mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44296 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1374 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1374 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Sheng Zhou and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a class to represent arbitrary precision integral
 | 
						|
// constant values and operations on them.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_APINT_H
 | 
						|
#define LLVM_APINT_H
 | 
						|
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Bitcode/SerializationFwd.h"
 | 
						|
#include <cassert>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  /* An unsigned host type used as a single part of a multi-part
 | 
						|
     bignum.  */
 | 
						|
  typedef uint64_t integerPart;
 | 
						|
 | 
						|
  const unsigned int host_char_bit = 8;
 | 
						|
  const unsigned int integerPartWidth = host_char_bit * sizeof(integerPart);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              APInt Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// APInt - This class represents arbitrary precision constant integral values.
 | 
						|
/// It is a functional replacement for common case unsigned integer type like 
 | 
						|
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 
 | 
						|
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
 | 
						|
/// than 64-bits of precision. APInt provides a variety of arithmetic operators 
 | 
						|
/// and methods to manipulate integer values of any bit-width. It supports both
 | 
						|
/// the typical integer arithmetic and comparison operations as well as bitwise
 | 
						|
/// manipulation.
 | 
						|
///
 | 
						|
/// The class has several invariants worth noting:
 | 
						|
///   * All bit, byte, and word positions are zero-based.
 | 
						|
///   * Once the bit width is set, it doesn't change except by the Truncate, 
 | 
						|
///     SignExtend, or ZeroExtend operations.
 | 
						|
///   * All binary operators must be on APInt instances of the same bit width.
 | 
						|
///     Attempting to use these operators on instances with different bit 
 | 
						|
///     widths will yield an assertion.
 | 
						|
///   * The value is stored canonically as an unsigned value. For operations
 | 
						|
///     where it makes a difference, there are both signed and unsigned variants
 | 
						|
///     of the operation. For example, sdiv and udiv. However, because the bit
 | 
						|
///     widths must be the same, operations such as Mul and Add produce the same
 | 
						|
///     results regardless of whether the values are interpreted as signed or
 | 
						|
///     not.
 | 
						|
///   * In general, the class tries to follow the style of computation that LLVM
 | 
						|
///     uses in its IR. This simplifies its use for LLVM.
 | 
						|
///
 | 
						|
/// @brief Class for arbitrary precision integers.
 | 
						|
class APInt {
 | 
						|
 | 
						|
  uint32_t BitWidth;      ///< The number of bits in this APInt.
 | 
						|
 | 
						|
  /// This union is used to store the integer value. When the
 | 
						|
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
 | 
						|
  union {
 | 
						|
    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
 | 
						|
    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
 | 
						|
  };
 | 
						|
 | 
						|
  /// This enum is used to hold the constants we needed for APInt.
 | 
						|
  enum {
 | 
						|
    APINT_BITS_PER_WORD = sizeof(uint64_t) * 8, ///< Bits in a word
 | 
						|
    APINT_WORD_SIZE = sizeof(uint64_t)          ///< Byte size of a word
 | 
						|
  };
 | 
						|
 | 
						|
  /// This constructor is used only internally for speed of construction of
 | 
						|
  /// temporaries. It is unsafe for general use so it is not public.
 | 
						|
  /// @brief Fast internal constructor
 | 
						|
  APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { }
 | 
						|
 | 
						|
  /// @returns true if the number of bits <= 64, false otherwise.
 | 
						|
  /// @brief Determine if this APInt just has one word to store value.
 | 
						|
  inline bool isSingleWord() const { 
 | 
						|
    return BitWidth <= APINT_BITS_PER_WORD; 
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns the word position for the specified bit position.
 | 
						|
  /// @brief Determine which word a bit is in.
 | 
						|
  static inline uint32_t whichWord(uint32_t bitPosition) { 
 | 
						|
    return bitPosition / APINT_BITS_PER_WORD; 
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns the bit position in a word for the specified bit position 
 | 
						|
  /// in the APInt.
 | 
						|
  /// @brief Determine which bit in a word a bit is in.
 | 
						|
  static inline uint32_t whichBit(uint32_t bitPosition) { 
 | 
						|
    return bitPosition % APINT_BITS_PER_WORD; 
 | 
						|
  }
 | 
						|
 | 
						|
  /// This method generates and returns a uint64_t (word) mask for a single 
 | 
						|
  /// bit at a specific bit position. This is used to mask the bit in the 
 | 
						|
  /// corresponding word.
 | 
						|
  /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
 | 
						|
  /// @brief Get a single bit mask.
 | 
						|
  static inline uint64_t maskBit(uint32_t bitPosition) { 
 | 
						|
    return 1ULL << whichBit(bitPosition); 
 | 
						|
  }
 | 
						|
 | 
						|
  /// This method is used internally to clear the to "N" bits in the high order
 | 
						|
  /// word that are not used by the APInt. This is needed after the most 
 | 
						|
  /// significant word is assigned a value to ensure that those bits are 
 | 
						|
  /// zero'd out.
 | 
						|
  /// @brief Clear unused high order bits
 | 
						|
  inline APInt& clearUnusedBits() {
 | 
						|
    // Compute how many bits are used in the final word
 | 
						|
    uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
 | 
						|
    if (wordBits == 0)
 | 
						|
      // If all bits are used, we want to leave the value alone. This also
 | 
						|
      // avoids the undefined behavior of >> when the shfit is the same size as
 | 
						|
      // the word size (64).
 | 
						|
      return *this;
 | 
						|
 | 
						|
    // Mask out the hight bits.
 | 
						|
    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
 | 
						|
    if (isSingleWord())
 | 
						|
      VAL &= mask;
 | 
						|
    else
 | 
						|
      pVal[getNumWords() - 1] &= mask;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns the corresponding word for the specified bit position.
 | 
						|
  /// @brief Get the word corresponding to a bit position
 | 
						|
  inline uint64_t getWord(uint32_t bitPosition) const { 
 | 
						|
    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; 
 | 
						|
  }
 | 
						|
 | 
						|
  /// This is used by the constructors that take string arguments.
 | 
						|
  /// @brief Convert a char array into an APInt
 | 
						|
  void fromString(uint32_t numBits, const char *strStart, uint32_t slen, 
 | 
						|
                  uint8_t radix);
 | 
						|
 | 
						|
  /// This is used by the toString method to divide by the radix. It simply
 | 
						|
  /// provides a more convenient form of divide for internal use since KnuthDiv
 | 
						|
  /// has specific constraints on its inputs. If those constraints are not met
 | 
						|
  /// then it provides a simpler form of divide.
 | 
						|
  /// @brief An internal division function for dividing APInts.
 | 
						|
  static void divide(const APInt LHS, uint32_t lhsWords, 
 | 
						|
                     const APInt &RHS, uint32_t rhsWords,
 | 
						|
                     APInt *Quotient, APInt *Remainder);
 | 
						|
 | 
						|
public:
 | 
						|
  /// @name Constructors
 | 
						|
  /// @{
 | 
						|
  /// If isSigned is true then val is treated as if it were a signed value
 | 
						|
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
 | 
						|
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
 | 
						|
  /// the range of val are zero filled).
 | 
						|
  /// @param numBits the bit width of the constructed APInt
 | 
						|
  /// @param val the initial value of the APInt
 | 
						|
  /// @param isSigned how to treat signedness of val
 | 
						|
  /// @brief Create a new APInt of numBits width, initialized as val.
 | 
						|
  APInt(uint32_t numBits, uint64_t val, bool isSigned = false);
 | 
						|
 | 
						|
  /// Note that numWords can be smaller or larger than the corresponding bit
 | 
						|
  /// width but any extraneous bits will be dropped.
 | 
						|
  /// @param numBits the bit width of the constructed APInt
 | 
						|
  /// @param numWords the number of words in bigVal
 | 
						|
  /// @param bigVal a sequence of words to form the initial value of the APInt
 | 
						|
  /// @brief Construct an APInt of numBits width, initialized as bigVal[].
