mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21482 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			429 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			429 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the declaration of the Type class.  For more "Type" type
 | |
| // stuff, look in DerivedTypes.h.
 | |
| //
 | |
| // Note that instances of the Type class are immutable: once they are created,
 | |
| // they are never changed.  Also note that only one instance of a particular
 | |
| // type is ever created.  Thus seeing if two types are equal is a matter of
 | |
| // doing a trivial pointer comparison.
 | |
| //
 | |
| // Types, once allocated, are never free'd, unless they are an abstract type
 | |
| // that is resolved to a more concrete type.
 | |
| //
 | |
| // Opaque types are simple derived types with no state.  There may be many
 | |
| // different Opaque type objects floating around, but two are only considered
 | |
| // identical if they are pointer equals of each other.  This allows us to have
 | |
| // two opaque types that end up resolving to different concrete types later.
 | |
| //
 | |
| // Opaque types are also kinda weird and scary and different because they have
 | |
| // to keep a list of uses of the type.  When, through linking, parsing, or
 | |
| // bytecode reading, they become resolved, they need to find and update all
 | |
| // users of the unknown type, causing them to reference a new, more concrete
 | |
| // type.  Opaque types are deleted when their use list dwindles to zero users.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TYPE_H
 | |
| #define LLVM_TYPE_H
 | |
| 
 | |
| #include "AbstractTypeUser.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/iterator"
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class ArrayType;
 | |
| class DerivedType;
 | |
| class FunctionType;
 | |
| class OpaqueType;
 | |
| class PointerType;
 | |
| class StructType;
 | |
| class PackedType;
 | |
| 
 | |
| class Type {
 | |
| public:
 | |
|   ///===-------------------------------------------------------------------===//
 | |
|   /// Definitions of all of the base types for the Type system.  Based on this
 | |
|   /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
 | |
|   /// Note: If you add an element to this, you need to add an element to the
 | |
|   /// Type::getPrimitiveType function, or else things will break!
 | |
|   ///
 | |
|   enum TypeID {
 | |
|     // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
 | |
|     VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
 | |
|     UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
 | |
|     UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
 | |
|     UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
 | |
|     ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
 | |
|     FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
 | |
|     LabelTyID     ,                     // 12   : Labels...
 | |
| 
 | |
|     // Derived types... see DerivedTypes.h file...
 | |
|     // Make sure FirstDerivedTyID stays up to date!!!
 | |
|     FunctionTyID  , StructTyID,         // Functions... Structs...
 | |
|     ArrayTyID     , PointerTyID,        // Array... pointer...
 | |
|     OpaqueTyID,                         // Opaque type instances...
 | |
|     PackedTyID,                         // SIMD 'packed' format...
 | |
|     //...
 | |
| 
 | |
|     NumTypeIDs,                         // Must remain as last defined ID
 | |
|     LastPrimitiveTyID = LabelTyID,
 | |
|     FirstDerivedTyID = FunctionTyID
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   TypeID   ID : 8;    // The current base type of this type.
 | |
|   bool     Abstract;  // True if type contains an OpaqueType
 | |
| 
 | |
|   /// RefCount - This counts the number of PATypeHolders that are pointing to
 | |
|   /// this type.  When this number falls to zero, if the type is abstract and
 | |
|   /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
 | |
|   /// derived types.
 | |
|   ///
 | |
|   mutable unsigned RefCount;
 | |
| 
 | |
|   const Type *getForwardedTypeInternal() const;
 | |
| protected:
 | |
|   Type(const std::string& Name, TypeID id);
 | |
|   virtual ~Type() {}
 | |
| 
 | |
|   /// Types can become nonabstract later, if they are refined.
 | |
|   ///
 | |
|   inline void setAbstract(bool Val) { Abstract = Val; }
 | |
| 
 | |
|   // PromoteAbstractToConcrete - This is an internal method used to calculate
 | |
|   // change "Abstract" from true to false when types are refined.
 | |
|   void PromoteAbstractToConcrete();
 | |
| 
 | |
|   unsigned getRefCount() const { return RefCount; }
 | |
| 
 | |
|   /// ForwardType - This field is used to implement the union find scheme for
 | |
|   /// abstract types.  When types are refined to other types, this field is set
 | |
|   /// to the more refined type.  Only abstract types can be forwarded.
