mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-29 08:16:51 +00:00 
			
		
		
		
	This simplifies many of the target description files since it is common for register classes to be related or contain sequences of numbered registers. I have verified that this doesn't change the files generated by TableGen for ARM and X86. It alters the allocation order of MBlaze GPR and Mips FGR32 registers, but I believe the change is benign. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133105 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2534 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			2534 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| <html>
 | |
| <head>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <title>Writing an LLVM Compiler Backend</title>
 | |
|   <link rel="stylesheet" href="llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <h1>
 | |
|   Writing an LLVM Compiler Backend
 | |
| </h1>
 | |
| 
 | |
| <ol>
 | |
|   <li><a href="#intro">Introduction</a>
 | |
|   <ul>
 | |
|     <li><a href="#Audience">Audience</a></li>
 | |
|     <li><a href="#Prerequisite">Prerequisite Reading</a></li>
 | |
|     <li><a href="#Basic">Basic Steps</a></li>
 | |
|     <li><a href="#Preliminaries">Preliminaries</a></li>
 | |
|   </ul>
 | |
|   <li><a href="#TargetMachine">Target Machine</a></li>
 | |
|   <li><a href="#TargetRegistration">Target Registration</a></li>
 | |
|   <li><a href="#RegisterSet">Register Set and Register Classes</a>
 | |
|   <ul>
 | |
|     <li><a href="#RegisterDef">Defining a Register</a></li>
 | |
|     <li><a href="#RegisterClassDef">Defining a Register Class</a></li>
 | |
|     <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li>
 | |
|   </ul></li>
 | |
|   <li><a href="#InstructionSet">Instruction Set</a>
 | |
|   <ul>  
 | |
|     <li><a href="#operandMapping">Instruction Operand Mapping</a></li>
 | |
|     <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li>
 | |
|     <li><a href="#branchFolding">Branch Folding and If Conversion</a></li>
 | |
|   </ul></li>
 | |
|   <li><a href="#InstructionSelector">Instruction Selector</a>
 | |
|   <ul>
 | |
|     <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a>
 | |
|     <ul>
 | |
|       <li><a href="#promote">Promote</a></li> 
 | |
|       <li><a href="#expand">Expand</a></li> 
 | |
|       <li><a href="#custom">Custom</a></li> 
 | |
|       <li><a href="#legal">Legal</a></li>       
 | |
|     </ul></li>
 | |
|     <li><a href="#callingConventions">Calling Conventions</a></li>     
 | |
|   </ul></li>
 | |
|   <li><a href="#assemblyPrinter">Assembly Printer</a></li> 
 | |
|   <li><a href="#subtargetSupport">Subtarget Support</a></li> 
 | |
|   <li><a href="#jitSupport">JIT Support</a>
 | |
|   <ul>  
 | |
|     <li><a href="#mce">Machine Code Emitter</a></li>   
 | |
|     <li><a href="#targetJITInfo">Target JIT Info</a></li>   
 | |
|   </ul></li>
 | |
| </ol>
 | |
| 
 | |
| <div class="doc_author">    
 | |
|   <p>Written by <a href="http://www.woo.com">Mason Woo</a> and
 | |
|                 <a href="http://misha.brukman.net">Misha Brukman</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="intro">Introduction</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| This document describes techniques for writing compiler backends that convert
 | |
| the LLVM Intermediate Representation (IR) to code for a specified machine or
 | |
| other languages. Code intended for a specific machine can take the form of
 | |
| either assembly code or binary code (usable for a JIT compiler).
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The backend of LLVM features a target-independent code generator that may create
 | |
| output for several types of target CPUs — including X86, PowerPC, Alpha,
 | |
| and SPARC. The backend may also be used to generate code targeted at SPUs of the
 | |
| Cell processor or GPUs to support the execution of compute kernels.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The document focuses on existing examples found in subdirectories
 | |
| of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this
 | |
| document focuses on the example of creating a static compiler (one that emits
 | |
| text assembly) for a SPARC target, because SPARC has fairly standard
 | |
| characteristics, such as a RISC instruction set and straightforward calling
 | |
| conventions.