 | 
						|
  APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]);
 | 
						|
 | 
						|
  /// This constructor interprets Val as a string in the given radix. The 
 | 
						|
  /// interpretation stops when the first charater that is not suitable for the
 | 
						|
  /// radix is encountered. Acceptable radix values are 2, 8, 10 and 16. It is
 | 
						|
  /// an error for the value implied by the string to require more bits than 
 | 
						|
  /// numBits.
 | 
						|
  /// @param numBits the bit width of the constructed APInt
 | 
						|
  /// @param val the string to be interpreted
 | 
						|
  /// @param radix the radix of Val to use for the intepretation
 | 
						|
  /// @brief Construct an APInt from a string representation.
 | 
						|
  APInt(uint32_t numBits, const std::string& val, uint8_t radix);
 | 
						|
 | 
						|
  /// This constructor interprets the slen characters starting at StrStart as
 | 
						|
  /// a string in the given radix. The interpretation stops when the first 
 | 
						|
  /// character that is not suitable for the radix is encountered. Acceptable
 | 
						|
  /// radix values are 2, 8, 10 and 16. It is an error for the value implied by
 | 
						|
  /// the string to require more bits than numBits.
 | 
						|
  /// @param numBits the bit width of the constructed APInt
 | 
						|
  /// @param strStart the start of the string to be interpreted
 | 
						|
  /// @param slen the maximum number of characters to interpret
 | 
						|
  /// @param radix the radix to use for the conversion
 | 
						|
  /// @brief Construct an APInt from a string representation.
 | 
						|
  APInt(uint32_t numBits, const char strStart[], uint32_t slen, uint8_t radix);
 | 
						|
 | 
						|
  /// Simply makes *this a copy of that.
 | 
						|
  /// @brief Copy Constructor.
 | 
						|
  APInt(const APInt& that);
 | 
						|
 | 
						|
  /// @brief Destructor.
 | 
						|
  ~APInt();
 | 
						|
  
 | 
						|
  /// Default constructor that creates an uninitialized APInt.  This is useful
 | 
						|
  ///  for object deserialization (pair this with the static method Read).
 | 
						|
  explicit APInt() : BitWidth(1) {}
 | 
						|
  
 | 
						|
  /// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
 | 
						|
  void Emit(Serializer& S) const;
 | 
						|
  
 | 
						|
  /// @brief Used by the Bitcode deserializer to deserialize APInts.
 | 
						|
  void Read(Deserializer& D);
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Value Tests
 | 
						|
  /// @{
 | 
						|
  /// This tests the high bit of this APInt to determine if it is set.
 | 
						|
  /// @returns true if this APInt is negative, false otherwise
 | 
						|
  /// @brief Determine sign of this APInt.
 | 
						|
  bool isNegative() const {
 | 
						|
    return (*this)[BitWidth - 1];
 | 
						|
  }
 | 
						|
 | 
						|
  /// This tests the high bit of the APInt to determine if it is unset.
 | 
						|
  /// @brief Determine if this APInt Value is positive (not negative).
 | 
						|
  bool isPositive() const {
 | 
						|
    return !isNegative();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This tests if the value of this APInt is strictly positive (> 0).
 | 
						|
  /// @returns true if this APInt is Positive and not zero.
 | 
						|
  /// @brief Determine if this APInt Value is strictly positive.
 | 
						|
  inline bool isStrictlyPositive() const {
 | 
						|
    return isPositive() && (*this) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This checks to see if the value has all bits of the APInt are set or not.
 | 
						|
  /// @brief Determine if all bits are set
 | 
						|
  inline bool isAllOnesValue() const {
 | 
						|
    return countPopulation() == BitWidth;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This checks to see if the value of this APInt is the maximum unsigned
 | 
						|
  /// value for the APInt's bit width.
 | 
						|
  /// @brief Determine if this is the largest unsigned value.
 | 
						|
  bool isMaxValue() const {
 | 
						|
    return countPopulation() == BitWidth;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This checks to see if the value of this APInt is the maximum signed
 | 
						|
  /// value for the APInt's bit width.
 | 
						|
  /// @brief Determine if this is the largest signed value.
 | 
						|
  bool isMaxSignedValue() const {
 | 
						|
    return BitWidth == 1 ? VAL == 0 :
 | 
						|
                          !isNegative() && countPopulation() == BitWidth - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This checks to see if the value of this APInt is the minimum unsigned
 | 
						|
  /// value for the APInt's bit width.
 | 
						|
  /// @brief Determine if this is the smallest unsigned value.
 | 
						|
  bool isMinValue() const {
 | 
						|
    return countPopulation() == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This checks to see if the value of this APInt is the minimum signed
 | 
						|
  /// value for the APInt's bit width.
 | 
						|
  /// @brief Determine if this is the smallest signed value.
 | 
						|
  bool isMinSignedValue() const {
 | 
						|
    return BitWidth == 1 ? VAL == 1 :
 | 
						|
                           isNegative() && countPopulation() == 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Check if this APInt has an N-bits integer value.
 | 
						|
  inline bool isIntN(uint32_t N) const {
 | 
						|
    assert(N && "N == 0 ???");
 | 
						|
    if (isSingleWord()) {
 | 
						|
      return VAL == (VAL & (~0ULL >> (64 - N)));
 | 
						|
    } else {
 | 
						|
      APInt Tmp(N, getNumWords(), pVal);
 | 
						|
      return Tmp == (*this);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns true if the argument APInt value is a power of two > 0.
 | 
						|
  bool isPowerOf2() const; 
 | 
						|
 | 
						|
  /// isSignBit - Return true if this is the value returned by getSignBit.
 | 
						|
  bool isSignBit() const { return isMinSignedValue(); }
 | 
						|
  
 | 
						|
  /// This converts the APInt to a boolean value as a test against zero.
 | 
						|
  /// @brief Boolean conversion function. 
 | 
						|
  inline bool getBoolValue() const {
 | 
						|
    return *this != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getLimitedValue - If this value is smaller than the specified limit,
 | 
						|
  /// return it, otherwise return the limit value.  This causes the value
 | 
						|
  /// to saturate to the limit.
 | 
						|
  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
 | 
						|
    return (getActiveBits() > 64 || getZExtValue() > Limit) ?
 | 
						|
      Limit :  getZExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Value Generators
 | 
						|
  /// @{
 | 
						|
  /// @brief Gets maximum unsigned value of APInt for specific bit width.
 | 
						|
  static APInt getMaxValue(uint32_t numBits) {
 | 
						|
    return APInt(numBits, 0).set();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Gets maximum signed value of APInt for a specific bit width.
 | 
						|
  static APInt getSignedMaxValue(uint32_t numBits) {
 | 
						|
    return APInt(numBits, 0).set().clear(numBits - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Gets minimum unsigned value of APInt for a specific bit width.
 | 
						|
  static APInt getMinValue(uint32_t numBits) {
 | 
						|
    return APInt(numBits, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Gets minimum signed value of APInt for a specific bit width.
 | 
						|
  static APInt getSignedMinValue(uint32_t numBits) {
 | 
						|
    return APInt(numBits, 0).set(numBits - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
 | 
						|
  /// it helps code readability when we want to get a SignBit.
 | 
						|
  /// @brief Get the SignBit for a specific bit width.
 | 
						|
  inline static APInt getSignBit(uint32_t BitWidth) {
 | 
						|
    return getSignedMinValue(BitWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns the all-ones value for an APInt of the specified bit-width.
 | 
						|
  /// @brief Get the all-ones value.
 | 
						|
  static APInt getAllOnesValue(uint32_t numBits) {
 | 
						|
    return APInt(numBits, 0).set();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns the '0' value for an APInt of the specified bit-width.
 | 
						|
  /// @brief Get the '0' value.
 | 
						|
  static APInt getNullValue(uint32_t numBits) {
 | 
						|
    return APInt(numBits, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
 | 
						|
  /// the low bits and right shift to the least significant bit.
 | 
						|
  /// @returns the high "numBits" bits of this APInt.