 | |
|   mutable const Type *ForwardType;
 | |
| 
 | |
|   /// ContainedTys - The list of types contained by this one.  For example, this
 | |
|   /// includes the arguments of a function type, the elements of the structure,
 | |
|   /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
 | |
|   /// class wastes some space for types that do not contain anything (such as
 | |
|   /// primitive types).  However, keeping it here allows the subtype_* members
 | |
|   /// to be implemented MUCH more efficiently, and dynamically very few types do
 | |
|   /// not contain any elements (most are derived).
 | |
|   std::vector<PATypeHandle> ContainedTys;
 | |
| 
 | |
| public:
 | |
|   void print(std::ostream &O) const;
 | |
| 
 | |
|   /// @brief Debugging support: print to stderr
 | |
|   void dump() const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Property accessors for dealing with types... Some of these virtual methods
 | |
|   // are defined in private classes defined in Type.cpp for primitive types.
 | |
|   //
 | |
| 
 | |
|   /// getTypeID - Return the type id for the type.  This will return one
 | |
|   /// of the TypeID enum elements defined above.
 | |
|   ///
 | |
|   inline TypeID getTypeID() const { return ID; }
 | |
| 
 | |
|   /// getDescription - Return the string representation of the type...
 | |
|   const std::string &getDescription() const;
 | |
| 
 | |
|   /// isSigned - Return whether an integral numeric type is signed.  This is
 | |
|   /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
 | |
|   /// Float and Double.
 | |
|   ///
 | |
|   bool isSigned() const {
 | |
|     return ID == SByteTyID || ID == ShortTyID ||
 | |
|            ID == IntTyID || ID == LongTyID;
 | |
|   }
 | |
| 
 | |
|   /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
 | |
|   /// the complement of isSigned... nonnumeric types return false as they do
 | |
|   /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
 | |
|   /// ULongTy
 | |
|   ///
 | |
|   bool isUnsigned() const {
 | |
|     return ID == UByteTyID || ID == UShortTyID ||
 | |
|            ID == UIntTyID || ID == ULongTyID;
 | |
|   }
 | |
| 
 | |
|   /// isInteger - Equivalent to isSigned() || isUnsigned()
 | |
|   ///
 | |
|   bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; }
 | |
| 
 | |
|   /// isIntegral - Returns true if this is an integral type, which is either
 | |
|   /// BoolTy or one of the Integer types.
 | |
|   ///
 | |
|   bool isIntegral() const { return isInteger() || this == BoolTy; }
 | |
| 
 | |
|   /// isFloatingPoint - Return true if this is one of the two floating point
 | |
|   /// types
 | |
|   bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
 | |
| 
 | |
|   /// isAbstract - True if the type is either an Opaque type, or is a derived
 | |
|   /// type that includes an opaque type somewhere in it.
 | |
|   ///
 | |
|   inline bool isAbstract() const { return Abstract; }
 | |
| 
 | |
|   /// isLosslesslyConvertibleTo - Return true if this type can be converted to
 | |
|   /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
 | |
|   ///
 | |
|   bool isLosslesslyConvertibleTo(const Type *Ty) const;
 | |
| 
 | |
| 
 | |
|   /// Here are some useful little methods to query what type derived types are
 | |
|   /// Note that all other types can just compare to see if this == Type::xxxTy;
 | |
|   ///
 | |
|   inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
 | |
|   inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
 | |
| 
 | |
|   /// isFirstClassType - Return true if the value is holdable in a register.
 | |
|   ///
 | |
|   inline bool isFirstClassType() const {
 | |
|     return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
 | |
|             ID == PointerTyID || ID == PackedTyID;
 | |
|   }
 | |
| 
 | |
|   /// isSized - Return true if it makes sense to take the size of this type.  To
 | |
|   /// get the actual size for a particular target, it is reasonable to use the
 | |
|   /// TargetData subsystem to do this.
 | |
|   ///
 | |
|   bool isSized() const {
 | |
|     // If it's a primitive, it is always sized.
 | |
|     if (ID >= BoolTyID && ID <= DoubleTyID || ID == PointerTyID)
 | |
|       return true;
 | |
|     // If it is not something that can have a size (e.g. a function or label),
 | |
|     // it doesn't have a size.
 | |
|     if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID)
 | |
|       return false;
 | |
|     // If it is something that can have a size and it's concrete, it definitely
 | |
|     // has a size, otherwise we have to try harder to decide.