 | |
| </p>
 | |
| 
 | |
| <h3>
 | |
|   <a name="Audience">Audience</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The audience for this document is anyone who needs to write an LLVM backend to
 | |
| generate code for a specific hardware or software target.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <h3>
 | |
|   <a name="Prerequisite">Prerequisite Reading</a>
 | |
| </h3>
 | |
| 
 | |
| <div>  
 | |
| 
 | |
| <p>
 | |
| These essential documents must be read before reading this document:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><i><a href="LangRef.html">LLVM Language Reference
 | |
|     Manual</a></i> — a reference manual for the LLVM assembly language.</li>
 | |
| 
 | |
| <li><i><a href="CodeGenerator.html">The LLVM
 | |
|     Target-Independent Code Generator</a></i> — a guide to the components
 | |
|     (classes and code generation algorithms) for translating the LLVM internal
 | |
|     representation into machine code for a specified target.  Pay particular
 | |
|     attention to the descriptions of code generation stages: Instruction
 | |
|     Selection, Scheduling and Formation, SSA-based Optimization, Register
 | |
|     Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations,
 | |
|     and Code Emission.</li>
 | |
| 
 | |
| <li><i><a href="TableGenFundamentals.html">TableGen
 | |
|     Fundamentals</a></i> —a document that describes the TableGen
 | |
|     (<tt>tblgen</tt>) application that manages domain-specific information to
 | |
|     support LLVM code generation. TableGen processes input from a target
 | |
|     description file (<tt>.td</tt> suffix) and generates C++ code that can be
 | |
|     used for code generation.</li>
 | |
| 
 | |
| <li><i><a href="WritingAnLLVMPass.html">Writing an LLVM
 | |
|     Pass</a></i> — The assembly printer is a <tt>FunctionPass</tt>, as are
 | |
|     several SelectionDAG processing steps.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| To follow the SPARC examples in this document, have a copy of
 | |
| <i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture
 | |
| Manual, Version 8</a></i> for reference. For details about the ARM instruction
 | |
| set, refer to the <i><a href="http://infocenter.arm.com/">ARM Architecture
 | |
| Reference Manual</a></i>. For more about the GNU Assembler format
 | |
| (<tt>GAS</tt>), see
 | |
| <i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>,
 | |
| especially for the assembly printer. <i>Using As</i> contains a list of target
 | |
| machine dependent features.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <h3>
 | |
|   <a name="Basic">Basic Steps</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| To write a compiler backend for LLVM that converts the LLVM IR to code for a
 | |
| specified target (machine or other language), follow these steps:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li>Create a subclass of the TargetMachine class that describes characteristics
 | |
|     of your target machine. Copy existing examples of specific TargetMachine
 | |
|     class and header files; for example, start with
 | |
|     <tt>SparcTargetMachine.cpp</tt> and <tt>SparcTargetMachine.h</tt>, but
 | |
|     change the file names for your target. Similarly, change code that
 | |
|     references "Sparc" to reference your target. </li>
 | |
| 
 | |
| <li>Describe the register set of the target. Use TableGen to generate code for
 | |
|     register definition, register aliases, and register classes from a
 | |
|     target-specific <tt>RegisterInfo.td</tt> input file. You should also write
 | |
|     additional code for a subclass of the TargetRegisterInfo class that
 | |
|     represents the class register file data used for register allocation and
 | |
|     also describes the interactions between registers.</li>
 | |
| 
 | |
| <li>Describe the instruction set of the target. Use TableGen to generate code
 | |
|     for target-specific instructions from target-specific versions of
 | |
|     <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should
 | |
|     write additional code for a subclass of the TargetInstrInfo class to
 | |
|     represent machine instructions supported by the target machine. </li>
 | |
| 