 | 
						|
  APInt getHiBits(uint32_t numBits) const;
 | 
						|
 | 
						|
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
 | 
						|
  /// the high bits.
 | 
						|
  /// @returns the low "numBits" bits of this APInt.
 | 
						|
  APInt getLoBits(uint32_t numBits) const;
 | 
						|
 | 
						|
  /// Constructs an APInt value that has a contiguous range of bits set. The
 | 
						|
  /// bits from loBit to hiBit will be set. All other bits will be zero. For
 | 
						|
  /// example, with parameters(32, 15, 0) you would get 0x0000FFFF. If hiBit is
 | 
						|
  /// less than loBit then the set bits "wrap". For example, with 
 | 
						|
  /// parameters (32, 3, 28), you would get 0xF000000F. 
 | 
						|
  /// @param numBits the intended bit width of the result
 | 
						|
  /// @param loBit the index of the lowest bit set.
 | 
						|
  /// @param hiBit the index of the highest bit set.
 | 
						|
  /// @returns An APInt value with the requested bits set.
 | 
						|
  /// @brief Get a value with a block of bits set.
 | 
						|
  static APInt getBitsSet(uint32_t numBits, uint32_t loBit, uint32_t hiBit) {
 | 
						|
    assert(hiBit < numBits && "hiBit out of range");
 | 
						|
    assert(loBit < numBits && "loBit out of range");
 | 
						|
    if (hiBit < loBit)
 | 
						|
      return getLowBitsSet(numBits, hiBit+1) |
 | 
						|
             getHighBitsSet(numBits, numBits-loBit+1);
 | 
						|
    return getLowBitsSet(numBits, hiBit-loBit+1).shl(loBit);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Constructs an APInt value that has the top hiBitsSet bits set.
 | 
						|
  /// @param numBits the bitwidth of the result
 | 
						|
  /// @param hiBitsSet the number of high-order bits set in the result.
 | 
						|
  /// @brief Get a value with high bits set
 | 
						|
  static APInt getHighBitsSet(uint32_t numBits, uint32_t hiBitsSet) {
 | 
						|
    assert(hiBitsSet <= numBits && "Too many bits to set!");
 | 
						|
    // Handle a degenerate case, to avoid shifting by word size
 | 
						|
    if (hiBitsSet == 0)
 | 
						|
      return APInt(numBits, 0);
 | 
						|
    uint32_t shiftAmt = numBits - hiBitsSet;
 | 
						|
    // For small values, return quickly
 | 
						|
    if (numBits <= APINT_BITS_PER_WORD)
 | 
						|
      return APInt(numBits, ~0ULL << shiftAmt);
 | 
						|
    return (~APInt(numBits, 0)).shl(shiftAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
 | 
						|
  /// @param numBits the bitwidth of the result
 | 
						|
  /// @param loBitsSet the number of low-order bits set in the result.
 | 
						|
  /// @brief Get a value with low bits set
 | 
						|
  static APInt getLowBitsSet(uint32_t numBits, uint32_t loBitsSet) {
 | 
						|
    assert(loBitsSet <= numBits && "Too many bits to set!");
 | 
						|
    // Handle a degenerate case, to avoid shifting by word size
 | 
						|
    if (loBitsSet == 0)
 | 
						|
      return APInt(numBits, 0);
 | 
						|
    if (loBitsSet == APINT_BITS_PER_WORD)
 | 
						|
      return APInt(numBits, -1ULL);
 | 
						|
    // For small values, return quickly
 | 
						|
    if (numBits < APINT_BITS_PER_WORD)
 | 
						|
      return APInt(numBits, (1ULL << loBitsSet) - 1);
 | 
						|
    return (~APInt(numBits, 0)).lshr(numBits - loBitsSet);
 | 
						|
  }
 | 
						|
 | 
						|
  /// The hash value is computed as the sum of the words and the bit width.
 | 
						|
  /// @returns A hash value computed from the sum of the APInt words.
 | 
						|
  /// @brief Get a hash value based on this APInt
 | 
						|
  uint64_t getHashValue() const;
 | 
						|
 | 
						|
  /// This function returns a pointer to the internal storage of the APInt. 
 | 
						|
  /// This is useful for writing out the APInt in binary form without any
 | 
						|
  /// conversions.
 | 
						|
  inline const uint64_t* getRawData() const {
 | 
						|
    if (isSingleWord())
 | 
						|
      return &VAL;
 | 
						|
    return &pVal[0];
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Unary Operators
 | 
						|
  /// @{
 | 
						|
  /// @returns a new APInt value representing *this incremented by one
 | 
						|
  /// @brief Postfix increment operator.
 | 
						|
  inline const APInt operator++(int) {
 | 
						|
    APInt API(*this);
 | 
						|
    ++(*this);
 | 
						|
    return API;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns *this incremented by one
 | 
						|
  /// @brief Prefix increment operator.
 | 
						|
  APInt& operator++();
 | 
						|
 | 
						|
  /// @returns a new APInt representing *this decremented by one.
 | 
						|
  /// @brief Postfix decrement operator. 
 | 
						|
  inline const APInt operator--(int) {
 | 
						|
    APInt API(*this);
 | 
						|
    --(*this);
 | 
						|
    return API;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns *this decremented by one.
 | 
						|
  /// @brief Prefix decrement operator. 
 | 
						|
  APInt& operator--();
 | 
						|
 | 
						|
  /// Performs a bitwise complement operation on this APInt. 
 | 
						|
  /// @returns an APInt that is the bitwise complement of *this
 | 
						|
  /// @brief Unary bitwise complement operator. 
 | 
						|
  APInt operator~() const;
 | 
						|
 | 
						|
  /// Negates *this using two's complement logic.
 | 
						|
  /// @returns An APInt value representing the negation of *this.
 | 
						|
  /// @brief Unary negation operator
 | 
						|
  inline APInt operator-() const {
 | 
						|
    return APInt(BitWidth, 0) - (*this);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Performs logical negation operation on this APInt.
 | 
						|
  /// @returns true if *this is zero, false otherwise.
 | 
						|
  /// @brief Logical negation operator. 
 | 
						|
  bool operator !() const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Assignment Operators
 | 
						|
  /// @{
 | 
						|
  /// @returns *this after assignment of RHS.
 | 
						|
  /// @brief Copy assignment operator. 
 | 
						|
  APInt& operator=(const APInt& RHS);
 | 
						|
 | 
						|
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
 | 
						|
  /// the bit width, the excess bits are truncated. If the bit width is larger
 | 
						|
  /// than 64, the value is zero filled in the unspecified high order bits.
 | 
						|
  /// @returns *this after assignment of RHS value.
 | 
						|
  /// @brief Assignment operator. 
 | 
						|
  APInt& operator=(uint64_t RHS);
 | 
						|
 | 
						|
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
 | 
						|
  /// assigned to *this. 
 | 
						|
  /// @returns *this after ANDing with RHS.
 | 
						|
  /// @brief Bitwise AND assignment operator. 
 | 
						|
  APInt& operator&=(const APInt& RHS);
 | 
						|
 | 
						|
  /// Performs a bitwise OR operation on this APInt and RHS. The result is 
 | 
						|
  /// assigned *this;
 | 
						|
  /// @returns *this after ORing with RHS.
 | 
						|
  /// @brief Bitwise OR assignment operator. 
 | 
						|
  APInt& operator|=(const APInt& RHS);
 | 
						|
 | 
						|
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
 | 
						|
  /// assigned to *this.
 | 
						|
  /// @returns *this after XORing with RHS.
 | 
						|
  /// @brief Bitwise XOR assignment operator. 
 | 
						|
  APInt& operator^=(const APInt& RHS);
 | 
						|
 | 
						|
  /// Multiplies this APInt by RHS and assigns the result to *this.
 | 
						|
  /// @returns *this
 | 
						|
  /// @brief Multiplication assignment operator. 
 | 
						|
  APInt& operator*=(const APInt& RHS);
 | 
						|
 | 
						|
  /// Adds RHS to *this and assigns the result to *this.