 | |
|     return !isAbstract() || isSizedDerivedType();
 | |
|   }
 | |
| 
 | |
|   /// getPrimitiveSize - Return the basic size of this type if it is a primitive
 | |
|   /// type.  These are fixed by LLVM and are not target dependent.  This will
 | |
|   /// return zero if the type does not have a size or is not a primitive type.
 | |
|   ///
 | |
|   unsigned getPrimitiveSize() const;
 | |
|   unsigned getPrimitiveSizeInBits() const;
 | |
| 
 | |
|   /// getUnsignedVersion - If this is an integer type, return the unsigned
 | |
|   /// variant of this type.  For example int -> uint.
 | |
|   const Type *getUnsignedVersion() const;
 | |
| 
 | |
|   /// getSignedVersion - If this is an integer type, return the signed variant
 | |
|   /// of this type.  For example uint -> int.
 | |
|   const Type *getSignedVersion() const;
 | |
| 
 | |
|   /// getForwaredType - Return the type that this type has been resolved to if
 | |
|   /// it has been resolved to anything.  This is used to implement the
 | |
|   /// union-find algorithm for type resolution, and shouldn't be used by general
 | |
|   /// purpose clients.
 | |
|   const Type *getForwardedType() const {
 | |
|     if (!ForwardType) return 0;
 | |
|     return getForwardedTypeInternal();
 | |
|   }
 | |
| 
 | |
|   /// getVAArgsPromotedType - Return the type an argument of this type
 | |
|   /// will be promoted to if passed through a variable argument
 | |
|   /// function.
 | |
|   const Type *getVAArgsPromotedType() const {
 | |
|     if (ID == BoolTyID || ID == UByteTyID || ID == UShortTyID)
 | |
|       return Type::UIntTy;
 | |
|     else if (ID == SByteTyID || ID == ShortTyID)
 | |
|       return Type::IntTy;
 | |
|     else if (ID == FloatTyID)
 | |
|       return Type::DoubleTy;
 | |
|     else
 | |
|       return this;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Type Iteration support
 | |
|   //
 | |
|   typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
 | |
|   subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
 | |
|   subtype_iterator subtype_end() const { return ContainedTys.end(); }
 | |
| 
 | |
|   /// getContainedType - This method is used to implement the type iterator
 | |
|   /// (defined a the end of the file).  For derived types, this returns the
 | |
|   /// types 'contained' in the derived type.
 | |
|   ///
 | |
|   const Type *getContainedType(unsigned i) const {
 | |
|     assert(i < ContainedTys.size() && "Index out of range!");
 | |
|     return ContainedTys[i];
 | |
|   }
 | |
| 
 | |
|   /// getNumContainedTypes - Return the number of types in the derived type.
 | |
|   ///
 | |
|   typedef std::vector<PATypeHandle>::size_type size_type;
 | |
|   size_type getNumContainedTypes() const { return ContainedTys.size(); }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Static members exported by the Type class itself.  Useful for getting
 | |
|   // instances of Type.
 | |
|   //
 | |
| 
 | |
|   /// getPrimitiveType - Return a type based on an identifier.
 | |
|   static const Type *getPrimitiveType(TypeID IDNumber);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // These are the builtin types that are always available...
 | |
|   //
 | |
|   static Type *VoidTy , *BoolTy;
 | |
|   static Type *SByteTy, *UByteTy,
 | |
|               *ShortTy, *UShortTy,
 | |
|               *IntTy  , *UIntTy,
 | |
|               *LongTy , *ULongTy;
 | |
|   static Type *FloatTy, *DoubleTy;
 | |
| 
 | |
|   static Type* LabelTy;
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const Type *T) { return true; }
 | |
| 
 | |
|   // Virtual methods used by callbacks below.  These should only be implemented
 | |
|   // in the DerivedType class.
 | |
|   virtual void addAbstractTypeUser(AbstractTypeUser *U) const {
 | |
|     abort(); // Only on derived types!
 | |
|   }
 | |
|   virtual void removeAbstractTypeUser(AbstractTypeUser *U) const {
 | |
|     abort(); // Only on derived types!