 | |
| <li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic
 | |
|     Graph (DAG) representation of instructions to native target-specific
 | |
|     instructions. Use TableGen to generate code that matches patterns and
 | |
|     selects instructions based on additional information in a target-specific
 | |
|     version of <tt>TargetInstrInfo.td</tt>. Write code
 | |
|     for <tt>XXXISelDAGToDAG.cpp</tt>, where XXX identifies the specific target,
 | |
|     to perform pattern matching and DAG-to-DAG instruction selection. Also write
 | |
|     code in <tt>XXXISelLowering.cpp</tt> to replace or remove operations and
 | |
|     data types that are not supported natively in a SelectionDAG. </li>
 | |
| 
 | |
| <li>Write code for an assembly printer that converts LLVM IR to a GAS format for
 | |
|     your target machine.  You should add assembly strings to the instructions
 | |
|     defined in your target-specific version of <tt>TargetInstrInfo.td</tt>. You
 | |
|     should also write code for a subclass of AsmPrinter that performs the
 | |
|     LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.</li>
 | |
| 
 | |
| <li>Optionally, add support for subtargets (i.e., variants with different
 | |
|     capabilities). You should also write code for a subclass of the
 | |
|     TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt>
 | |
|     and <tt>-mattr=</tt> command-line options.</li>
 | |
| 
 | |
| <li>Optionally, add JIT support and create a machine code emitter (subclass of
 | |
|     TargetJITInfo) that is used to emit binary code directly into memory. </li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| In the <tt>.cpp</tt> and <tt>.h</tt>. files, initially stub up these methods and
 | |
| then implement them later. Initially, you may not know which private members
 | |
| that the class will need and which components will need to be subclassed.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <h3>
 | |
|   <a name="Preliminaries">Preliminaries</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| To actually create your compiler backend, you need to create and modify a few
 | |
| files. The absolute minimum is discussed here. But to actually use the LLVM
 | |
| target-independent code generator, you must perform the steps described in
 | |
| the <a href="CodeGenerator.html">LLVM
 | |
| Target-Independent Code Generator</a> document.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| First, you should create a subdirectory under <tt>lib/Target</tt> to hold all
 | |
| the files related to your target. If your target is called "Dummy," create the
 | |
| directory <tt>lib/Target/Dummy</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| In this new
 | |
| directory, create a <tt>Makefile</tt>. It is easiest to copy a
 | |
| <tt>Makefile</tt> of another target and modify it. It should at least contain
 | |
| the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then
 | |
| include <tt>$(LEVEL)/Makefile.common</tt>. The library can be
 | |
| named <tt>LLVMDummy</tt> (for example, see the MIPS target). Alternatively, you
 | |
| can split the library into <tt>LLVMDummyCodeGen</tt>
 | |
| and <tt>LLVMDummyAsmPrinter</tt>, the latter of which should be implemented in a
 | |
| subdirectory below <tt>lib/Target/Dummy</tt> (for example, see the PowerPC
 | |
| target).
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Note that these two naming schemes are hardcoded into <tt>llvm-config</tt>.
 | |
| Using any other naming scheme will confuse <tt>llvm-config</tt> and produce a
 | |
| lot of (seemingly unrelated) linker errors when linking <tt>llc</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| To make your target actually do something, you need to implement a subclass of
 | |
| <tt>TargetMachine</tt>. This implementation should typically be in the file
 | |
| <tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in
 | |
| the <tt>lib/Target</tt> directory will be built and should work. To use LLVM's
 | |
| target independent code generator, you should do what all current machine
 | |
| backends do: create a subclass of <tt>LLVMTargetMachine</tt>. (To create a
 | |
| target from scratch, create a subclass of <tt>TargetMachine</tt>.)
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| To get LLVM to actually build and link your target, you need to add it to
 | |
| the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you modify the configure
 | |
| script to know about your target when parsing the <tt>--enable-targets</tt>
 | |
| option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, add your
 | |
| target to the lists there (some creativity required), and then
 | |
| reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and
 | |
| regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt>.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="TargetMachine">Target Machine</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| <tt>LLVMTargetMachine</tt> is designed as a base class for targets implemented
 | |
| with the LLVM target-independent code generator. The <tt>LLVMTargetMachine</tt>
 | |
| class should be specialized by a concrete target class that implements the
 | |
| various virtual methods. <tt>LLVMTargetMachine</tt> is defined as a subclass of
 | |
| <tt>TargetMachine</tt> in <tt>include/llvm/Target/TargetMachine.h</tt>. The
 | |
| <tt>TargetMachine</tt> class implementation (<tt>TargetMachine.cpp</tt>) also
 | |
| processes numerous command-line options.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| To create a concrete target-specific subclass of <tt>LLVMTargetMachine</tt>,
 | |
| start by copying an existing <tt>TargetMachine</tt> class and header.  You
 | |
| should name the files that you create to reflect your specific target. For
 | |
| instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and
 | |
| <tt>SparcTargetMachine.cpp</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| For a target machine <tt>XXX</tt>, the implementation of
 | |
| <tt>XXXTargetMachine</tt> must have access methods to obtain objects that
 | |
| represent target components.  These methods are named <tt>get*Info</tt>, and are
 | |
| intended to obtain the instruction set (<tt>getInstrInfo</tt>), register set
 | |
| (<tt>getRegisterInfo</tt>), stack frame layout (<tt>getFrameInfo</tt>), and
 | |
| similar information. <tt>XXXTargetMachine</tt> must also implement the
 | |
| <tt>getTargetData</tt> method to access an object with target-specific data
 | |
| characteristics, such as data type size and alignment requirements.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| For instance, for the SPARC target, the header file
 | |
| <tt>SparcTargetMachine.h</tt> declares prototypes for several <tt>get*Info</tt>
 | |
| and <tt>getTargetData</tt> methods that simply return a class member.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| namespace llvm {
 | |
| 
 | |
| class Module;
 | |
| 
 | |
| class SparcTargetMachine : public LLVMTargetMachine {
 | |
|   const TargetData DataLayout;       // Calculates type size & alignment
 | |
|   SparcSubtarget Subtarget;
 | |
|   SparcInstrInfo InstrInfo;
 | |
|   TargetFrameInfo FrameInfo;
 | |
|   
 | |
| protected:
 | |
|   virtual const TargetAsmInfo *createTargetAsmInfo() const;
 | |
|   
 | |
| public:
 | |
|   SparcTargetMachine(const Module &M, const std::string &FS);
 | |
| 
 | |
|   virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
 | |
|   virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
 | |
|   virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
 | |
|   virtual const TargetRegisterInfo *getRegisterInfo() const {
 | |
|     return &InstrInfo.getRegisterInfo();
 | |
|   }
 | |
|   virtual const TargetData *getTargetData() const { return &DataLayout; }
 | |
|   static unsigned getModuleMatchQuality(const Module &M);
 | |
| 
 | |
|   // Pass Pipeline Configuration
 | |
|   virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
 | |
|   virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>getInstrInfo()</tt></li>
 | |
| <li><tt>getRegisterInfo()</tt></li>
 | |
| <li><tt>getFrameInfo()</tt></li>
 | |
| <li><tt>getTargetData()</tt></li>
 | |
| <li><tt>getSubtargetImpl()</tt></li>
 | |
| </ul>
 | |
| 
 | |
| <p>For some targets, you also need to support the following methods:</p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>getTargetLowering()</tt></li>
 | |
| <li><tt>getJITInfo()</tt></li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| In addition, the <tt>XXXTargetMachine</tt> constructor should specify a
 | |
| <tt>TargetDescription</tt> string that determines the data layout for the target
 | |
| machine, including characteristics such as pointer size, alignment, and
 | |
| endianness. For example, the constructor for SparcTargetMachine contains the
 | |
| following:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
 | |
|   : DataLayout("E-p:32:32-f128:128:128"),
 | |
|     Subtarget(M, FS), InstrInfo(Subtarget),
 | |
|     FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Hyphens separate portions of the <tt>TargetDescription</tt> string.</p>
 | |
| 
 | |
| <ul>
 | |
| <li>An upper-case "<tt>E</tt>" in the string indicates a big-endian target data
 | |
|     model. a lower-case "<tt>e</tt>" indicates little-endian.</li>
 | |
| 
 | |
| <li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and
 | |
|     preferred alignment. If only two figures follow "<tt>p:</tt>", then the
 | |
|     first value is pointer size, and the second value is both ABI and preferred
 | |
|     alignment.</li>
 | |
| 
 | |
| <li>Then a letter for numeric type alignment: "<tt>i</tt>", "<tt>f</tt>",
 | |
|     "<tt>v</tt>", or "<tt>a</tt>" (corresponding to integer, floating point,
 | |
|     vector, or aggregate). "<tt>i</tt>", "<tt>v</tt>", or "<tt>a</tt>" are
 | |
|     followed by ABI alignment and preferred alignment. "<tt>f</tt>" is followed
 | |
|     by three values: the first indicates the size of a long double, then ABI
 | |
|     alignment, and then ABI preferred alignment.</li>
 | |
| </ul>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="TargetRegistration">Target Registration</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| You must also register your target with the <tt>TargetRegistry</tt>, which is
 | |
| what other LLVM tools use to be able to lookup and use your target at
 | |
| runtime. The <tt>TargetRegistry</tt> can be used directly, but for most targets
 | |
| there are helper templates which should take care of the work for you.</p>
 | |
| 
 | |
| <p>
 | |
| All targets should declare a global <tt>Target</tt> object which is used to
 | |
| represent the target during registration. Then, in the target's TargetInfo
 | |
| library, the target should define that object and use
 | |
| the <tt>RegisterTarget</tt> template to register the target. For example, the Sparc registration code looks like this:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Target llvm::TheSparcTarget;
 | |
| 
 | |
| extern "C" void LLVMInitializeSparcTargetInfo() { 
 | |
|   RegisterTarget<Triple::sparc, /*HasJIT=*/false>
 | |
|     X(TheSparcTarget, "sparc", "Sparc");
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| This allows the <tt>TargetRegistry</tt> to look up the target by name or by
 | |
| target triple. In addition, most targets will also register additional features
 | |
| which are available in separate libraries. These registration steps are
 | |
| separate, because some clients may wish to only link in some parts of the target
 | |
| -- the JIT code generator does not require the use of the assembler printer, for
 | |
| example. Here is an example of registering the Sparc assembly printer:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| extern "C" void LLVMInitializeSparcAsmPrinter() { 
 | |
|   RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| For more information, see
 | |
| "<a href="/doxygen/TargetRegistry_8h-source.html">llvm/Target/TargetRegistry.h</a>".
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="RegisterSet">Register Set and Register Classes</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| You should describe a concrete target-specific class that represents the
 | |
| register file of a target machine. This class is called <tt>XXXRegisterInfo</tt>
 | |
| (where <tt>XXX</tt> identifies the target) and represents the class register
 | |
| file data that is used for register allocation. It also describes the
 | |
| interactions between registers.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| You also need to define register classes to categorize related registers. A
 | |
| register class should be added for groups of registers that are all treated the
 | |
| same way for some instruction. Typical examples are register classes for
 | |
| integer, floating-point, or vector registers. A register allocator allows an
 | |
| instruction to use any register in a specified register class to perform the
 | |
| instruction in a similar manner. Register classes allocate virtual registers to
 | |
| instructions from these sets, and register classes let the target-independent
 | |
| register allocator automatically choose the actual registers.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Much of the code for registers, including register definition, register aliases,
 | |
| and register classes, is generated by TableGen from <tt>XXXRegisterInfo.td</tt>
 | |
| input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and
 | |
| <tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the
 | |
| implementation of <tt>XXXRegisterInfo</tt> requires hand-coding.
 | |
| </p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="RegisterDef">Defining a Register</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions
 | |
| for a target machine. The <tt>Register</tt> class (specified
 | |
| in <tt>Target.td</tt>) is used to define an object for each register. The
 | |
| specified string <tt>n</tt> becomes the <tt>Name</tt> of the register. The
 | |
| basic <tt>Register</tt> object does not have any subregisters and does not
 | |
| specify any aliases.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class Register<string n> {
 | |
|   string Namespace = "";
 | |
|   string AsmName = n;
 | |
|   string Name = n;
 | |
|   int SpillSize = 0;
 | |
|   int SpillAlignment = 0;
 | |
|   list<Register> Aliases = [];
 | |
|   list<Register> SubRegs = [];
 | |
|   list<int> DwarfNumbers = [];
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| For example, in the <tt>X86RegisterInfo.td</tt> file, there are register
 | |
| definitions that utilize the Register class, such as:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| This defines the register <tt>AL</tt> and assigns it values (with
 | |
| <tt>DwarfRegNum</tt>) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug
 | |
| information writer to identify a register. For register
 | |
| <tt>AL</tt>, <tt>DwarfRegNum</tt> takes an array of 3 values representing 3
 | |
| different modes: the first element is for X86-64, the second for exception
 | |
| handling (EH) on X86-32, and the third is generic. -1 is a special Dwarf number
 | |
| that indicates the gcc number is undefined, and -2 indicates the register number
 | |
| is invalid for this mode.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| From the previously described line in the <tt>X86RegisterInfo.td</tt> file,
 | |
| TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| static const unsigned GR8[] = { X86::AL, ... };
 | |
| 
 | |
| const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
 | |
| 
 | |
| const TargetRegisterDesc RegisterDescriptors[] = { 
 | |
|   ...