 | 
						|
  /// @returns *this
 | 
						|
  /// @brief Addition assignment operator. 
 | 
						|
  APInt& operator+=(const APInt& RHS);
 | 
						|
 | 
						|
  /// Subtracts RHS from *this and assigns the result to *this.
 | 
						|
  /// @returns *this
 | 
						|
  /// @brief Subtraction assignment operator. 
 | 
						|
  APInt& operator-=(const APInt& RHS);
 | 
						|
 | 
						|
  /// Shifts *this left by shiftAmt and assigns the result to *this.
 | 
						|
  /// @returns *this after shifting left by shiftAmt
 | 
						|
  /// @brief Left-shift assignment function.
 | 
						|
  inline APInt& operator<<=(uint32_t shiftAmt) {
 | 
						|
    *this = shl(shiftAmt);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Binary Operators
 | 
						|
  /// @{
 | 
						|
  /// Performs a bitwise AND operation on *this and RHS.
 | 
						|
  /// @returns An APInt value representing the bitwise AND of *this and RHS.
 | 
						|
  /// @brief Bitwise AND operator. 
 | 
						|
  APInt operator&(const APInt& RHS) const;
 | 
						|
  APInt And(const APInt& RHS) const {
 | 
						|
    return this->operator&(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Performs a bitwise OR operation on *this and RHS.
 | 
						|
  /// @returns An APInt value representing the bitwise OR of *this and RHS.
 | 
						|
  /// @brief Bitwise OR operator. 
 | 
						|
  APInt operator|(const APInt& RHS) const;
 | 
						|
  APInt Or(const APInt& RHS) const {
 | 
						|
    return this->operator|(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Performs a bitwise XOR operation on *this and RHS.
 | 
						|
  /// @returns An APInt value representing the bitwise XOR of *this and RHS.
 | 
						|
  /// @brief Bitwise XOR operator. 
 | 
						|
  APInt operator^(const APInt& RHS) const;
 | 
						|
  APInt Xor(const APInt& RHS) const {
 | 
						|
    return this->operator^(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Multiplies this APInt by RHS and returns the result.
 | 
						|
  /// @brief Multiplication operator. 
 | 
						|
  APInt operator*(const APInt& RHS) const;
 | 
						|
 | 
						|
  /// Adds RHS to this APInt and returns the result.
 | 
						|
  /// @brief Addition operator. 
 | 
						|
  APInt operator+(const APInt& RHS) const;
 | 
						|
  APInt operator+(uint64_t RHS) const {
 | 
						|
    return (*this) + APInt(BitWidth, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Subtracts RHS from this APInt and returns the result.
 | 
						|
  /// @brief Subtraction operator. 
 | 
						|
  APInt operator-(const APInt& RHS) const;
 | 
						|
  APInt operator-(uint64_t RHS) const {
 | 
						|
    return (*this) - APInt(BitWidth, RHS);
 | 
						|
  }
 | 
						|
  
 | 
						|
  APInt operator<<(unsigned Bits) const {
 | 
						|
    return shl(Bits);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Arithmetic right-shift this APInt by shiftAmt.
 | 
						|
  /// @brief Arithmetic right-shift function.
 | 
						|
  APInt ashr(uint32_t shiftAmt) const;
 | 
						|
 | 
						|
  /// Logical right-shift this APInt by shiftAmt.
 | 
						|
  /// @brief Logical right-shift function.
 | 
						|
  APInt lshr(uint32_t shiftAmt) const;
 | 
						|
 | 
						|
  /// Left-shift this APInt by shiftAmt.
 | 
						|
  /// @brief Left-shift function.
 | 
						|
  APInt shl(uint32_t shiftAmt) const;
 | 
						|
 | 
						|
  /// @brief Rotate left by rotateAmt.
 | 
						|
  APInt rotl(uint32_t rotateAmt) const;
 | 
						|
 | 
						|
  /// @brief Rotate right by rotateAmt.
 | 
						|
  APInt rotr(uint32_t rotateAmt) const;
 | 
						|
 | 
						|
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
 | 
						|
  /// RHS are treated as unsigned quantities for purposes of this division.
 | 
						|
  /// @returns a new APInt value containing the division result
 | 
						|
  /// @brief Unsigned division operation.
 | 
						|
  APInt udiv(const APInt& RHS) const;
 | 
						|
 | 
						|
  /// Signed divide this APInt by APInt RHS.
 | 
						|
  /// @brief Signed division function for APInt.
 | 
						|
  inline APInt sdiv(const APInt& RHS) const {
 | 
						|
    if (isNegative())
 | 
						|
      if (RHS.isNegative())
 | 
						|
        return (-(*this)).udiv(-RHS);
 | 
						|
      else
 | 
						|
        return -((-(*this)).udiv(RHS));
 | 
						|
    else if (RHS.isNegative())
 | 
						|
      return -(this->udiv(-RHS));
 | 
						|
    return this->udiv(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Perform an unsigned remainder operation on this APInt with RHS being the
 | 
						|
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
 | 
						|
  /// of this operation. Note that this is a true remainder operation and not
 | 
						|
  /// a modulo operation because the sign follows the sign of the dividend
 | 
						|
  /// which is *this.
 | 
						|
  /// @returns a new APInt value containing the remainder result
 | 
						|
  /// @brief Unsigned remainder operation.
 | 
						|
  APInt urem(const APInt& RHS) const;
 | 
						|
 | 
						|
  /// Signed remainder operation on APInt.
 | 
						|
  /// @brief Function for signed remainder operation.
 | 
						|
  inline APInt srem(const APInt& RHS) const {
 | 
						|
    if (isNegative())
 | 
						|
      if (RHS.isNegative())
 | 
						|
        return -((-(*this)).urem(-RHS));
 | 
						|
      else
 | 
						|
        return -((-(*this)).urem(RHS));
 | 
						|
    else if (RHS.isNegative())
 | 
						|
      return this->urem(-RHS);
 | 
						|
    return this->urem(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Sometimes it is convenient to divide two APInt values and obtain both
 | 
						|
  /// the quotient and remainder. This function does both operations in the
 | 
						|
  /// same computation making it a little more efficient.
 | 
						|
  /// @brief Dual division/remainder interface.
 | 
						|
  static void udivrem(const APInt &LHS, const APInt &RHS, 
 | 
						|
                      APInt &Quotient, APInt &Remainder);
 | 
						|
 | 
						|
  static void sdivrem(const APInt &LHS, const APInt &RHS,
 | 
						|
                      APInt &Quotient, APInt &Remainder)
 | 
						|
  {
 | 
						|
    if (LHS.isNegative()) {
 | 
						|
      if (RHS.isNegative())
 | 
						|
        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
 | 
						|
      else
 | 
						|
        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
 | 
						|
      Quotient = -Quotient;
 | 
						|
      Remainder = -Remainder;
 | 
						|
    } else if (RHS.isNegative()) {
 | 
						|
      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
 | 
						|
      Quotient = -Quotient;
 | 
						|
    } else {
 | 
						|
      APInt::udivrem(LHS, RHS, Quotient, Remainder);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns the bit value at bitPosition
 | 
						|
  /// @brief Array-indexing support.
 | 
						|
  bool operator[](uint32_t bitPosition) const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Comparison Operators
 | 
						|
  /// @{
 | 
						|
  /// Compares this APInt with RHS for the validity of the equality
 | 
						|
  /// relationship.
 | 
						|
  /// @brief Equality operator. 
 | 
						|
  bool operator==(const APInt& RHS) const;
 | 
						|
 | 
						|
  /// Compares this APInt with a uint64_t for the validity of the equality 
 | 
						|
  /// relationship.
 | 
						|
  /// @returns true if *this == Val
 | 
						|
  /// @brief Equality operator.
 | 
						|
  bool operator==(uint64_t Val) const;
 | 
						|
 | 
						|
  /// Compares this APInt with RHS for the validity of the equality
 | 
						|
  /// relationship.
