mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77519 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			299 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			299 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopVR.cpp - Value Range analysis driven by loop information -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // FIXME: What does this do?
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loopvr"
 | |
| #include "llvm/Analysis/LoopVR.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| char LoopVR::ID = 0;
 | |
| static RegisterPass<LoopVR> X("loopvr", "Loop Value Ranges", false, true);
 | |
| 
 | |
| /// getRange - determine the range for a particular SCEV within a given Loop
 | |
| ConstantRange LoopVR::getRange(const SCEV *S, Loop *L, ScalarEvolution &SE) {
 | |
|   const SCEV *T = SE.getBackedgeTakenCount(L);
 | |
|   if (isa<SCEVCouldNotCompute>(T))
 | |
|     return ConstantRange(cast<IntegerType>(S->getType())->getBitWidth(), true);
 | |
| 
 | |
|   T = SE.getTruncateOrZeroExtend(T, S->getType());
 | |
|   return getRange(S, T, SE);
 | |
| }
 | |
| 
 | |
| /// getRange - determine the range for a particular SCEV with a given trip count
 | |
| ConstantRange LoopVR::getRange(const SCEV *S, const SCEV *T, ScalarEvolution &SE){
 | |
| 
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | |
|     return ConstantRange(C->getValue()->getValue());
 | |
|     
 | |
|   ConstantRange FullSet(cast<IntegerType>(S->getType())->getBitWidth(), true);
 | |
| 
 | |
|   // {x,+,y,+,...z}. We detect overflow by checking the size of the set after
 | |
|   // summing the upper and lower.
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     ConstantRange X = getRange(Add->getOperand(0), T, SE);
 | |
|     if (X.isFullSet()) return FullSet;
 | |
|     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) {
 | |
|       ConstantRange Y = getRange(Add->getOperand(i), T, SE);
 | |
|       if (Y.isFullSet()) return FullSet;
 | |
| 
 | |
|       APInt Spread_X = X.getSetSize(), Spread_Y = Y.getSetSize();
 | |
|       APInt NewLower = X.getLower() + Y.getLower();
 | |
|       APInt NewUpper = X.getUpper() + Y.getUpper() - 1;
 | |
|       if (NewLower == NewUpper)
 | |
|         return FullSet;
 | |
| 
 | |
|       X = ConstantRange(NewLower, NewUpper);
 | |
|       if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
 | |
|         return FullSet; // we've wrapped, therefore, full set.
 | |
|     }
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
|   // {x,*,y,*,...,z}. In order to detect overflow, we use k*bitwidth where
 | |
|   // k is the number of terms being multiplied.
 | |
|   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     ConstantRange X = getRange(Mul->getOperand(0), T, SE);
 | |
|     if (X.isFullSet()) return FullSet;
 | |
| 
 | |
|     const IntegerType *Ty = IntegerType::get(X.getBitWidth());
 | |
|     const IntegerType *ExTy = IntegerType::get(X.getBitWidth() *
 | |
|                                                Mul->getNumOperands());
 | |
|     ConstantRange XExt = X.zeroExtend(ExTy->getBitWidth());
 | |
| 
 | |
|     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) {
 | |
|       ConstantRange Y = getRange(Mul->getOperand(i), T, SE);
 | |
|       if (Y.isFullSet()) return FullSet;
 | |
| 
 | |
|       ConstantRange YExt = Y.zeroExtend(ExTy->getBitWidth());
 | |
|       XExt = ConstantRange(XExt.getLower() * YExt.getLower(),
 | |
|                            ((XExt.getUpper()-1) * (YExt.getUpper()-1)) + 1);
 | |
|     }
 | |
|     return XExt.truncate(Ty->getBitWidth());
 | |
|   }
 | |
| 
 | |
|   // X smax Y smax ... Z is: range(smax(X_smin, Y_smin, ..., Z_smin),
 | |
|   //                               smax(X_smax, Y_smax, ..., Z_smax))
 | |
|   // It doesn't matter if one of the SCEVs has FullSet because we're taking
 | |
|   // a maximum of the minimums across all of them.
