split; }
 | |
|     void setSplit()  { Flags |= One << SplitOffs; }
 | |
| 
 | |
|     unsigned getOrigAlign() const {
 | |
|       return (unsigned)
 | |
|         ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
 | |
|     }
 | |
|     void setOrigAlign(unsigned A) {
 | |
|       Flags = (Flags & ~OrigAlign) |
 | |
|         (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
 | |
|     }
 | |
| 
 | |
|     unsigned getByValSize() const {
 | |
|       return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
 | |
|     }
 | |
|     void setByValSize(unsigned S) {
 | |
|       Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
 | |
|     }
 | |
| 
 | |
|     /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
 | |
|     std::string getArgFlagsString();
 | |
| 
 | |
|     /// getRawBits - Represent the flags as a bunch of bits.
 | |
|     uint64_t getRawBits() const { return Flags; }
 | |
|   };
 | |
| 
 | |
|   /// InputArg - This struct carries flags and type information about a
 | |
|   /// single incoming (formal) argument or incoming (from the perspective
 | |
|   /// of the caller) return value virtual register.
 | |
|   ///
 | |
|   struct InputArg {
 | |
|     ArgFlagsTy Flags;
 | |
|     EVT VT;
 | |
|     bool Used;
 | |
| 
 | |
|     InputArg() : VT(MVT::Other), Used(false) {}
 | |
|     InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
 | |
|       : Flags(flags), VT(vt), Used(used) {
 | |
|       assert(VT.isSimple() &&
 | |
|              "InputArg value type must be Simple!");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// OutputArg - This struct carries flags and a value for a
 | |
|   /// single outgoing (actual) argument or outgoing (from the perspective
 | |
|   /// of the caller) return value virtual register.
 | |
|   ///
 | |
|   struct OutputArg {
 | |
|     ArgFlagsTy Flags;
 | |
|     SDValue Val;
 | |
|     bool IsFixed;
 | |
| 
 | |
|     OutputArg() : IsFixed(false) {}
 | |
|     OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
 | |
|       : Flags(flags), Val(val), IsFixed(isfixed) {
 | |
|       assert(Val.getValueType().isSimple() &&
 | |
|              "OutputArg value type must be Simple!");
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// VTSDNode - This class is used to represent EVT's, which are used
 | |
| /// to parameterize some operations.
 | |
| class VTSDNode : public SDNode {
 | |
|   EVT ValueType;
 | |
|   friend class SelectionDAG;
 | |
|   explicit VTSDNode(EVT VT)
 | |
|     : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
 | |
|              getSDVTList(MVT::Other)), ValueType(VT) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   EVT getVT() const { return ValueType; }
 | |
| 
 | |
|   static bool classof(const VTSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::VALUETYPE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
 | |
| ///
 | |
| class LSBaseSDNode : public MemSDNode {
 | |
|   //! Operand array for load and store
 | |
|   /*!
 | |
|     \note Moving this array to the base class captures more
 | |
|     common functionality shared between LoadSDNode and
 | |
|     StoreSDNode
 | |
|    */
 | |
|   SDUse Ops[4];
 | |
| public:
 | |
|   LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
 | |
|                unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
 | |
|                EVT MemVT, MachineMemOperand *MMO)
 | |
|     : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
 | |
|     SubclassData |= AM << 2;
 | |
|     assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
 | |
|     InitOperands(Ops, Operands, numOperands);
 | |
|     assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
 | |
|            "Only indexed loads and stores have a non-undef offset operand");
 | |
|   }
 | |
| 
 | |
|   const SDValue &getOffset() const {
 | |
|     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
 | |
|   }
 | |
| 
 | |
|   /// getAddressingMode - Return the addressing mode for this load or store:
 | |
|   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
 | |
|   ISD::MemIndexedMode getAddressingMode() const {
 | |
|     return ISD::MemIndexedMode((SubclassData >> 2) & 7);
 | |
|   }
 | |
| 
 | |
|   /// isIndexed - Return true if this is a pre/post inc/dec load/store.
 | |
|   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
 | |
| 
 | |
|   /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
 | |
|   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
 | |
| 
 | |
|   static bool classof(const LSBaseSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::LOAD ||
 | |
|            N->getOpcode() == ISD::STORE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// LoadSDNode - This class is used to represent ISD::LOAD nodes.