 | 
						|
  /// @returns true if *this == Val
 | 
						|
  /// @brief Equality comparison.
 | 
						|
  bool eq(const APInt &RHS) const {
 | 
						|
    return (*this) == RHS; 
 | 
						|
  }
 | 
						|
 | 
						|
  /// Compares this APInt with RHS for the validity of the inequality
 | 
						|
  /// relationship.
 | 
						|
  /// @returns true if *this != Val
 | 
						|
  /// @brief Inequality operator. 
 | 
						|
  inline bool operator!=(const APInt& RHS) const {
 | 
						|
    return !((*this) == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Compares this APInt with a uint64_t for the validity of the inequality 
 | 
						|
  /// relationship.
 | 
						|
  /// @returns true if *this != Val
 | 
						|
  /// @brief Inequality operator. 
 | 
						|
  inline bool operator!=(uint64_t Val) const {
 | 
						|
    return !((*this) == Val);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// Compares this APInt with RHS for the validity of the inequality
 | 
						|
  /// relationship.
 | 
						|
  /// @returns true if *this != Val
 | 
						|
  /// @brief Inequality comparison
 | 
						|
  bool ne(const APInt &RHS) const {
 | 
						|
    return !((*this) == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Regards both *this and RHS as unsigned quantities and compares them for
 | 
						|
  /// the validity of the less-than relationship.
 | 
						|
  /// @returns true if *this < RHS when both are considered unsigned.
 | 
						|
  /// @brief Unsigned less than comparison
 | 
						|
  bool ult(const APInt& RHS) const;
 | 
						|
 | 
						|
  /// Regards both *this and RHS as signed quantities and compares them for
 | 
						|
  /// validity of the less-than relationship.
 | 
						|
  /// @returns true if *this < RHS when both are considered signed.
 | 
						|
  /// @brief Signed less than comparison
 | 
						|
  bool slt(const APInt& RHS) const;
 | 
						|
 | 
						|
  /// Regards both *this and RHS as unsigned quantities and compares them for
 | 
						|
  /// validity of the less-or-equal relationship.
 | 
						|
  /// @returns true if *this <= RHS when both are considered unsigned.
 | 
						|
  /// @brief Unsigned less or equal comparison
 | 
						|
  bool ule(const APInt& RHS) const {
 | 
						|
    return ult(RHS) || eq(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Regards both *this and RHS as signed quantities and compares them for
 | 
						|
  /// validity of the less-or-equal relationship.
 | 
						|
  /// @returns true if *this <= RHS when both are considered signed.
 | 
						|
  /// @brief Signed less or equal comparison
 | 
						|
  bool sle(const APInt& RHS) const {
 | 
						|
    return slt(RHS) || eq(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Regards both *this and RHS as unsigned quantities and compares them for
 | 
						|
  /// the validity of the greater-than relationship.
 | 
						|
  /// @returns true if *this > RHS when both are considered unsigned.
 | 
						|
  /// @brief Unsigned greather than comparison
 | 
						|
  bool ugt(const APInt& RHS) const {
 | 
						|
    return !ult(RHS) && !eq(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Regards both *this and RHS as signed quantities and compares them for
 | 
						|
  /// the validity of the greater-than relationship.
 | 
						|
  /// @returns true if *this > RHS when both are considered signed.
 | 
						|
  /// @brief Signed greather than comparison
 | 
						|
  bool sgt(const APInt& RHS) const {
 | 
						|
    return !slt(RHS) && !eq(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Regards both *this and RHS as unsigned quantities and compares them for
 | 
						|
  /// validity of the greater-or-equal relationship.
 | 
						|
  /// @returns true if *this >= RHS when both are considered unsigned.
 | 
						|
  /// @brief Unsigned greater or equal comparison
 | 
						|
  bool uge(const APInt& RHS) const {
 | 
						|
    return !ult(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Regards both *this and RHS as signed quantities and compares them for
 | 
						|
  /// validity of the greater-or-equal relationship.
 | 
						|
  /// @returns true if *this >= RHS when both are considered signed.
 | 
						|
  /// @brief Signed greather or equal comparison
 | 
						|
  bool sge(const APInt& RHS) const {
 | 
						|
    return !slt(RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Resizing Operators
 | 
						|
  /// @{
 | 
						|
  /// Truncate the APInt to a specified width. It is an error to specify a width
 | 
						|
  /// that is greater than or equal to the current width. 
 | 
						|
  /// @brief Truncate to new width.
 | 
						|
  APInt &trunc(uint32_t width);
 | 
						|
 | 
						|
  /// This operation sign extends the APInt to a new width. If the high order
 | 
						|
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
 | 
						|
  /// It is an error to specify a width that is less than or equal to the 
 | 
						|
  /// current width.
 | 
						|
  /// @brief Sign extend to a new width.
 | 
						|
  APInt &sext(uint32_t width);
 | 
						|
 | 
						|
  /// This operation zero extends the APInt to a new width. The high order bits
 | 
						|
  /// are filled with 0 bits.  It is an error to specify a width that is less 
 | 
						|
  /// than or equal to the current width.
 | 
						|
  /// @brief Zero extend to a new width.
 | 
						|
  APInt &zext(uint32_t width);
 | 
						|
 | 
						|
  /// Make this APInt have the bit width given by \p width. The value is sign
 | 
						|
  /// extended, truncated, or left alone to make it that width.
 | 
						|
  /// @brief Sign extend or truncate to width
 | 
						|
  APInt &sextOrTrunc(uint32_t width);
 | 
						|
 | 
						|
  /// Make this APInt have the bit width given by \p width. The value is zero
 | 
						|
  /// extended, truncated, or left alone to make it that width.
 | 
						|
  /// @brief Zero extend or truncate to width
 | 
						|
  APInt &zextOrTrunc(uint32_t width);
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Bit Manipulation Operators
 | 
						|
  /// @{
 | 
						|
  /// @brief Set every bit to 1.
 | 
						|
  APInt& set();
 | 
						|
 | 
						|
  /// Set the given bit to 1 whose position is given as "bitPosition".
 | 
						|
  /// @brief Set a given bit to 1.
 | 
						|
  APInt& set(uint32_t bitPosition);
 | 
						|
 | 
						|
  /// @brief Set every bit to 0.
 | 
						|
  APInt& clear();
 | 
						|
 | 
						|
  /// Set the given bit to 0 whose position is given as "bitPosition".
 | 
						|
  /// @brief Set a given bit to 0.
 | 
						|
  APInt& clear(uint32_t bitPosition);
 | 
						|
 | 
						|
  /// @brief Toggle every bit to its opposite value.
 | 
						|
  APInt& flip();
 | 
						|
 | 
						|
  /// Toggle a given bit to its opposite value whose position is given 
 | 
						|
  /// as "bitPosition".
 | 
						|
  /// @brief Toggles a given bit to its opposite value.
 | 
						|
  APInt& flip(uint32_t bitPosition);
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Value Characterization Functions
 | 
						|
  /// @{
 | 
						|
 | 
						|
  /// @returns the total number of bits.
 | 
						|
  inline uint32_t getBitWidth() const { 
 | 
						|
    return BitWidth; 
 | 
						|
  }
 | 
						|
 | 
						|
  /// Here one word's bitwidth equals to that of uint64_t.
 | 
						|
  /// @returns the number of words to hold the integer value of this APInt.
 | 
						|
  /// @brief Get the number of words.
 | 
						|
  inline uint32_t getNumWords() const {
 | 
						|
    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This function returns the number of active bits which is defined as the
 | 
						|
  /// bit width minus the number of leading zeros. This is used in several
 | 
						|
  /// computations to see how "wide" the value is.
 | 
						|
  /// @brief Compute the number of active bits in the value
 | 
						|
  inline uint32_t getActiveBits() const {
 | 
						|
    return BitWidth - countLeadingZeros();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This function returns the number of active words in the value of this
 | 
						|
  /// APInt. This is used in conjunction with getActiveData to extract the raw
 | 
						|
  /// value of the APInt.