 | |
|   }
 | |
| 
 | |
|   void addRef() const {
 | |
|     assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
 | |
|     ++RefCount;
 | |
|   }
 | |
| 
 | |
|   void dropRef() const {
 | |
|     assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
 | |
|     assert(RefCount && "No objects are currently referencing this object!");
 | |
| 
 | |
|     // If this is the last PATypeHolder using this object, and there are no
 | |
|     // PATypeHandles using it, the type is dead, delete it now.
 | |
|     if (--RefCount == 0)
 | |
|       RefCountIsZero();
 | |
|   }
 | |
| 
 | |
|   /// clearAllTypeMaps - This method frees all internal memory used by the
 | |
|   /// type subsystem, which can be used in environments where this memory is
 | |
|   /// otherwise reported as a leak.
 | |
|   static void clearAllTypeMaps();
 | |
| 
 | |
| private:
 | |
|   /// isSizedDerivedType - Derived types like structures and arrays are sized
 | |
|   /// iff all of the members of the type are sized as well.  Since asking for
 | |
|   /// their size is relatively uncommon, move this operation out of line.
 | |
|   bool isSizedDerivedType() const;
 | |
| 
 | |
|   virtual void RefCountIsZero() const {
 | |
|     abort(); // only on derived types!
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
 | |
| // These are defined here because they MUST be inlined, yet are dependent on
 | |
| // the definition of the Type class.  Of course Type derives from Value, which
 | |
| // contains an AbstractTypeUser instance, so there is no good way to factor out
 | |
| // the code.  Hence this bit of uglyness.
 | |
| //
 | |
| // In the long term, Type should not derive from Value, allowing
 | |
| // AbstractTypeUser.h to #include Type.h, allowing us to eliminate this
 | |
| // nastyness entirely.
 | |
| //
 | |
| inline void PATypeHandle::addUser() {
 | |
|   assert(Ty && "Type Handle has a null type!");
 | |
|   if (Ty->isAbstract())
 | |
|     Ty->addAbstractTypeUser(User);
 | |
| }
 | |
| inline void PATypeHandle::removeUser() {
 | |
|   if (Ty->isAbstract())
 | |
|     Ty->removeAbstractTypeUser(User);
 | |
| }
 | |
| 
 | |
| inline void PATypeHandle::removeUserFromConcrete() {
 | |
|   if (!Ty->isAbstract())
 | |
|     Ty->removeAbstractTypeUser(User);
 | |
| }
 | |
| 
 | |
| // Define inline methods for PATypeHolder...
 | |
| 
 | |
| inline void PATypeHolder::addRef() {
 | |
|   if (Ty->isAbstract())
 | |
|     Ty->addRef();
 | |
| }
 | |
| 
 | |
| inline void PATypeHolder::dropRef() {
 | |
|   if (Ty->isAbstract())
 | |
|     Ty->dropRef();
 | |
| }
 | |
| 
 | |
| /// get - This implements the forwarding part of the union-find algorithm for
 | |
| /// abstract types.  Before every access to the Type*, we check to see if the
 | |
| /// type we are pointing to is forwarding to a new type.  If so, we drop our
 | |
| /// reference to the type.
 | |
| ///
 | |
| inline Type* PATypeHolder::get() const {
 | |
|   const Type *NewTy = Ty->getForwardedType();
 | |
|   if (!NewTy) return const_cast<Type*>(Ty);
 | |
|   return *const_cast<PATypeHolder*>(this) = NewTy;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Provide specializations of GraphTraits to be able to treat a type as a
 | |
| // graph of sub types...
 | |
| 
 | |
| template <> struct GraphTraits<Type*> {
 | |
|   typedef Type NodeType;
 | |
|   typedef Type::subtype_iterator ChildIteratorType;
 | |
| 
 | |
|   static inline NodeType *getEntryNode(Type *T) { return T; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) {
 | |
|     return N->subtype_begin();
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) {
 | |
|     return N->subtype_end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<const Type*> {
 | |
|   typedef const Type NodeType;
 | |
|   typedef Type::subtype_iterator ChildIteratorType;
 | |
| 
 | |
|   static inline NodeType *getEntryNode(const Type *T) { return T; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) {
 | |
|     return N->subtype_begin();
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) {
 | |
|     return N->subtype_end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
 | |
|   return Ty.getTypeID() == Type::PointerTyID;
 | |
| }
 | |
| 
 | |
| std::ostream &operator<<(std::ostream &OS, const Type &T);
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |