mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	metadata related, which I'm waiting on to avoid conflicting with Devang. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77721 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			844 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			844 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the default implementation of the Alias Analysis interface
 | |
| // that simply implements a few identities (two different globals cannot alias,
 | |
| // etc), but otherwise does no analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Useful predicates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static const GEPOperator *isGEP(const Value *V) {
 | |
|   return dyn_cast<GEPOperator>(V);
 | |
| }
 | |
| 
 | |
| static const Value *GetGEPOperands(const Value *V, 
 | |
|                                    SmallVector<Value*, 16> &GEPOps) {
 | |
|   assert(GEPOps.empty() && "Expect empty list to populate!");
 | |
|   GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
 | |
|                 cast<User>(V)->op_end());
 | |
| 
 | |
|   // Accumulate all of the chained indexes into the operand array
 | |
|   V = cast<User>(V)->getOperand(0);
 | |
| 
 | |
|   while (const User *G = isGEP(V)) {
 | |
|     if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
 | |
|         !cast<Constant>(GEPOps[0])->isNullValue())
 | |
|       break;  // Don't handle folding arbitrary pointer offsets yet...
 | |
|     GEPOps.erase(GEPOps.begin());   // Drop the zero index
 | |
|     GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
 | |
|     V = G->getOperand(0);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// isKnownNonNull - Return true if we know that the specified value is never
 | |
| /// null.
 | |
| static bool isKnownNonNull(const Value *V) {
 | |
|   // Alloca never returns null, malloc might.
 | |
|   if (isa<AllocaInst>(V)) return true;
 | |
|   
 | |
|   // A byval argument is never null.
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     return A->hasByValAttr();
 | |
| 
 | |
|   // Global values are not null unless extern weak.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | |
|     return !GV->hasExternalWeakLinkage();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
 | |
| /// object that never escapes from the function.
 | |
| static bool isNonEscapingLocalObject(const Value *V) {
 | |
|   // If this is a local allocation, check to see if it escapes.
 | |
|   if (isa<AllocationInst>(V) || isNoAliasCall(V))
 | |
|     return !PointerMayBeCaptured(V, false);
 | |
| 
 | |
|   // If this is an argument that corresponds to a byval or noalias argument,
 | |
|   // then it has not escaped before entering the function.  Check if it escapes
 | |
|   // inside the function.
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     if (A->hasByValAttr() || A->hasNoAliasAttr()) {
 | |
|       // Don't bother analyzing arguments already known not to escape.
 | |
|       if (A->hasNoCaptureAttr())
 | |
|         return true;
 | |
|       return !PointerMayBeCaptured(V, false);
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isObjectSmallerThan - Return true if we can prove that the object specified
 | |
| /// by V is smaller than Size.
 | |
| static bool isObjectSmallerThan(const Value *V, unsigned Size,
 | |
|                                 const TargetData &TD) {
 | |
|   const Type *AccessTy;
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | |
|     AccessTy = GV->getType()->getElementType();
 | |
|   } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
 | |
|     if (!AI->isArrayAllocation())
 | |
|       AccessTy = AI->getType()->getElementType();
 | |
|     else
 | |
|       return false;
 | |
|   } else if (const Argument *A = dyn_cast<Argument>(V)) {
 | |
|     if (A->hasByValAttr())
 | |
|       AccessTy = cast<PointerType>(A->getType())->getElementType();
 | |
|     else
 | |
|       return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   if (AccessTy->isSized())
 | |
|     return TD.getTypeAllocSize(AccessTy) < Size;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // NoAA Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// NoAA - This class implements the -no-aa pass, which always returns "I
 | |
|   /// don't know" for alias queries.  NoAA is unlike other alias analysis
 | |
|   /// implementations, in that it does not chain to a previous analysis.  As
 | |
|   /// such it doesn't follow many of the rules that other alias analyses must.
 | |
|   ///
 | |
|   struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
 | |
|     static char ID; // Class identification, replacement for typeinfo
 | |
|     NoAA() : ImmutablePass(&ID) {}
 | |
|     explicit NoAA(void *PID) : ImmutablePass(PID) { }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     }
 | |
| 
 | |
|     virtual void initializePass() {
 | |
|       TD = getAnalysisIfAvailable<TargetData>();
 | |
|     }
 | |
| 
 | |
|     virtual AliasResult alias(const Value *V1, unsigned V1Size,
 | |
|                               const Value *V2, unsigned V2Size) {
 | |
|       return MayAlias;
 | |
|     }
 | |
| 
 | |
|     virtual void getArgumentAccesses(Function *F, CallSite CS,
 | |
|                                      std::vector<PointerAccessInfo> &Info) {
 | |
|       llvm_unreachable("This method may not be called on this function!");
 | |
|     }
 | |
| 
 | |
|     virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
 | |
|     virtual bool pointsToConstantMemory(const Value *P) { return false; }
 | |
|     virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | |
|       return ModRef;
 | |
|     }
 | |
|     virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
 | |
|       return ModRef;
 | |
|     }
 | |
|     virtual bool hasNoModRefInfoForCalls() const { return true; }
 | |
| 
 | |
|     virtual void deleteValue(Value *V) {}
 | |
|     virtual void copyValue(Value *From, Value *To) {}
 | |
|   };
 | |
| }  // End of anonymous namespace
 | |
| 
 | |
| // Register this pass...
 | |
| char NoAA::ID = 0;
 | |
| static RegisterPass<NoAA>
 | |
| U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
 | |
| 
 | |
| // Declare that we implement the AliasAnalysis interface
 | |
| static RegisterAnalysisGroup<AliasAnalysis> V(U);
 | |
| 
 | |
| ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // BasicAA Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// BasicAliasAnalysis - This is the default alias analysis implementation.
 | |
|   /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
 | |
|   /// derives from the NoAA class.
 | |
|   struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
 | |
|     static char ID; // Class identification, replacement for typeinfo
 | |
|     BasicAliasAnalysis() : NoAA(&ID) {}
 | |
|     AliasResult alias(const Value *V1, unsigned V1Size,
 | |
|                       const Value *V2, unsigned V2Size);
 | |
| 
 | |
|     ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
 | |
|     ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
 | |
| 
 | |
|     /// hasNoModRefInfoForCalls - We can provide mod/ref information against
 | |
|     /// non-escaping allocations.
 | |
|     virtual bool hasNoModRefInfoForCalls() const { return false; }
 | |
| 
 | |
|     /// pointsToConstantMemory - Chase pointers until we find a (constant
 | |
|     /// global) or not.
 | |
|     bool pointsToConstantMemory(const Value *P);
 | |
| 
 | |
|   private:
 | |
|     // CheckGEPInstructions - Check two GEP instructions with known
 | |
|     // must-aliasing base pointers.  This checks to see if the index expressions
 | |
|     // preclude the pointers from aliasing...
 | |
|     AliasResult
 | |
|     CheckGEPInstructions(const Type* BasePtr1Ty,
 | |
|                          Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
 | |
|                          const Type *BasePtr2Ty,
 | |
|                          Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
 | |
|   };
 | |
| }  // End of anonymous namespace
 | |
| 
 | |
| // Register this pass...
 | |
| char BasicAliasAnalysis::ID = 0;
 | |
| static RegisterPass<BasicAliasAnalysis>
 | |
| X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
 | |
| 
 | |
| // Declare that we implement the AliasAnalysis interface
 | |
| static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
 | |
| 
 | |
| ImmutablePass *llvm::createBasicAliasAnalysisPass() {
 | |
|   return new BasicAliasAnalysis();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// pointsToConstantMemory - Chase pointers until we find a (constant
 | |
| /// global) or not.
 | |
| bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
 | |
|   if (const GlobalVariable *GV = 
 | |
|         dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
 | |
|     return GV->isConstant();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // getModRefInfo - Check to see if the specified callsite can clobber the
 | |
| // specified memory object.  Since we only look at local properties of this
 | |
| // function, we really can't say much about this query.  We do, however, use
 | |
| // simple "address taken" analysis on local objects.
 | |
| //
 | |
| AliasAnalysis::ModRefResult
 | |
| BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | |
|   if (!isa<Constant>(P)) {
 | |
|     const Value *Object = P->getUnderlyingObject();
 | |
|     
 | |
|     // If this is a tail call and P points to a stack location, we know that
 | |
|     // the tail call cannot access or modify the local stack.
 | |
|     // We cannot exclude byval arguments here; these belong to the caller of
 | |
|     // the current function not to the current function, and a tail callee
 | |
|     // may reference them.
 | |
|     if (isa<AllocaInst>(Object))
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
 | |
|         if (CI->isTailCall())
 | |
|           return NoModRef;
 | |
|     
 | |
|     // If the pointer is to a locally allocated object that does not escape,
 | |
|     // then the call can not mod/ref the pointer unless the call takes the
 | |
|     // argument without capturing it.
 | |
|     if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
 | |
|       bool passedAsArg = false;
 | |
|       // TODO: Eventually only check 'nocapture' arguments.
 | |
|       for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | |
|            CI != CE; ++CI)
 | |
|         if (isa<PointerType>((*CI)->getType()) &&
 | |
|             alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
 | |
|           passedAsArg = true;
 | |
|       
 | |
|       if (!passedAsArg)
 | |
|         return NoModRef;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The AliasAnalysis base class has some smarts, lets use them.
 | |
|   return AliasAnalysis::getModRefInfo(CS, P, Size);
 | |
| }
 | |
| 
 | |
| 
 | |
| AliasAnalysis::ModRefResult 
 | |
| BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
 | |
|   // If CS1 or CS2 are readnone, they don't interact.
 | |
|   ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
 | |
|   if (CS1B == DoesNotAccessMemory) return NoModRef;
 | |
|   
 | |
|   ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
 | |
|   if (CS2B == DoesNotAccessMemory) return NoModRef;
 | |
|   
 | |
|   // If they both only read from memory, just return ref.
 | |
|   if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
 | |
|     return Ref;
 | |
|   
 | |
|   // Otherwise, fall back to NoAA (mod+ref).
 | |
|   return NoAA::getModRefInfo(CS1, CS2);
 | |
| }
 | |
| 
 | |
| 
 | |
| // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
 | |
| // as array references.
 | |
| //
 | |
| AliasAnalysis::AliasResult
 | |
| BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
 | |
|                           const Value *V2, unsigned V2Size) {
 | |
|   // Strip off any constant expression casts if they exist
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
 | |
|     if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
 | |
|       V1 = CE->getOperand(0);
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
 | |
|     if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
 | |
|       V2 = CE->getOperand(0);
 | |
| 
 | |
|   // Are we checking for alias of the same value?
 | |
|   if (V1 == V2) return MustAlias;
 | |
| 
 | |
|   if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
 | |
|     return NoAlias;  // Scalars cannot alias each other
 | |
| 
 | |
|   // Strip off cast instructions.   Since V1 and V2 are pointers, they must be
 | |
|   // pointer<->pointer bitcasts.
 | |
|   if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
 | |
|     return alias(I->getOperand(0), V1Size, V2, V2Size);
 | |
|   if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
 | |
|     return alias(V1, V1Size, I->getOperand(0), V2Size);
 | |
| 
 | |
|   // Figure out what objects these things are pointing to if we can.
 | |
|   const Value *O1 = V1->getUnderlyingObject();
 | |
|   const Value *O2 = V2->getUnderlyingObject();
 | |
| 
 | |
|   if (O1 != O2) {
 | |
|     // If V1/V2 point to two different objects we know that we have no alias.
 | |
|     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
 | |
|       return NoAlias;
 | |
|   
 | |
|     // Arguments can't alias with local allocations or noalias calls.
 | |
|     if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
 | |
|         (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
 | |
|       return NoAlias;
 | |
| 
 | |
|     // Most objects can't alias null.
 | |
|     if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
 | |
|         (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
 | |
|       return NoAlias;
 | |
|   }
 | |
|   
 | |
|   // If the size of one access is larger than the entire object on the other
 | |
|   // side, then we know such behavior is undefined and can assume no alias.
 | |
|   if (TD)
 | |
|     if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
 | |
|         (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
 | |
|       return NoAlias;
 | |
|   
 | |
|   // If one pointer is the result of a call/invoke and the other is a
 | |
|   // non-escaping local object, then we know the object couldn't escape to a
 | |
|   // point where the call could return it.
 | |
|   if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
 | |
|       isNonEscapingLocalObject(O2) && O1 != O2)
 | |
|     return NoAlias;
 | |
|   if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
 | |
|       isNonEscapingLocalObject(O1) && O1 != O2)
 | |
|     return NoAlias;
 | |
|   
 | |
|   // If we have two gep instructions with must-alias'ing base pointers, figure
 | |
|   // out if the indexes to the GEP tell us anything about the derived pointer.
 | |
|   // Note that we also handle chains of getelementptr instructions as well as
 | |
|   // constant expression getelementptrs here.
 | |
|   //
 | |
|   if (isGEP(V1) && isGEP(V2)) {
 | |
|     const User *GEP1 = cast<User>(V1);
 | |
|     const User *GEP2 = cast<User>(V2);
 | |
|     
 | |
|     // If V1 and V2 are identical GEPs, just recurse down on both of them.
 | |
|     // This allows us to analyze things like:
 | |
|     //   P = gep A, 0, i, 1
 | |
|     //   Q = gep B, 0, i, 1
 | |
|     // by just analyzing A and B.  This is even safe for variable indices.
 | |
|     if (GEP1->getType() == GEP2->getType() &&
 | |
|         GEP1->getNumOperands() == GEP2->getNumOperands() &&
 | |
|         GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
 | |
|         // All operands are the same, ignoring the base.
 | |
|         std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
 | |
|       return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
 | |
|     
 | |
|     
 | |
|     // Drill down into the first non-gep value, to test for must-aliasing of
 | |
|     // the base pointers.
 | |
|     while (isGEP(GEP1->getOperand(0)) &&
 | |
|            GEP1->getOperand(1) ==
 | |
|            Constant::getNullValue(GEP1->getOperand(1)->getType()))
 | |
|       GEP1 = cast<User>(GEP1->getOperand(0));
 | |
|     const Value *BasePtr1 = GEP1->getOperand(0);
 | |
| 
 | |
|     while (isGEP(GEP2->getOperand(0)) &&
 | |
|            GEP2->getOperand(1) ==
 | |
|            Constant::getNullValue(GEP2->getOperand(1)->getType()))
 | |
|       GEP2 = cast<User>(GEP2->getOperand(0));
 | |
|     const Value *BasePtr2 = GEP2->getOperand(0);
 | |
| 
 | |
|     // Do the base pointers alias?
 | |
|     AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
 | |
|     if (BaseAlias == NoAlias) return NoAlias;
 | |
|     if (BaseAlias == MustAlias) {
 | |
|       // If the base pointers alias each other exactly, check to see if we can
 | |
|       // figure out anything about the resultant pointers, to try to prove
 | |
|       // non-aliasing.
 | |
| 
 | |
|       // Collect all of the chained GEP operands together into one simple place
 | |
|       SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
 | |
|       BasePtr1 = GetGEPOperands(V1, GEP1Ops);
 | |
|       BasePtr2 = GetGEPOperands(V2, GEP2Ops);
 | |
| 
 | |
|       // If GetGEPOperands were able to fold to the same must-aliased pointer,
 | |
|       // do the comparison.
 | |
|       if (BasePtr1 == BasePtr2) {
 | |
|         AliasResult GAlias =
 | |
|           CheckGEPInstructions(BasePtr1->getType(),
 | |
|                                &GEP1Ops[0], GEP1Ops.size(), V1Size,
 | |
|                                BasePtr2->getType(),
 | |
|                                &GEP2Ops[0], GEP2Ops.size(), V2Size);
 | |
|         if (GAlias != MayAlias)
 | |
|           return GAlias;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if these two pointers are related by a getelementptr
 | |
|   // instruction.  If one pointer is a GEP with a non-zero index of the other
 | |
|   // pointer, we know they cannot alias.
 | |
|   //
 | |
|   if (isGEP(V2)) {
 | |
|     std::swap(V1, V2);
 | |
|     std::swap(V1Size, V2Size);
 | |
|   }
 | |
| 
 | |
|   if (V1Size != ~0U && V2Size != ~0U)
 | |
|     if (isGEP(V1)) {
 | |
|       SmallVector<Value*, 16> GEPOperands;
 | |
|       const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
 | |
| 
 | |
|       AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
 | |
|       if (R == MustAlias) {
 | |
|         // If there is at least one non-zero constant index, we know they cannot
 | |
|         // alias.
 | |
|         bool ConstantFound = false;
 | |
|         bool AllZerosFound = true;
 | |
|         for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
 | |
|           if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
 | |
|             if (!C->isNullValue()) {
 | |
|               ConstantFound = true;
 | |
|               AllZerosFound = false;
 | |
|               break;
 | |
|             }
 | |
|           } else {
 | |
|             AllZerosFound = false;
 | |
|           }
 | |
| 
 | |
|         // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
 | |
|         // the ptr, the end result is a must alias also.
 | |
|         if (AllZerosFound)
 | |
|           return MustAlias;
 | |
| 
 | |
|         if (ConstantFound) {
 | |
|           if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
 | |
|             return NoAlias;
 | |
| 
 | |
|           // Otherwise we have to check to see that the distance is more than
 | |
|           // the size of the argument... build an index vector that is equal to
 | |
|           // the arguments provided, except substitute 0's for any variable
 | |
|           // indexes we find...
 | |
|           if (TD && cast<PointerType>(
 | |
|                 BasePtr->getType())->getElementType()->isSized()) {
 | |
|             for (unsigned i = 0; i != GEPOperands.size(); ++i)
 | |
|               if (!isa<ConstantInt>(GEPOperands[i]))
 | |
|                 GEPOperands[i] =
 | |
|                   Constant::getNullValue(GEPOperands[i]->getType());
 | |
|             int64_t Offset =
 | |
|               TD->getIndexedOffset(BasePtr->getType(),
 | |
|                                    &GEPOperands[0],
 | |
|                                    GEPOperands.size());
 | |
| 
 | |
|             if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
 | |
|               return NoAlias;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| // This function is used to determine if the indices of two GEP instructions are
 | |
| // equal. V1 and V2 are the indices.
 | |
| static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
 | |
|   if (V1->getType() == V2->getType())
 | |
|     return V1 == V2;
 | |
|   if (Constant *C1 = dyn_cast<Constant>(V1))
 | |
|     if (Constant *C2 = dyn_cast<Constant>(V2)) {
 | |
|       // Sign extend the constants to long types, if necessary
 | |
|       if (C1->getType() != Type::Int64Ty)
 | |
|         C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
 | |
|       if (C2->getType() != Type::Int64Ty) 
 | |
|         C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
 | |
|       return C1 == C2;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
 | |
| /// base pointers.  This checks to see if the index expressions preclude the
 | |
| /// pointers from aliasing...
 | |
| AliasAnalysis::AliasResult 
 | |
| BasicAliasAnalysis::CheckGEPInstructions(
 | |
|   const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
 | |
|   const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
 | |
|   // We currently can't handle the case when the base pointers have different
 | |
|   // primitive types.  Since this is uncommon anyway, we are happy being
 | |
|   // extremely conservative.
 | |
|   if (BasePtr1Ty != BasePtr2Ty)
 | |
|     return MayAlias;
 | |
| 
 | |
|   const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
 | |
| 
 | |
|   LLVMContext &Context = GEPPointerTy->getContext();
 | |
| 
 | |
|   // Find the (possibly empty) initial sequence of equal values... which are not
 | |
|   // necessarily constants.
 | |
|   unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
 | |
|   unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
 | |
|   unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
 | |
|   unsigned UnequalOper = 0;
 | |
|   while (UnequalOper != MinOperands &&
 | |
|          IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
 | |
|          Context)) {
 | |
|     // Advance through the type as we go...
 | |
|     ++UnequalOper;
 | |
|     if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
 | |
|       BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
 | |
|     else {
 | |
|       // If all operands equal each other, then the derived pointers must
 | |
|       // alias each other...
 | |
|       BasePtr1Ty = 0;
 | |
|       assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
 | |
|              "Ran out of type nesting, but not out of operands?");
 | |
|       return MustAlias;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have seen all constant operands, and run out of indexes on one of the
 | |
|   // getelementptrs, check to see if the tail of the leftover one is all zeros.
 | |
|   // If so, return mustalias.
 | |
|   if (UnequalOper == MinOperands) {
 | |
|     if (NumGEP1Ops < NumGEP2Ops) {
 | |
|       std::swap(GEP1Ops, GEP2Ops);
 | |
|       std::swap(NumGEP1Ops, NumGEP2Ops);
 | |
|     }
 | |
| 
 | |
|     bool AllAreZeros = true;
 | |
|     for (unsigned i = UnequalOper; i != MaxOperands; ++i)
 | |
|       if (!isa<Constant>(GEP1Ops[i]) ||
 | |
|           !cast<Constant>(GEP1Ops[i])->isNullValue()) {
 | |
|         AllAreZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllAreZeros) return MustAlias;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // So now we know that the indexes derived from the base pointers,
 | |
|   // which are known to alias, are different.  We can still determine a
 | |
|   // no-alias result if there are differing constant pairs in the index
 | |
|   // chain.  For example:
 | |
|   //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
 | |
|   //
 | |
|   // We have to be careful here about array accesses.  In particular, consider:
 | |
|   //        A[1][0] vs A[0][i]
 | |
|   // In this case, we don't *know* that the array will be accessed in bounds:
 | |
|   // the index could even be negative.  Because of this, we have to
 | |
|   // conservatively *give up* and return may alias.  We disregard differing
 | |
|   // array subscripts that are followed by a variable index without going
 | |
|   // through a struct.
 | |
|   //
 | |
|   unsigned SizeMax = std::max(G1S, G2S);
 | |
|   if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
 | |
| 
 | |
|   // Scan for the first operand that is constant and unequal in the
 | |
|   // two getelementptrs...
 | |
|   unsigned FirstConstantOper = UnequalOper;
 | |
|   for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
 | |
|     const Value *G1Oper = GEP1Ops[FirstConstantOper];
 | |
|     const Value *G2Oper = GEP2Ops[FirstConstantOper];
 | |
| 
 | |
|     if (G1Oper != G2Oper)   // Found non-equal constant indexes...
 | |
|       if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
 | |
|         if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
 | |
|           if (G1OC->getType() != G2OC->getType()) {
 | |
|             // Sign extend both operands to long.
 | |
|             if (G1OC->getType() != Type::Int64Ty)
 | |
|               G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
 | |
|             if (G2OC->getType() != Type::Int64Ty) 
 | |
|               G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
 | |
|             GEP1Ops[FirstConstantOper] = G1OC;
 | |
|             GEP2Ops[FirstConstantOper] = G2OC;
 | |
|           }
 | |
|           
 | |
|           if (G1OC != G2OC) {
 | |
|             // Handle the "be careful" case above: if this is an array/vector
 | |
|             // subscript, scan for a subsequent variable array index.
 | |
|             if (const SequentialType *STy =
 | |
|                   dyn_cast<SequentialType>(BasePtr1Ty)) {
 | |
|               const Type *NextTy = STy;
 | |
|               bool isBadCase = false;
 | |
|               
 | |
|               for (unsigned Idx = FirstConstantOper;
 | |
|                    Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
 | |
|                 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
 | |
|                 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
 | |
|                   isBadCase = true;
 | |
|                   break;
 | |
|                 }
 | |
|                 // If the array is indexed beyond the bounds of the static type
 | |
|                 // at this level, it will also fall into the "be careful" case.
 | |
|                 // It would theoretically be possible to analyze these cases,
 | |
|                 // but for now just be conservatively correct.
 | |
|                 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
 | |
|                   if (cast<ConstantInt>(G1OC)->getZExtValue() >=
 | |
|                         ATy->getNumElements() ||
 | |
|                       cast<ConstantInt>(G2OC)->getZExtValue() >=
 | |
|                         ATy->getNumElements()) {
 | |
|                     isBadCase = true;
 | |
|                     break;
 | |
|                   }
 | |
|                 if (const VectorType *VTy = dyn_cast<VectorType>(STy))
 | |
|                   if (cast<ConstantInt>(G1OC)->getZExtValue() >=
 | |
|                         VTy->getNumElements() ||
 | |
|                       cast<ConstantInt>(G2OC)->getZExtValue() >=
 | |
|                         VTy->getNumElements()) {
 | |
|                     isBadCase = true;
 | |
|                     break;
 | |
|                   }
 | |
|                 STy = cast<SequentialType>(NextTy);
 | |
|                 NextTy = cast<SequentialType>(NextTy)->getElementType();
 | |
|               }
 | |
|               
 | |
|               if (isBadCase) G1OC = 0;
 | |
|             }
 | |
| 
 | |
|             // Make sure they are comparable (ie, not constant expressions), and
 | |
|             // make sure the GEP with the smaller leading constant is GEP1.
 | |
|             if (G1OC) {
 | |
|               Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT, 
 | |
|                                                         G1OC, G2OC);
 | |
|               if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
 | |
|                 if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
 | |
|                   std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
 | |
|                   std::swap(NumGEP1Ops, NumGEP2Ops);
 | |
|                 }
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|     BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
 | |
|   }
 | |
| 
 | |
|   // No shared constant operands, and we ran out of common operands.  At this
 | |
|   // point, the GEP instructions have run through all of their operands, and we
 | |
|   // haven't found evidence that there are any deltas between the GEP's.
 | |
|   // However, one GEP may have more operands than the other.  If this is the
 | |
|   // case, there may still be hope.  Check this now.
 | |
|   if (FirstConstantOper == MinOperands) {
 | |
|     // Without TargetData, we won't know what the offsets are.
 | |
|     if (!TD)
 | |
|       return MayAlias;
 | |
| 
 | |
|     // Make GEP1Ops be the longer one if there is a longer one.
 | |
|     if (NumGEP1Ops < NumGEP2Ops) {
 | |
|       std::swap(GEP1Ops, GEP2Ops);
 | |
|       std::swap(NumGEP1Ops, NumGEP2Ops);
 | |
|     }
 | |
| 
 | |
|     // Is there anything to check?
 | |
|     if (NumGEP1Ops > MinOperands) {
 | |
|       for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
 | |
|         if (isa<ConstantInt>(GEP1Ops[i]) && 
 | |
|             !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
 | |
|           // Yup, there's a constant in the tail.  Set all variables to
 | |
|           // constants in the GEP instruction to make it suitable for
 | |
|           // TargetData::getIndexedOffset.
 | |
|           for (i = 0; i != MaxOperands; ++i)
 | |
|             if (!isa<ConstantInt>(GEP1Ops[i]))
 | |
|               GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
 | |
|           // Okay, now get the offset.  This is the relative offset for the full
 | |
|           // instruction.
 | |
|           int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
 | |
|                                                  NumGEP1Ops);
 | |
| 
 | |
|           // Now check without any constants at the end.
 | |
|           int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
 | |
|                                                  MinOperands);
 | |
| 
 | |
|           // Make sure we compare the absolute difference.
 | |
|           if (Offset1 > Offset2)
 | |
|             std::swap(Offset1, Offset2);
 | |
| 
 | |
|           // If the tail provided a bit enough offset, return noalias!
 | |
|           if ((uint64_t)(Offset2-Offset1) >= SizeMax)
 | |
|             return NoAlias;
 | |
|           // Otherwise break - we don't look for another constant in the tail.
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Couldn't find anything useful.
 | |
|     return MayAlias;
 | |
|   }
 | |
| 
 | |
|   // If there are non-equal constants arguments, then we can figure
 | |
|   // out a minimum known delta between the two index expressions... at
 | |
|   // this point we know that the first constant index of GEP1 is less
 | |
|   // than the first constant index of GEP2.
 | |
| 
 | |
|   // Advance BasePtr[12]Ty over this first differing constant operand.
 | |
|   BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
 | |
|       getTypeAtIndex(GEP2Ops[FirstConstantOper]);
 | |
|   BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
 | |
|       getTypeAtIndex(GEP1Ops[FirstConstantOper]);
 | |
| 
 | |
|   // We are going to be using TargetData::getIndexedOffset to determine the
 | |
|   // offset that each of the GEP's is reaching.  To do this, we have to convert
 | |
|   // all variable references to constant references.  To do this, we convert the
 | |
|   // initial sequence of array subscripts into constant zeros to start with.
 | |
|   const Type *ZeroIdxTy = GEPPointerTy;
 | |
|   for (unsigned i = 0; i != FirstConstantOper; ++i) {
 | |
|     if (!isa<StructType>(ZeroIdxTy))
 | |
|       GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
 | |
| 
 | |
|     if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
 | |
|       ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
 | |
|   }
 | |
| 
 | |
|   // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
 | |
| 
 | |
|   // Loop over the rest of the operands...
 | |
|   for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
 | |
|     const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
 | |
|     const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
 | |
|     // If they are equal, use a zero index...
 | |
|     if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
 | |
|       if (!isa<ConstantInt>(Op1))
 | |
|         GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
 | |
|       // Otherwise, just keep the constants we have.
 | |
|     } else {
 | |
|       if (Op1) {
 | |
|         if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|           // If this is an array index, make sure the array element is in range.
 | |
|           if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
 | |
|             if (Op1C->getZExtValue() >= AT->getNumElements())
 | |
|               return MayAlias;  // Be conservative with out-of-range accesses
 | |
|           } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
 | |
|             if (Op1C->getZExtValue() >= VT->getNumElements())
 | |
|               return MayAlias;  // Be conservative with out-of-range accesses
 | |
|           }
 | |
|           
 | |
|         } else {
 | |
|           // GEP1 is known to produce a value less than GEP2.  To be
 | |
|           // conservatively correct, we must assume the largest possible
 | |
|           // constant is used in this position.  This cannot be the initial
 | |
|           // index to the GEP instructions (because we know we have at least one
 | |
|           // element before this one with the different constant arguments), so
 | |
|           // we know that the current index must be into either a struct or
 | |
|           // array.  Because we know it's not constant, this cannot be a
 | |
|           // structure index.  Because of this, we can calculate the maximum
 | |
|           // value possible.
 | |
|           //
 | |
|           if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
 | |
|             GEP1Ops[i] =
 | |
|                   ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
 | |
|           else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
 | |
|             GEP1Ops[i] = 
 | |
|                   ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Op2) {
 | |
|         if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
 | |
|           // If this is an array index, make sure the array element is in range.
 | |
|           if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
 | |
|             if (Op2C->getZExtValue() >= AT->getNumElements())
 | |
|               return MayAlias;  // Be conservative with out-of-range accesses
 | |
|           } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
 | |
|             if (Op2C->getZExtValue() >= VT->getNumElements())
 | |
|               return MayAlias;  // Be conservative with out-of-range accesses
 | |
|           }
 | |
|         } else {  // Conservatively assume the minimum value for this index
 | |
|           GEP2Ops[i] = Constant::getNullValue(Op2->getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BasePtr1Ty && Op1) {
 | |
|       if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
 | |
|         BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
 | |
|       else
 | |
|         BasePtr1Ty = 0;
 | |
|     }
 | |
| 
 | |
|     if (BasePtr2Ty && Op2) {
 | |
|       if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
 | |
|         BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
 | |
|       else
 | |
|         BasePtr2Ty = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TD && GEPPointerTy->getElementType()->isSized()) {
 | |
|     int64_t Offset1 =
 | |
|       TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
 | |
|     int64_t Offset2 = 
 | |
|       TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
 | |
|     assert(Offset1 != Offset2 &&
 | |
|            "There is at least one different constant here!");
 | |
|     
 | |
|     // Make sure we compare the absolute difference.
 | |
|     if (Offset1 > Offset2)
 | |
|       std::swap(Offset1, Offset2);
 | |
|     
 | |
|     if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
 | |
|       //cerr << "Determined that these two GEP's don't alias ["
 | |
|       //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
 | |
|       return NoAlias;
 | |
|     }
 | |
|   }
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| // Make sure that anything that uses AliasAnalysis pulls in this file...
 | |
| DEFINING_FILE_FOR(BasicAliasAnalysis)
 |