 | 
						|
  inline uint32_t getActiveWords() const {
 | 
						|
    return whichWord(getActiveBits()-1) + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Computes the minimum bit width for this APInt while considering it to be
 | 
						|
  /// a signed (and probably negative) value. If the value is not negative, 
 | 
						|
  /// this function returns the same value as getActiveBits(). Otherwise, it
 | 
						|
  /// returns the smallest bit width that will retain the negative value. For
 | 
						|
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
 | 
						|
  /// for -1, this function will always return 1.
 | 
						|
  /// @brief Get the minimum bit size for this signed APInt 
 | 
						|
  inline uint32_t getMinSignedBits() const {
 | 
						|
    if (isNegative())
 | 
						|
      return BitWidth - countLeadingOnes() + 1;
 | 
						|
    return getActiveBits()+1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This method attempts to return the value of this APInt as a zero extended
 | 
						|
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
 | 
						|
  /// uint64_t. Otherwise an assertion will result.
 | 
						|
  /// @brief Get zero extended value
 | 
						|
  inline uint64_t getZExtValue() const {
 | 
						|
    if (isSingleWord())
 | 
						|
      return VAL;
 | 
						|
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
 | 
						|
    return pVal[0];
 | 
						|
  }
 | 
						|
 | 
						|
  /// This method attempts to return the value of this APInt as a sign extended
 | 
						|
  /// int64_t. The bit width must be <= 64 or the value must fit within an
 | 
						|
  /// int64_t. Otherwise an assertion will result.
 | 
						|
  /// @brief Get sign extended value
 | 
						|
  inline int64_t getSExtValue() const {
 | 
						|
    if (isSingleWord())
 | 
						|
      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> 
 | 
						|
                     (APINT_BITS_PER_WORD - BitWidth);
 | 
						|
    assert(getActiveBits() <= 64 && "Too many bits for int64_t");
 | 
						|
    return int64_t(pVal[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  /// This method determines how many bits are required to hold the APInt
 | 
						|
  /// equivalent of the string given by \p str of length \p slen.
 | 
						|
  /// @brief Get bits required for string value.
 | 
						|
  static uint32_t getBitsNeeded(const char* str, uint32_t slen, uint8_t radix);
 | 
						|
 | 
						|
  /// countLeadingZeros - This function is an APInt version of the
 | 
						|
  /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
 | 
						|
  /// of zeros from the most significant bit to the first one bit.
 | 
						|
  /// @returns BitWidth if the value is zero.
 | 
						|
  /// @returns the number of zeros from the most significant bit to the first
 | 
						|
  /// one bits.
 | 
						|
  uint32_t countLeadingZeros() const;
 | 
						|
 | 
						|
  /// countLeadingOnes - This function counts the number of contiguous 1 bits
 | 
						|
  /// in the high order bits. The count stops when the first 0 bit is reached.
 | 
						|
  /// @returns 0 if the high order bit is not set
 | 
						|
  /// @returns the number of 1 bits from the most significant to the least
 | 
						|
  /// @brief Count the number of leading one bits.
 | 
						|
  uint32_t countLeadingOnes() const;
 | 
						|
 | 
						|
  /// countTrailingZeros - This function is an APInt version of the 
 | 
						|
  /// countTrailingZoers_{32,64} functions in MathExtras.h. It counts 
 | 
						|
  /// the number of zeros from the least significant bit to the first set bit.
 | 
						|
  /// @returns BitWidth if the value is zero.
 | 
						|
  /// @returns the number of zeros from the least significant bit to the first
 | 
						|
  /// one bit.
 | 
						|
  /// @brief Count the number of trailing zero bits.
 | 
						|
  uint32_t countTrailingZeros() const;
 | 
						|
 | 
						|
  /// countPopulation - This function is an APInt version of the
 | 
						|
  /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
 | 
						|
  /// of 1 bits in the APInt value. 
 | 
						|
  /// @returns 0 if the value is zero.
 | 
						|
  /// @returns the number of set bits.
 | 
						|
  /// @brief Count the number of bits set.
 | 
						|
  uint32_t countPopulation() const; 
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Conversion Functions
 | 
						|
  /// @{
 | 
						|
 | 
						|
  /// This is used internally to convert an APInt to a string.
 | 
						|
  /// @brief Converts an APInt to a std::string
 | 
						|
  std::string toString(uint8_t radix, bool wantSigned) const;
 | 
						|
 | 
						|
  /// Considers the APInt to be unsigned and converts it into a string in the
 | 
						|
  /// radix given. The radix can be 2, 8, 10 or 16.
 | 
						|
  /// @returns a character interpretation of the APInt
 | 
						|
  /// @brief Convert unsigned APInt to string representation.
 | 
						|
  inline std::string toStringUnsigned(uint8_t radix = 10) const {
 | 
						|
    return toString(radix, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Considers the APInt to be unsigned and converts it into a string in the
 | 
						|
  /// radix given. The radix can be 2, 8, 10 or 16.
 | 
						|
  /// @returns a character interpretation of the APInt
 | 
						|
  /// @brief Convert unsigned APInt to string representation.
 | 
						|
  inline std::string toStringSigned(uint8_t radix = 10) const {
 | 
						|
    return toString(radix, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns a byte-swapped representation of this APInt Value.
 | 
						|
  APInt byteSwap() const;
 | 
						|
 | 
						|
  /// @brief Converts this APInt to a double value.
 | 
						|
  double roundToDouble(bool isSigned) const;
 | 
						|
 | 
						|
  /// @brief Converts this unsigned APInt to a double value.
 | 
						|
  double roundToDouble() const {
 | 
						|
    return roundToDouble(false);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Converts this signed APInt to a double value.
 | 
						|
  double signedRoundToDouble() const {
 | 
						|
    return roundToDouble(true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// The conversion does not do a translation from integer to double, it just
 | 
						|
  /// re-interprets the bits as a double. Note that it is valid to do this on
 | 
						|
  /// any bit width. Exactly 64 bits will be translated.
 | 
						|
  /// @brief Converts APInt bits to a double
 | 
						|
  double bitsToDouble() const {
 | 
						|
    union {
 | 
						|
      uint64_t I;
 | 
						|
      double D;
 | 
						|
    } T;
 | 
						|
    T.I = (isSingleWord() ? VAL : pVal[0]);
 | 
						|
    return T.D;
 | 
						|
  }
 | 
						|
 | 
						|
  /// The conversion does not do a translation from integer to float, it just
 | 
						|
  /// re-interprets the bits as a float. Note that it is valid to do this on
 | 
						|
  /// any bit width. Exactly 32 bits will be translated.
 | 
						|
  /// @brief Converts APInt bits to a double
 | 
						|
  float bitsToFloat() const {
 | 
						|
    union {
 | 
						|
      uint32_t I;
 | 
						|
      float F;
 | 
						|
    } T;
 | 
						|
    T.I = uint32_t((isSingleWord() ? VAL : pVal[0]));
 | 
						|
    return T.F;
 | 
						|
  }
 | 
						|
 | 
						|
  /// The conversion does not do a translation from double to integer, it just
 | 
						|
  /// re-interprets the bits of the double. Note that it is valid to do this on
 | 
						|
  /// any bit width but bits from V may get truncated.
 | 
						|
  /// @brief Converts a double to APInt bits.
 | 
						|
  APInt& doubleToBits(double V) {
 | 
						|
    union {
 | 
						|
      uint64_t I;
 | 
						|
      double D;
 | 
						|
    } T;
 | 
						|
    T.D = V;
 | 
						|
    if (isSingleWord())
 | 
						|
      VAL = T.I;
 | 
						|
    else
 | 
						|
      pVal[0] = T.I;
 | 
						|
    return clearUnusedBits();
 | 
						|
  }
 | 
						|
 | 
						|
  /// The conversion does not do a translation from float to integer, it just
 | 
						|
  /// re-interprets the bits of the float. Note that it is valid to do this on
 | 
						|
  /// any bit width but bits from V may get truncated.