 | |
| ///
 | |
| class LoadSDNode : public LSBaseSDNode {
 | |
|   friend class SelectionDAG;
 | |
|   LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
 | |
|              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
 | |
|              MachineMemOperand *MMO)
 | |
|     : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
 | |
|                    VTs, AM, MemVT, MMO) {
 | |
|     SubclassData |= (unsigned short)ETy;
 | |
|     assert(getExtensionType() == ETy && "LoadExtType encoding error!");
 | |
|     assert(readMem() && "Load MachineMemOperand is not a load!");
 | |
|     assert(!writeMem() && "Load MachineMemOperand is a store!");
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   /// getExtensionType - Return whether this is a plain node,
 | |
|   /// or one of the varieties of value-extending loads.
 | |
|   ISD::LoadExtType getExtensionType() const {
 | |
|     return ISD::LoadExtType(SubclassData & 3);
 | |
|   }
 | |
| 
 | |
|   const SDValue &getBasePtr() const { return getOperand(1); }
 | |
|   const SDValue &getOffset() const { return getOperand(2); }
 | |
| 
 | |
|   static bool classof(const LoadSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::LOAD;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// StoreSDNode - This class is used to represent ISD::STORE nodes.
 | |
| ///
 | |
| class StoreSDNode : public LSBaseSDNode {
 | |
|   friend class SelectionDAG;
 | |
|   StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
 | |
|               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
 | |
|               MachineMemOperand *MMO)
 | |
|     : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
 | |
|                    VTs, AM, MemVT, MMO) {
 | |
|     SubclassData |= (unsigned short)isTrunc;
 | |
|     assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
 | |
|     assert(!readMem() && "Store MachineMemOperand is a load!");
 | |
|     assert(writeMem() && "Store MachineMemOperand is not a store!");
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   /// isTruncatingStore - Return true if the op does a truncation before store.
 | |
|   /// For integers this is the same as doing a TRUNCATE and storing the result.
 | |
|   /// For floats, it is the same as doing an FP_ROUND and storing the result.
 | |
|   bool isTruncatingStore() const { return SubclassData & 1; }
 | |
| 
 | |
|   const SDValue &getValue() const { return getOperand(1); }
 | |
|   const SDValue &getBasePtr() const { return getOperand(2); }
 | |
|   const SDValue &getOffset() const { return getOperand(3); }
 | |
| 
 | |
|   static bool classof(const StoreSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::STORE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// MachineSDNode - An SDNode that represents everything that will be needed
 | |
| /// to construct a MachineInstr. These nodes are created during the
 | |
| /// instruction selection proper phase.
 | |
| ///
 | |
| class MachineSDNode : public SDNode {
 | |
| public:
 | |
|   typedef MachineMemOperand **mmo_iterator;
 | |
| 
 | |
| private:
 | |
|   friend class SelectionDAG;
 | |
|   MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
 | |
|     : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
 | |
| 
 | |
|   /// LocalOperands - Operands for this instruction, if they fit here. If
 | |
|   /// they don't, this field is unused.
 | |
|   SDUse LocalOperands[4];
 | |
| 
 | |
|   /// MemRefs - Memory reference descriptions for this instruction.
 | |
|   mmo_iterator MemRefs;
 | |
|   mmo_iterator MemRefsEnd;
 | |
| 
 | |
| public:
 | |
|   mmo_iterator memoperands_begin() const { return MemRefs; }
 | |
|   mmo_iterator memoperands_end() const { return MemRefsEnd; }
 | |
|   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
 | |
| 
 | |
|   /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
 | |
|   /// list. This does not transfer ownership.
