mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	be propagated to all its users, and this propagation could increase the probability of finding common subexpressions. If the COPY has only one user, the COPY itself can be removed. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215344 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			682 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			682 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs global common subexpression elimination on machine
 | |
| // instructions using a scoped hash table based value numbering scheme. It
 | |
| // must be run while the machine function is still in SSA form.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/ScopedHashTable.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/RecyclingAllocator.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "machine-cse"
 | |
| 
 | |
| STATISTIC(NumCoalesces, "Number of copies coalesced");
 | |
| STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
 | |
| STATISTIC(NumPhysCSEs,
 | |
|           "Number of physreg referencing common subexpr eliminated");
 | |
| STATISTIC(NumCrossBBCSEs,
 | |
|           "Number of cross-MBB physreg referencing CS eliminated");
 | |
| STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
 | |
| 
 | |
| namespace {
 | |
|   class MachineCSE : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     AliasAnalysis *AA;
 | |
|     MachineDominatorTree *DT;
 | |
|     MachineRegisterInfo *MRI;
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
 | |
|       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreservedID(MachineLoopInfoID);
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|     }
 | |
| 
 | |
|     void releaseMemory() override {
 | |
|       ScopeMap.clear();
 | |
|       Exps.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     const unsigned LookAheadLimit;
 | |
|     typedef RecyclingAllocator<BumpPtrAllocator,
 | |
|         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
 | |
|     typedef ScopedHashTable<MachineInstr*, unsigned,
 | |
|         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
 | |
|     typedef ScopedHTType::ScopeTy ScopeType;
 | |
|     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
 | |
|     ScopedHTType VNT;
 | |
|     SmallVector<MachineInstr*, 64> Exps;
 | |
|     unsigned CurrVN;
 | |
| 
 | |
|     bool PerformTrivialCopyPropagation(MachineInstr *MI,
 | |
|                                        MachineBasicBlock *MBB);
 | |
|     bool isPhysDefTriviallyDead(unsigned Reg,
 | |
|                                 MachineBasicBlock::const_iterator I,
 | |
|                                 MachineBasicBlock::const_iterator E) const;
 | |
|     bool hasLivePhysRegDefUses(const MachineInstr *MI,
 | |
|                                const MachineBasicBlock *MBB,
 | |
|                                SmallSet<unsigned,8> &PhysRefs,
 | |
|                                SmallVectorImpl<unsigned> &PhysDefs,
 | |
|                                bool &PhysUseDef) const;
 | |
|     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
 | |
|                           SmallSet<unsigned,8> &PhysRefs,
 | |
|                           SmallVectorImpl<unsigned> &PhysDefs,
 | |
|                           bool &NonLocal) const;
 | |
|     bool isCSECandidate(MachineInstr *MI);
 | |
|     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
 | |
|                            MachineInstr *CSMI, MachineInstr *MI);
 | |
|     void EnterScope(MachineBasicBlock *MBB);
 | |
|     void ExitScope(MachineBasicBlock *MBB);
 | |
|     bool ProcessBlock(MachineBasicBlock *MBB);
 | |
|     void ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
 | |
|     bool PerformCSE(MachineDomTreeNode *Node);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineCSE::ID = 0;
 | |
| char &llvm::MachineCSEID = MachineCSE::ID;
 | |
| INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
 | |
|                 "Machine Common Subexpression Elimination", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(MachineCSE, "machine-cse",
 | |
|                 "Machine Common Subexpression Elimination", false, false)
 | |
| 
 | |
| /// The source register of a COPY machine instruction can be propagated to all
 | |
| /// its users, and this propagation could increase the probability of finding
 | |
| /// common subexpressions. If the COPY has only one user, the COPY itself can
 | |
| /// be removed.
 | |
| bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
 | |
|     MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | |
|     if (!DefMI->isCopy())
 | |
|       continue;
 | |
|     unsigned SrcReg = DefMI->getOperand(1).getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | |
|       continue;
 | |
|     if (DefMI->getOperand(0).getSubReg())
 | |
|       continue;
 | |
|     // FIXME: We should trivially coalesce subregister copies to expose CSE
 | |
|     // opportunities on instructions with truncated operands (see
 | |
|     // cse-add-with-overflow.ll). This can be done here as follows:
 | |
|     // if (SrcSubReg)
 | |
|     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
 | |
|     //                                     SrcSubReg);
 | |
|     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
 | |
|     //
 | |
|     // The 2-addr pass has been updated to handle coalesced subregs. However,
 | |
|     // some machine-specific code still can't handle it.
 | |
|     // To handle it properly we also need a way find a constrained subregister
 | |
|     // class given a super-reg class and subreg index.
 | |
|     if (DefMI->getOperand(1).getSubReg())
 | |
|       continue;
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | |
|     if (!MRI->constrainRegClass(SrcReg, RC))
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "Coalescing: " << *DefMI);
 | |
|     DEBUG(dbgs() << "***     to: " << *MI);
 | |
|     // Propagate SrcReg of copies to MI.
 | |
|     MO.setReg(SrcReg);
 | |
|     MRI->clearKillFlags(SrcReg);
 | |
|     // Coalesce single use copies.
 | |
|     if (OnlyOneUse) {
 | |
|       DefMI->eraseFromParent();
 | |
|       ++NumCoalesces;
 | |
|     }
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool
 | |
| MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
 | |
|                                    MachineBasicBlock::const_iterator I,
 | |
|                                    MachineBasicBlock::const_iterator E) const {
 | |
|   unsigned LookAheadLeft = LookAheadLimit;
 | |
|   while (LookAheadLeft) {
 | |
|     // Skip over dbg_value's.
 | |
|     while (I != E && I->isDebugValue())
 | |
|       ++I;
 | |
| 
 | |
|     if (I == E)
 | |
|       // Reached end of block, register is obviously dead.
 | |
|       return true;
 | |
| 
 | |
|     bool SeenDef = false;
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = I->getOperand(i);
 | |
|       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
 | |
|         SeenDef = true;
 | |
|       if (!MO.isReg() || !MO.getReg())
 | |
|         continue;
 | |
|       if (!TRI->regsOverlap(MO.getReg(), Reg))
 | |
|         continue;
 | |
|       if (MO.isUse())
 | |
|         // Found a use!
 | |
|         return false;
 | |
|       SeenDef = true;
 | |
|     }
 | |
|     if (SeenDef)
 | |
|       // See a def of Reg (or an alias) before encountering any use, it's
 | |
|       // trivially dead.
 | |
|       return true;
 | |
| 
 | |
|     --LookAheadLeft;
 | |
|     ++I;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
 | |
| /// physical registers (except for dead defs of physical registers). It also
 | |
| /// returns the physical register def by reference if it's the only one and the
 | |
| /// instruction does not uses a physical register.
 | |
| bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
 | |
|                                        const MachineBasicBlock *MBB,
 | |
|                                        SmallSet<unsigned,8> &PhysRefs,
 | |
|                                        SmallVectorImpl<unsigned> &PhysDefs,
 | |
|                                        bool &PhysUseDef) const{
 | |
|   // First, add all uses to PhysRefs.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || MO.isDef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     // Reading constant physregs is ok.
 | |
|     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
 | |
|       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
 | |
|         PhysRefs.insert(*AI);
 | |
|   }
 | |
| 
 | |
|   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
 | |
|   // (which currently contains only uses), set the PhysUseDef flag.
 | |
|   PhysUseDef = false;
 | |
|   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     // Check against PhysRefs even if the def is "dead".
 | |
|     if (PhysRefs.count(Reg))
 | |
|       PhysUseDef = true;
 | |
|     // If the def is dead, it's ok. But the def may not marked "dead". That's
 | |
|     // common since this pass is run before livevariables. We can scan
 | |
|     // forward a few instructions and check if it is obviously dead.
 | |
|     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
 | |
|       PhysDefs.push_back(Reg);
 | |
|   }
 | |
| 
 | |
|   // Finally, add all defs to PhysRefs as well.
 | |
|   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
 | |
|     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
 | |
|       PhysRefs.insert(*AI);
 | |
| 
 | |
|   return !PhysRefs.empty();
 | |
| }
 | |
| 
 | |
| bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
 | |
|                                   SmallSet<unsigned,8> &PhysRefs,
 | |
|                                   SmallVectorImpl<unsigned> &PhysDefs,
 | |
|                                   bool &NonLocal) const {
 | |
|   // For now conservatively returns false if the common subexpression is
 | |
|   // not in the same basic block as the given instruction. The only exception
 | |
|   // is if the common subexpression is in the sole predecessor block.
 | |
|   const MachineBasicBlock *MBB = MI->getParent();
 | |
|   const MachineBasicBlock *CSMBB = CSMI->getParent();
 | |
| 
 | |
|   bool CrossMBB = false;
 | |
|   if (CSMBB != MBB) {
 | |
|     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
 | |
|       return false;
 | |
| 
 | |
|     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
 | |
|       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
 | |
|         // Avoid extending live range of physical registers if they are
 | |
|         //allocatable or reserved.
 | |
|         return false;
 | |
|     }
 | |
|     CrossMBB = true;
 | |
|   }
 | |
|   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
 | |
|   MachineBasicBlock::const_iterator E = MI;
 | |
|   MachineBasicBlock::const_iterator EE = CSMBB->end();
 | |
|   unsigned LookAheadLeft = LookAheadLimit;
 | |
|   while (LookAheadLeft) {
 | |
|     // Skip over dbg_value's.
 | |
|     while (I != E && I != EE && I->isDebugValue())
 | |
|       ++I;
 | |
| 
 | |
|     if (I == EE) {
 | |
|       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
 | |
|       (void)CrossMBB;
 | |
|       CrossMBB = false;
 | |
|       NonLocal = true;
 | |
|       I = MBB->begin();
 | |
|       EE = MBB->end();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (I == E)
 | |
|       return true;
 | |
| 
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = I->getOperand(i);
 | |
|       // RegMasks go on instructions like calls that clobber lots of physregs.
 | |
|       // Don't attempt to CSE across such an instruction.
 | |
|       if (MO.isRegMask())
 | |
|         return false;
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       unsigned MOReg = MO.getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(MOReg))
 | |
|         continue;
 | |
|       if (PhysRefs.count(MOReg))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     --LookAheadLeft;
 | |
|     ++I;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::isCSECandidate(MachineInstr *MI) {
 | |
|   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
 | |
|       MI->isInlineAsm() || MI->isDebugValue())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore copies.
 | |
|   if (MI->isCopyLike())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore stuff that we obviously can't move.
 | |
|   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
 | |
|       MI->hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   if (MI->mayLoad()) {
 | |
|     // Okay, this instruction does a load. As a refinement, we allow the target
 | |
|     // to decide whether the loaded value is actually a constant. If so, we can
 | |
|     // actually use it as a load.
 | |
|     if (!MI->isInvariantLoad(AA))
 | |
|       // FIXME: we should be able to hoist loads with no other side effects if
 | |
|       // there are no other instructions which can change memory in this loop.
 | |
|       // This is a trivial form of alias analysis.
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
 | |
| /// common expression that defines Reg.
 | |
| bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
 | |
|                                    MachineInstr *CSMI, MachineInstr *MI) {
 | |
|   // FIXME: Heuristics that works around the lack the live range splitting.
 | |
| 
 | |
|   // If CSReg is used at all uses of Reg, CSE should not increase register
 | |
|   // pressure of CSReg.
 | |
|   bool MayIncreasePressure = true;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
 | |
|       TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     MayIncreasePressure = false;
 | |
|     SmallPtrSet<MachineInstr*, 8> CSUses;
 | |
|     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
 | |
|       CSUses.insert(&MI);
 | |
|     }
 | |
|     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
 | |
|       if (!CSUses.count(&MI)) {
 | |
|         MayIncreasePressure = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (!MayIncreasePressure) return true;
 | |
| 
 | |
|   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
 | |
|   // an immediate predecessor. We don't want to increase register pressure and
 | |
|   // end up causing other computation to be spilled.
 | |
|   if (TII->isAsCheapAsAMove(MI)) {
 | |
|     MachineBasicBlock *CSBB = CSMI->getParent();
 | |
|     MachineBasicBlock *BB = MI->getParent();
 | |
|     if (CSBB != BB && !CSBB->isSuccessor(BB))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #2: If the expression doesn't not use a vr and the only use
 | |
|   // of the redundant computation are copies, do not cse.
 | |
|   bool HasVRegUse = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isUse() &&
 | |
|         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|       HasVRegUse = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!HasVRegUse) {
 | |
|     bool HasNonCopyUse = false;
 | |
|     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
 | |
|       // Ignore copies.
 | |
|       if (!MI.isCopyLike()) {
 | |
|         HasNonCopyUse = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!HasNonCopyUse)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
 | |
|   // it unless the defined value is already used in the BB of the new use.
 | |
|   bool HasPHI = false;
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
 | |
|   for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
 | |
|     HasPHI |= MI.isPHI();
 | |
|     CSBBs.insert(MI.getParent());
 | |
|   }
 | |
| 
 | |
|   if (!HasPHI)
 | |
|     return true;
 | |
|   return CSBBs.count(MI->getParent());
 | |
| }
 | |
| 
 | |
| void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
 | |
|   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
 | |
|   ScopeType *Scope = new ScopeType(VNT);
 | |
|   ScopeMap[MBB] = Scope;
 | |
| }
 | |
| 
 | |
| void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
 | |
|   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
 | |
|   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
 | |
|   assert(SI != ScopeMap.end());
 | |
|   delete SI->second;
 | |
|   ScopeMap.erase(SI);
 | |
| }
 | |
| 
 | |
| bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
 | |
|   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     ++I;
 | |
| 
 | |
|     if (!isCSECandidate(MI))
 | |
|       continue;
 | |
| 
 | |
|     bool FoundCSE = VNT.count(MI);
 | |
|     if (!FoundCSE) {
 | |
|       // Using trivial copy propagation to find more CSE opportunities.
 | |
|       if (PerformTrivialCopyPropagation(MI, MBB)) {
 | |
|         Changed = true;
 | |
| 
 | |
|         // After coalescing MI itself may become a copy.
 | |
|         if (MI->isCopyLike())
 | |
|           continue;
 | |
| 
 | |
|         // Try again to see if CSE is possible.
 | |
|         FoundCSE = VNT.count(MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Commute commutable instructions.
 | |
|     bool Commuted = false;
 | |
|     if (!FoundCSE && MI->isCommutable()) {
 | |
|       MachineInstr *NewMI = TII->commuteInstruction(MI);
 | |
|       if (NewMI) {
 | |
|         Commuted = true;
 | |
|         FoundCSE = VNT.count(NewMI);
 | |
|         if (NewMI != MI) {
 | |
|           // New instruction. It doesn't need to be kept.
 | |
|           NewMI->eraseFromParent();
 | |
|           Changed = true;
 | |
|         } else if (!FoundCSE)
 | |
|           // MI was changed but it didn't help, commute it back!
 | |
|           (void)TII->commuteInstruction(MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the instruction defines physical registers and the values *may* be
 | |
|     // used, then it's not safe to replace it with a common subexpression.
 | |
|     // It's also not safe if the instruction uses physical registers.
 | |
|     bool CrossMBBPhysDef = false;
 | |
|     SmallSet<unsigned, 8> PhysRefs;
 | |
|     SmallVector<unsigned, 2> PhysDefs;
 | |
|     bool PhysUseDef = false;
 | |
|     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
 | |
|                                           PhysDefs, PhysUseDef)) {
 | |
|       FoundCSE = false;
 | |
| 
 | |
|       // ... Unless the CS is local or is in the sole predecessor block
 | |
|       // and it also defines the physical register which is not clobbered
 | |
|       // in between and the physical register uses were not clobbered.
 | |
|       // This can never be the case if the instruction both uses and
 | |
|       // defines the same physical register, which was detected above.
 | |
|       if (!PhysUseDef) {
 | |
|         unsigned CSVN = VNT.lookup(MI);
 | |
|         MachineInstr *CSMI = Exps[CSVN];
 | |
|         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
 | |
|           FoundCSE = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!FoundCSE) {
 | |
|       VNT.insert(MI, CurrVN++);
 | |
|       Exps.push_back(MI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Found a common subexpression, eliminate it.
 | |
|     unsigned CSVN = VNT.lookup(MI);
 | |
|     MachineInstr *CSMI = Exps[CSVN];
 | |
|     DEBUG(dbgs() << "Examining: " << *MI);
 | |
|     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
 | |
| 
 | |
|     // Check if it's profitable to perform this CSE.
 | |
|     bool DoCSE = true;
 | |
|     unsigned NumDefs = MI->getDesc().getNumDefs() +
 | |
|                        MI->getDesc().getNumImplicitDefs();
 | |
| 
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       unsigned OldReg = MO.getReg();
 | |
|       unsigned NewReg = CSMI->getOperand(i).getReg();
 | |
| 
 | |
|       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
 | |
|       // we should make sure it is not dead at CSMI.
 | |
|       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
 | |
|         ImplicitDefsToUpdate.push_back(i);
 | |
|       if (OldReg == NewReg) {
 | |
|         --NumDefs;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
 | |
|              TargetRegisterInfo::isVirtualRegister(NewReg) &&
 | |
|              "Do not CSE physical register defs!");
 | |
| 
 | |
|       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
 | |
|         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
 | |
|         DoCSE = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Don't perform CSE if the result of the old instruction cannot exist
 | |
|       // within the register class of the new instruction.
 | |
|       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
 | |
|       if (!MRI->constrainRegClass(NewReg, OldRC)) {
 | |
|         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
 | |
|         DoCSE = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
 | |
|       --NumDefs;
 | |
|     }
 | |
| 
 | |
|     // Actually perform the elimination.
 | |
|     if (DoCSE) {
 | |
|       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
 | |
|         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
 | |
|         MRI->clearKillFlags(CSEPairs[i].second);
 | |
|       }
 | |
| 
 | |
|       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
 | |
|       // we should make sure it is not dead at CSMI.
 | |
|       for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
 | |
|         CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
 | |
| 
 | |
|       if (CrossMBBPhysDef) {
 | |
|         // Add physical register defs now coming in from a predecessor to MBB
 | |
|         // livein list.
 | |
|         while (!PhysDefs.empty()) {
 | |
|           unsigned LiveIn = PhysDefs.pop_back_val();
 | |
|           if (!MBB->isLiveIn(LiveIn))
 | |
|             MBB->addLiveIn(LiveIn);
 | |
|         }
 | |
|         ++NumCrossBBCSEs;
 | |
|       }
 | |
| 
 | |
|       MI->eraseFromParent();
 | |
|       ++NumCSEs;
 | |
|       if (!PhysRefs.empty())
 | |
|         ++NumPhysCSEs;
 | |
|       if (Commuted)
 | |
|         ++NumCommutes;
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       VNT.insert(MI, CurrVN++);
 | |
|       Exps.push_back(MI);
 | |
|     }
 | |
|     CSEPairs.clear();
 | |
|     ImplicitDefsToUpdate.clear();
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
 | |
| /// dominator tree node if its a leaf or all of its children are done. Walk
 | |
| /// up the dominator tree to destroy ancestors which are now done.
 | |
| void
 | |
| MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
 | |
|   if (OpenChildren[Node])
 | |
|     return;
 | |
| 
 | |
|   // Pop scope.
 | |
|   ExitScope(Node->getBlock());
 | |
| 
 | |
|   // Now traverse upwards to pop ancestors whose offsprings are all done.
 | |
|   while (MachineDomTreeNode *Parent = Node->getIDom()) {
 | |
|     unsigned Left = --OpenChildren[Parent];
 | |
|     if (Left != 0)
 | |
|       break;
 | |
|     ExitScope(Parent->getBlock());
 | |
|     Node = Parent;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
 | |
|   SmallVector<MachineDomTreeNode*, 32> Scopes;
 | |
|   SmallVector<MachineDomTreeNode*, 8> WorkList;
 | |
|   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
 | |
| 
 | |
|   CurrVN = 0;
 | |
| 
 | |
|   // Perform a DFS walk to determine the order of visit.
 | |
|   WorkList.push_back(Node);
 | |
|   do {
 | |
|     Node = WorkList.pop_back_val();
 | |
|     Scopes.push_back(Node);
 | |
|     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
 | |
|     unsigned NumChildren = Children.size();
 | |
|     OpenChildren[Node] = NumChildren;
 | |
|     for (unsigned i = 0; i != NumChildren; ++i) {
 | |
|       MachineDomTreeNode *Child = Children[i];
 | |
|       WorkList.push_back(Child);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| 
 | |
|   // Now perform CSE.
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
 | |
|     MachineDomTreeNode *Node = Scopes[i];
 | |
|     MachineBasicBlock *MBB = Node->getBlock();
 | |
|     EnterScope(MBB);
 | |
|     Changed |= ProcessBlock(MBB);
 | |
|     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
 | |
|     ExitScopeIfDone(Node, OpenChildren);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipOptnoneFunction(*MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   return PerformCSE(DT->getRootNode());
 | |
| }
 |