 | |
|   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
 | |
|     ConstantRange X = getRange(SMax->getOperand(0), T, SE);
 | |
|     if (X.isFullSet()) return FullSet;
 | |
| 
 | |
|     APInt smin = X.getSignedMin(), smax = X.getSignedMax();
 | |
|     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) {
 | |
|       ConstantRange Y = getRange(SMax->getOperand(i), T, SE);
 | |
|       smin = APIntOps::smax(smin, Y.getSignedMin());
 | |
|       smax = APIntOps::smax(smax, Y.getSignedMax());
 | |
|     }
 | |
|     if (smax + 1 == smin) return FullSet;
 | |
|     return ConstantRange(smin, smax + 1);
 | |
|   }
 | |
| 
 | |
|   // X umax Y umax ... Z is: range(umax(X_umin, Y_umin, ..., Z_umin),
 | |
|   //                               umax(X_umax, Y_umax, ..., Z_umax))
 | |
|   // It doesn't matter if one of the SCEVs has FullSet because we're taking
 | |
|   // a maximum of the minimums across all of them.
 | |
|   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
 | |
|     ConstantRange X = getRange(UMax->getOperand(0), T, SE);
 | |
|     if (X.isFullSet()) return FullSet;
 | |
| 
 | |
|     APInt umin = X.getUnsignedMin(), umax = X.getUnsignedMax();
 | |
|     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) {
 | |
|       ConstantRange Y = getRange(UMax->getOperand(i), T, SE);
 | |
|       umin = APIntOps::umax(umin, Y.getUnsignedMin());
 | |
|       umax = APIntOps::umax(umax, Y.getUnsignedMax());
 | |
|     }
 | |
|     if (umax + 1 == umin) return FullSet;
 | |
|     return ConstantRange(umin, umax + 1);
 | |
|   }
 | |
| 
 | |
|   // L udiv R. Luckily, there's only ever 2 sides to a udiv.
 | |
|   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|     ConstantRange L = getRange(UDiv->getLHS(), T, SE);
 | |
|     ConstantRange R = getRange(UDiv->getRHS(), T, SE);
 | |
|     if (L.isFullSet() && R.isFullSet()) return FullSet;
 | |
| 
 | |
|     if (R.getUnsignedMax() == 0) {
 | |
|       // RHS must be single-element zero. Return an empty set.
 | |
|       return ConstantRange(R.getBitWidth(), false);
 | |
|     }
 | |
| 
 | |
|     APInt Lower = L.getUnsignedMin().udiv(R.getUnsignedMax());
 | |
| 
 | |
|     APInt Upper;
 | |
| 
 | |
|     if (R.getUnsignedMin() == 0) {
 | |
|       // Just because it contains zero, doesn't mean it will also contain one.
 | |
|       ConstantRange NotZero(APInt(L.getBitWidth(), 1),
 | |
|                             APInt::getNullValue(L.getBitWidth()));
 | |
|       R = R.intersectWith(NotZero);
 | |
|     }
 | |
|  
 | |
|     // But, the intersection might still include zero. If it does, then we know
 | |
|     // it also included one.
 | |
|     if (R.contains(APInt::getNullValue(L.getBitWidth())))
 | |
|       Upper = L.getUnsignedMax();
 | |
|     else
 | |
|       Upper = L.getUnsignedMax().udiv(R.getUnsignedMin());
 | |
| 
 | |
|     return ConstantRange(Lower, Upper);
 | |
|   }
 | |
| 
 | |
|   // ConstantRange already implements the cast operators.
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | |
|     T = SE.getTruncateOrZeroExtend(T, ZExt->getOperand()->getType());
 | |
|     ConstantRange X = getRange(ZExt->getOperand(), T, SE);
 | |
|     return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
 | |
|     T = SE.getTruncateOrZeroExtend(T, SExt->getOperand()->getType());
 | |
|     ConstantRange X = getRange(SExt->getOperand(), T, SE);
 | |
|     return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
 | |
|     T = SE.getTruncateOrZeroExtend(T, Trunc->getOperand()->getType());
 | |
|     ConstantRange X = getRange(Trunc->getOperand(), T, SE);
 | |
|     if (X.isFullSet()) return FullSet;
 | |
|     return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
 | |
|     if (!Trip) return FullSet;
 | |
| 
 | |
|     if (AddRec->isAffine()) {
 | |
|       const SCEV *StartHandle = AddRec->getStart();
 | |
|       const SCEV *StepHandle = AddRec->getOperand(1);
 | |
| 
 | |
|       const SCEVConstant *Step = dyn_cast<SCEVConstant>(StepHandle);
 | |
|       if (!Step) return FullSet;
 | |
| 
 | |
|       uint32_t ExWidth = 2 * Trip->getValue()->getBitWidth();
 | |
|       APInt TripExt = Trip->getValue()->getValue(); TripExt.zext(ExWidth);
 | |
|       APInt StepExt = Step->getValue()->getValue(); StepExt.zext(ExWidth);
 | |
|       if ((TripExt * StepExt).ugt(APInt::getLowBitsSet(ExWidth, ExWidth >> 1)))
 | |
|         return FullSet;
 | |
| 
 | |
|       const SCEV *EndHandle = SE.getAddExpr(StartHandle,
 | |
|                                            SE.getMulExpr(T, StepHandle));
 | |
|       const SCEVConstant *Start = dyn_cast<SCEVConstant>(StartHandle);
 | |
|       const SCEVConstant *End = dyn_cast<SCEVConstant>(EndHandle);
 | |
|       if (!Start || !End) return FullSet;
 | |
| 
 | |
|       const APInt &StartInt = Start->getValue()->getValue();
 | |
|       const APInt &EndInt = End->getValue()->getValue();
 | |
|       const APInt &StepInt = Step->getValue()->getValue();
 | |
| 
 | |
|       if (StepInt.isNegative()) {
 | |
|         if (EndInt == StartInt + 1) return FullSet;
 | |
|         return ConstantRange(EndInt, StartInt + 1);
 | |
|       } else {
 | |
|         if (StartInt == EndInt + 1) return FullSet;
 | |
|         return ConstantRange(StartInt, EndInt + 1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: non-affine addrec, udiv, SCEVUnknown (narrowed from elsewhere)?
 | |
| 
 | |
|   return FullSet;
 | |
| }
 | |
| 
 | |
| void LoopVR::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequiredTransitive<LoopInfo>();
 | |
|   AU.addRequiredTransitive<ScalarEvolution>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| bool LoopVR::runOnFunction(Function &F) { Map.clear(); return false; }
 | |
| 
 | |
| void LoopVR::print(std::ostream &os, const Module *) const {
 | |
|   raw_os_ostream OS(os);
 | |
|   for (std::map<Value *, ConstantRange *>::const_iterator I = Map.begin(),
 | |
|        E = Map.end(); I != E; ++I) {
 | |
|     OS << *I->first << ": " << *I->second << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopVR::releaseMemory() {
 | |
|   for (std::map<Value *, ConstantRange *>::iterator I = Map.begin(),
 | |
|        E = Map.end(); I != E; ++I) {
 | |
|     delete I->second;
 | |
|   }
 | |
| 
 | |
|   Map.clear();  
 | |
| }
 | |
| 
 | |
| ConstantRange LoopVR::compute(Value *V) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantRange(CI->getValue());
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
 | |
| 
 | |
|   LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
| 
 | |
|   Loop *L = LI.getLoopFor(I->getParent());
 | |
|   if (!L || L->isLoopInvariant(I))
 | |
|     return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
 | |
| 
 | |
|   ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
 | |
| 
 | |
|   const SCEV *S = SE.getSCEV(I);
 | |
|   if (isa<SCEVUnknown>(S) || isa<SCEVCouldNotCompute>(S))
 | |
|     return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
 | |
| 
 | |
|   return ConstantRange(getRange(S, L, SE));
 | |
| }
 | |
| 
 | |
| ConstantRange LoopVR::get(Value *V) {
 | |
|   std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
 | |
|   if (I == Map.end()) {
 | |
|     ConstantRange *CR = new ConstantRange(compute(V));
 | |
|     Map[V] = CR;
 | |
|     return *CR;
 | |
|   }
 | |
| 
 | |
|   return *I->second;
 | |
| }
 | |
| 
 | |
| void LoopVR::remove(Value *V) {
 | |
|   std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
 | |
|   if (I != Map.end()) {
 | |
|     delete I->second;
 | |
|     Map.erase(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopVR::narrow(Value *V, const ConstantRange &CR) {
 | |
|   if (CR.isFullSet()) return;
 | |
| 
 | |
|   std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
 | |
|   if (I == Map.end())
 | |
|     Map[V] = new ConstantRange(CR);
 | |
|   else
 | |
|     Map[V] = new ConstantRange(Map[V]->intersectWith(CR));
 | |
| }
 |