 | 
						|
  /// @brief Converts a float to APInt bits.
 | 
						|
  APInt& floatToBits(float V) {
 | 
						|
    union {
 | 
						|
      uint32_t I;
 | 
						|
      float F;
 | 
						|
    } T;
 | 
						|
    T.F = V;
 | 
						|
    if (isSingleWord())
 | 
						|
      VAL = T.I;
 | 
						|
    else
 | 
						|
      pVal[0] = T.I;
 | 
						|
    return clearUnusedBits();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Mathematics Operations
 | 
						|
  /// @{
 | 
						|
 | 
						|
  /// @returns the floor log base 2 of this APInt.
 | 
						|
  inline uint32_t logBase2() const {
 | 
						|
    return BitWidth - 1 - countLeadingZeros();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @returns the log base 2 of this APInt if its an exact power of two, -1
 | 
						|
  /// otherwise
 | 
						|
  inline int32_t exactLogBase2() const {
 | 
						|
    if (!isPowerOf2())
 | 
						|
      return -1;
 | 
						|
    return logBase2();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Compute the square root
 | 
						|
  APInt sqrt() const;
 | 
						|
 | 
						|
  /// If *this is < 0 then return -(*this), otherwise *this;
 | 
						|
  /// @brief Get the absolute value;
 | 
						|
  APInt abs() const {
 | 
						|
    if (isNegative())
 | 
						|
      return -(*this);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// @name Building-block Operations for APInt and APFloat
 | 
						|
  /// @{
 | 
						|
 | 
						|
  // These building block operations operate on a representation of
 | 
						|
  // arbitrary precision, two's-complement, bignum integer values.
 | 
						|
  // They should be sufficient to implement APInt and APFloat bignum
 | 
						|
  // requirements.  Inputs are generally a pointer to the base of an
 | 
						|
  // array of integer parts, representing an unsigned bignum, and a
 | 
						|
  // count of how many parts there are.
 | 
						|
 | 
						|
  /// Sets the least significant part of a bignum to the input value,
 | 
						|
  /// and zeroes out higher parts.  */
 | 
						|
  static void tcSet(integerPart *, integerPart, unsigned int);
 | 
						|
 | 
						|
  /// Assign one bignum to another.
 | 
						|
  static void tcAssign(integerPart *, const integerPart *, unsigned int);
 | 
						|
 | 
						|
  /// Returns true if a bignum is zero, false otherwise.
 | 
						|
  static bool tcIsZero(const integerPart *, unsigned int);
 | 
						|
 | 
						|
  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
 | 
						|
  static int tcExtractBit(const integerPart *, unsigned int bit);
 | 
						|
 | 
						|
  /// Copy the bit vector of width srcBITS from SRC, starting at bit
 | 
						|
  /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
 | 
						|
  /// becomes the least significant bit of DST.  All high bits above
 | 
						|
  /// srcBITS in DST are zero-filled.
 | 
						|
  static void tcExtract(integerPart *, unsigned int dstCount, const integerPart *,
 | 
						|
                        unsigned int srcBits, unsigned int srcLSB);
 | 
						|
 | 
						|
  /// Set the given bit of a bignum.  Zero-based.
 | 
						|
  static void tcSetBit(integerPart *, unsigned int bit);
 | 
						|
 | 
						|
  /// Returns the bit number of the least or most significant set bit
 | 
						|
  /// of a number.  If the input number has no bits set -1U is
 | 
						|
  /// returned.
 | 
						|
  static unsigned int tcLSB(const integerPart *, unsigned int);
 | 
						|
  static unsigned int tcMSB(const integerPart *, unsigned int);
 | 
						|
 | 
						|
  /// Negate a bignum in-place.
 | 
						|
  static void tcNegate(integerPart *, unsigned int);
 | 
						|
 | 
						|
  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
 | 
						|
  /// carry flag.
 | 
						|
  static integerPart tcAdd(integerPart *, const integerPart *,
 | 
						|
			   integerPart carry, unsigned);
 | 
						|
 | 
						|
  /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
 | 
						|
  /// carry flag.
 | 
						|
  static integerPart tcSubtract(integerPart *, const integerPart *,
 | 
						|
				integerPart carry, unsigned);
 | 
						|
 | 
						|
  ///  DST += SRC * MULTIPLIER + PART   if add is true
 | 
						|
  ///  DST  = SRC * MULTIPLIER + PART   if add is false
 | 
						|
  ///
 | 
						|
  ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
 | 
						|
  ///  they must start at the same point, i.e. DST == SRC.
 | 
						|
  ///
 | 
						|
  ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
 | 
						|
  ///  returned.  Otherwise DST is filled with the least significant
 | 
						|
  ///  DSTPARTS parts of the result, and if all of the omitted higher
 | 
						|
  ///  parts were zero return zero, otherwise overflow occurred and
 | 
						|
  ///  return one.
 | 
						|
  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
 | 
						|
			    integerPart multiplier, integerPart carry,
 | 
						|
			    unsigned int srcParts, unsigned int dstParts,
 | 
						|
			    bool add);
 | 
						|
 | 
						|
  /// DST = LHS * RHS, where DST has the same width as the operands
 | 
						|
  /// and is filled with the least significant parts of the result.
 | 
						|
  /// Returns one if overflow occurred, otherwise zero.  DST must be
 | 
						|
  /// disjoint from both operands.
 | 
						|
  static int tcMultiply(integerPart *, const integerPart *,
 | 
						|
			const integerPart *, unsigned);
 | 
						|
 | 
						|
  /// DST = LHS * RHS, where DST has width the sum of the widths of
 | 
						|
  /// the operands.  No overflow occurs.  DST must be disjoint from
 | 
						|
  /// both operands. Returns the number of parts required to hold the
 | 
						|
  /// result.
 | 
						|
  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
 | 
						|
				     const integerPart *, unsigned, unsigned);
 | 
						|
 | 
						|
  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
 | 
						|
  /// Otherwise set LHS to LHS / RHS with the fractional part
 | 
						|
  /// discarded, set REMAINDER to the remainder, return zero.  i.e.
 | 
						|
  ///
 | 
						|
  ///  OLD_LHS = RHS * LHS + REMAINDER
 | 
						|
  ///
 | 
						|
  ///  SCRATCH is a bignum of the same size as the operands and result
 | 
						|
  ///  for use by the routine; its contents need not be initialized
 | 
						|
  ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
 | 
						|
  ///  distinct.
 | 
						|
  static int tcDivide(integerPart *lhs, const integerPart *rhs,
 | 
						|
		      integerPart *remainder, integerPart *scratch,
 | 
						|
		      unsigned int parts);
 | 
						|
 | 
						|
  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
 | 
						|
  /// There are no restrictions on COUNT.
 | 
						|
  static void tcShiftLeft(integerPart *, unsigned int parts,
 | 
						|
			  unsigned int count);
 | 
						|
 | 
						|
  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
 | 
						|
  /// There are no restrictions on COUNT.
 | 
						|
  static void tcShiftRight(integerPart *, unsigned int parts,
 | 
						|
			   unsigned int count);
 | 
						|
 | 
						|
  /// The obvious AND, OR and XOR and complement operations.
 | 
						|
  static void tcAnd(integerPart *, const integerPart *, unsigned int);
 | 
						|
  static void tcOr(integerPart *, const integerPart *, unsigned int);
 | 
						|
  static void tcXor(integerPart *, const integerPart *, unsigned int);
 | 
						|
  static void tcComplement(integerPart *, unsigned int);
 | 
						|
  
 | 
						|
  /// Comparison (unsigned) of two bignums.
 | 
						|
  static int tcCompare(const integerPart *, const integerPart *,
 | 
						|
		       unsigned int);
 | 
						|
 | 
						|
  /// Increment a bignum in-place.  Return the carry flag.
 | 
						|
  static integerPart tcIncrement(integerPart *, unsigned int);
 | 
						|
 | 
						|
  /// Set the least significant BITS and clear the rest.
 | 
						|
  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
 | 
						|
					unsigned int bits);
 | 
						|
 | 
						|
  /// @brief debug method
 | 
						|
  void dump() const;
 | 
						|
 | 
						|
  /// @}
 | 
						|
};
 | 
						|
 | 
						|
inline bool operator==(uint64_t V1, const APInt& V2) {
 | 
						|
  return V2 == V1;
 | 
						|
}
 | 
						|
 | 
						|
inline bool operator!=(uint64_t V1, const APInt& V2) {
 | 
						|
  return V2 != V1;
 | 
						|
}
 | 
						|
 | 
						|
namespace APIntOps {
 | 
						|
 | 
						|
/// @brief Determine the smaller of two APInts considered to be signed.
 | 
						|
inline APInt smin(const APInt &A, const APInt &B) {
 | 
						|
  return A.slt(B) ? A : B;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Determine the larger of two APInts considered to be signed.
 | 
						|
inline APInt smax(const APInt &A, const APInt &B) {
 | 
						|
  return A.sgt(B) ? A : B;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Determine the smaller of two APInts considered to be signed.
 | 
						|
inline APInt umin(const APInt &A, const APInt &B) {
 | 
						|
  return A.ult(B) ? A : B;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Determine the larger of two APInts considered to be unsigned.
 | 
						|
inline APInt umax(const APInt &A, const APInt &B) {
 | 
						|
  return A.ugt(B) ? A : B;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Check if the specified APInt has a N-bits integer value.
 | 
						|
inline bool isIntN(uint32_t N, const APInt& APIVal) {
 | 
						|
  return APIVal.isIntN(N);
 | 
						|
}
 | 
						|
 | 
						|
/// @returns true if the argument APInt value is a sequence of ones
 | 
						|
/// starting at the least significant bit with the remainder zero.
 | 
						|
inline bool isMask(uint32_t numBits, const APInt& APIVal) {
 | 
						|
  return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// @returns true if the argument APInt value contains a sequence of ones
 | 
						|
/// with the remainder zero.
 | 
						|
inline bool isShiftedMask(uint32_t numBits, const APInt& APIVal) {
 | 
						|
  return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
 | 
						|
}
 | 
						|
 | 
						|
/// @returns a byte-swapped representation of the specified APInt Value.
 | 
						|
inline APInt byteSwap(const APInt& APIVal) {
 | 
						|
  return APIVal.byteSwap();
 | 
						|
}
 | 
						|
 | 
						|
/// @returns the floor log base 2 of the specified APInt value.
 | 
						|
inline uint32_t logBase2(const APInt& APIVal) {
 | 
						|
  return APIVal.logBase2(); 
 | 
						|
}
 | 
						|
 | 
						|
/// GreatestCommonDivisor - This function returns the greatest common
 | 
						|
/// divisor of the two APInt values using Enclid's algorithm.
 | 
						|
/// @returns the greatest common divisor of Val1 and Val2
 | 
						|
/// @brief Compute GCD of two APInt values.
 | 
						|
APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
 | 
						|
 | 
						|
/// Treats the APInt as an unsigned value for conversion purposes.
 | 
						|
/// @brief Converts the given APInt to a double value.
 | 
						|
inline double RoundAPIntToDouble(const APInt& APIVal) {
 | 
						|
  return APIVal.roundToDouble();
 | 
						|
}
 | 
						|
 | 
						|
/// Treats the APInt as a signed value for conversion purposes.
 | 
						|
/// @brief Converts the given APInt to a double value.
 | 
						|
inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
 | 
						|
  return APIVal.signedRoundToDouble();
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Converts the given APInt to a float vlalue.
 | 
						|
inline float RoundAPIntToFloat(const APInt& APIVal) {
 | 
						|
  return float(RoundAPIntToDouble(APIVal));
 | 
						|
}
 | 
						|
 | 
						|
/// Treast the APInt as a signed value for conversion purposes.
 | 
						|
/// @brief Converts the given APInt to a float value.
 | 
						|
inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
 | 
						|
  return float(APIVal.signedRoundToDouble());
 | 
						|
}
 | 
						|
 | 
						|
/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
 | 
						|
/// @brief Converts the given double value into a APInt.
 | 
						|
APInt RoundDoubleToAPInt(double Double, uint32_t width);
 | 
						|
 | 
						|
/// RoundFloatToAPInt - Converts a float value into an APInt value.
 | 
						|
/// @brief Converts a float value into a APInt.
 | 
						|
inline APInt RoundFloatToAPInt(float Float, uint32_t width) {
 | 
						|
  return RoundDoubleToAPInt(double(Float), width);
 | 
						|
}
 | 
						|
 | 
						|
/// Arithmetic right-shift the APInt by shiftAmt.
 | 
						|
/// @brief Arithmetic right-shift function.
 | 
						|
inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) {
 | 
						|
  return LHS.ashr(shiftAmt);
 | 
						|
}
 | 
						|
 | 
						|
/// Logical right-shift the APInt by shiftAmt.
 | 
						|
/// @brief Logical right-shift function.
 | 
						|
inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) {
 | 
						|
  return LHS.lshr(shiftAmt);
 | 
						|
}
 | 
						|
 | 
						|
/// Left-shift the APInt by shiftAmt.
 | 
						|
/// @brief Left-shift function.
 | 
						|
inline APInt shl(const APInt& LHS, uint32_t shiftAmt) {
 | 
						|
  return LHS.shl(shiftAmt);
 | 
						|
}
 | 
						|
 | 
						|
/// Signed divide APInt LHS by APInt RHS.
 | 
						|
/// @brief Signed division function for APInt.
 | 
						|
inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS.sdiv(RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Unsigned divide APInt LHS by APInt RHS.
 | 
						|
/// @brief Unsigned division function for APInt.
 | 
						|
inline APInt udiv(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS.udiv(RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Signed remainder operation on APInt.
 | 
						|
/// @brief Function for signed remainder operation.
 | 
						|
inline APInt srem(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS.srem(RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Unsigned remainder operation on APInt.
 | 
						|
/// @brief Function for unsigned remainder operation.
 | 
						|
inline APInt urem(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS.urem(RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Performs multiplication on APInt values.
 | 
						|
/// @brief Function for multiplication operation.
 | 
						|
inline APInt mul(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS * RHS;
 | 
						|
}
 | 
						|
 | 
						|
/// Performs addition on APInt values.
 | 
						|
/// @brief Function for addition operation.
 | 
						|
inline APInt add(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS + RHS;
 | 
						|
}
 | 
						|
 | 
						|
/// Performs subtraction on APInt values.
 | 
						|
/// @brief Function for subtraction operation.
 | 
						|
inline APInt sub(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS - RHS;
 | 
						|
}
 | 
						|
 | 
						|
/// Performs bitwise AND operation on APInt LHS and 
 | 
						|
/// APInt RHS.
 | 
						|
/// @brief Bitwise AND function for APInt.
 | 
						|
inline APInt And(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS & RHS;
 | 
						|
}
 | 
						|
 | 
						|
/// Performs bitwise OR operation on APInt LHS and APInt RHS.
 | 
						|
/// @brief Bitwise OR function for APInt. 
 | 
						|
inline APInt Or(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS | RHS;
 | 
						|
}
 | 
						|
 | 
						|
/// Performs bitwise XOR operation on APInt.
 | 
						|
/// @brief Bitwise XOR function for APInt.
 | 
						|
inline APInt Xor(const APInt& LHS, const APInt& RHS) {
 | 
						|
  return LHS ^ RHS;
 | 
						|
} 
 | 
						|
 | 
						|
/// Performs a bitwise complement operation on APInt.
 | 
						|
/// @brief Bitwise complement function. 
 | 
						|
inline APInt Not(const APInt& APIVal) {
 | 
						|
  return ~APIVal;
 | 
						|
}
 | 
						|
 | 
						|
} // End of APIntOps namespace
 | 
						|
 | 
						|
} // End of llvm namespace
 | 
						|
 | 
						|
#endif
 |