 | |
|   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
 | |
|     MemRefs = NewMemRefs;
 | |
|     MemRefsEnd = NewMemRefsEnd;
 | |
|   }
 | |
| 
 | |
|   static bool classof(const MachineSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->isMachineOpcode();
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
 | |
|                                             SDNode, ptrdiff_t> {
 | |
|   SDNode *Node;
 | |
|   unsigned Operand;
 | |
| 
 | |
|   SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
 | |
| public:
 | |
|   bool operator==(const SDNodeIterator& x) const {
 | |
|     return Operand == x.Operand;
 | |
|   }
 | |
|   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
 | |
| 
 | |
|   const SDNodeIterator &operator=(const SDNodeIterator &I) {
 | |
|     assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
 | |
|     Operand = I.Operand;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   pointer operator*() const {
 | |
|     return Node->getOperand(Operand).getNode();
 | |
|   }
 | |
|   pointer operator->() const { return operator*(); }
 | |
| 
 | |
|   SDNodeIterator& operator++() {                // Preincrement
 | |
|     ++Operand;
 | |
|     return *this;
 | |
|   }
 | |
|   SDNodeIterator operator++(int) { // Postincrement
 | |
|     SDNodeIterator tmp = *this; ++*this; return tmp;
 | |
|   }
 | |
|   size_t operator-(SDNodeIterator Other) const {
 | |
|     assert(Node == Other.Node &&
 | |
|            "Cannot compare iterators of two different nodes!");
 | |
|     return Operand - Other.Operand;
 | |
|   }
 | |
| 
 | |
|   static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
 | |
|   static SDNodeIterator end  (SDNode *N) {
 | |
|     return SDNodeIterator(N, N->getNumOperands());
 | |
|   }
 | |
| 
 | |
|   unsigned getOperand() const { return Operand; }
 | |
|   const SDNode *getNode() const { return Node; }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<SDNode*> {
 | |
|   typedef SDNode NodeType;
 | |
|   typedef SDNodeIterator ChildIteratorType;
 | |
|   static inline NodeType *getEntryNode(SDNode *N) { return N; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) {
 | |
|     return SDNodeIterator::begin(N);
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) {
 | |
|     return SDNodeIterator::end(N);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// LargestSDNode - The largest SDNode class.
 | |
| ///
 | |
| typedef LoadSDNode LargestSDNode;
 | |
| 
 | |
| /// MostAlignedSDNode - The SDNode class with the greatest alignment
 | |
| /// requirement.
 | |
| ///
 | |
| typedef GlobalAddressSDNode MostAlignedSDNode;
 | |
| 
 | |
| namespace ISD {
 | |
|   /// isNormalLoad - Returns true if the specified node is a non-extending
 | |
|   /// and unindexed load.
 | |
|   inline bool isNormalLoad(const SDNode *N) {
 | |
|     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
 | |
|     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
 | |
|       Ld->getAddressingMode() == ISD::UNINDEXED;
 | |
|   }
 | |
| 
 | |
|   /// isNON_EXTLoad - Returns true if the specified node is a non-extending
 | |
|   /// load.
 | |
|   inline bool isNON_EXTLoad(const SDNode *N) {
 | |
|     return isa<LoadSDNode>(N) &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
 | |
|   ///
 | |
|   inline bool isEXTLoad(const SDNode *N) {
 | |
|     return isa<LoadSDNode>(N) &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
 | |
|   ///
 | |
|   inline bool isSEXTLoad(const SDNode *N) {
 | |
|     return isa<LoadSDNode>(N) &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
 | |
|   ///
 | |
|   inline bool isZEXTLoad(const SDNode *N) {
 | |
|     return isa<LoadSDNode>(N) &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
 | |
|   ///
 | |
|   inline bool isUNINDEXEDLoad(const SDNode *N) {
 | |
|     return isa<LoadSDNode>(N) &&
 | |
|       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
 | |
|   }
 | |
| 
 | |
|   /// isNormalStore - Returns true if the specified node is a non-truncating
 | |
|   /// and unindexed store.
 | |
|   inline bool isNormalStore(const SDNode *N) {
 | |
|     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
 | |
|     return St && !St->isTruncatingStore() &&
 | |
|       St->getAddressingMode() == ISD::UNINDEXED;
 | |
|   }
 | |
| 
 | |
|   /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
 | |
|   /// store.
 | |
|   inline bool isNON_TRUNCStore(const SDNode *N) {
 | |
|     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
 | |
|   }
 | |
| 
 | |
|   /// isTRUNCStore - Returns true if the specified node is a truncating
 | |
|   /// store.
 | |
|   inline bool isTRUNCStore(const SDNode *N) {
 | |
|     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
 | |
|   }
 | |
| 
 | |
|   /// isUNINDEXEDStore - Returns true if the specified node is an
 | |
|   /// unindexed store.
 | |
|   inline bool isUNINDEXEDStore(const SDNode *N) {
 | |
|     return isa<StoreSDNode>(N) &&
 | |
|       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| } // end llvm namespace
 | |
| 
 | |
| #endif
 |