 | |
| { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| From the register info file, TableGen generates a <tt>TargetRegisterDesc</tt>
 | |
| object for each register. <tt>TargetRegisterDesc</tt> is defined in
 | |
| <tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| struct TargetRegisterDesc {
 | |
|   const char     *AsmName;      // Assembly language name for the register
 | |
|   const char     *Name;         // Printable name for the reg (for debugging)
 | |
|   const unsigned *AliasSet;     // Register Alias Set
 | |
|   const unsigned *SubRegs;      // Sub-register set
 | |
|   const unsigned *ImmSubRegs;   // Immediate sub-register set
 | |
|   const unsigned *SuperRegs;    // Super-register set
 | |
| };</pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| TableGen uses the entire target description file (<tt>.td</tt>) to determine
 | |
| text names for the register (in the <tt>AsmName</tt> and <tt>Name</tt> fields of
 | |
| <tt>TargetRegisterDesc</tt>) and the relationships of other registers to the
 | |
| defined register (in the other <tt>TargetRegisterDesc</tt> fields). In this
 | |
| example, other definitions establish the registers "<tt>AX</tt>",
 | |
| "<tt>EAX</tt>", and "<tt>RAX</tt>" as aliases for one another, so TableGen
 | |
| generates a null-terminated array (<tt>AL_AliasSet</tt>) for this register alias
 | |
| set.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The <tt>Register</tt> class is commonly used as a base class for more complex
 | |
| classes. In <tt>Target.td</tt>, the <tt>Register</tt> class is the base for the
 | |
| <tt>RegisterWithSubRegs</tt> class that is used to define registers that need to
 | |
| specify subregisters in the <tt>SubRegs</tt> list, as shown here:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class RegisterWithSubRegs<string n,
 | |
| list<Register> subregs> : Register<n> {
 | |
|   let SubRegs = subregs;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined for
 | |
| SPARC: a Register subclass, SparcReg, and further subclasses: <tt>Ri</tt>,
 | |
| <tt>Rf</tt>, and <tt>Rd</tt>. SPARC registers are identified by 5-bit ID
 | |
| numbers, which is a feature common to these subclasses. Note the use of
 | |
| '<tt>let</tt>' expressions to override values that are initially defined in a
 | |
| superclass (such as <tt>SubRegs</tt> field in the <tt>Rd</tt> class).
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class SparcReg<string n> : Register<n> {
 | |
|   field bits<5> Num;
 | |
|   let Namespace = "SP";
 | |
| }
 | |
| // Ri - 32-bit integer registers
 | |
| class Ri<bits<5> num, string n> :
 | |
| SparcReg<n> {
 | |
|   let Num = num;
 | |
| }
 | |
| // Rf - 32-bit floating-point registers
 | |
| class Rf<bits<5> num, string n> :
 | |
| SparcReg<n> {
 | |
|   let Num = num;
 | |
| }
 | |
| // Rd - Slots in the FP register file for 64-bit
 | |
| floating-point values.
 | |
| class Rd<bits<5> num, string n,
 | |
| list<Register> subregs> : SparcReg<n> {
 | |
|   let Num = num;
 | |
|   let SubRegs = subregs;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions that
 | |
| utilize these subclasses of <tt>Register</tt>, such as:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def G0 : Ri< 0, "G0">,
 | |
| DwarfRegNum<[0]>;
 | |
| def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
 | |
| ...
 | |
| def F0 : Rf< 0, "F0">,
 | |
| DwarfRegNum<[32]>;
 | |
| def F1 : Rf< 1, "F1">,
 | |
| DwarfRegNum<[33]>;
 | |
| ...
 | |
| def D0 : Rd< 0, "F0", [F0, F1]>,
 | |
| DwarfRegNum<[32]>;
 | |
| def D1 : Rd< 2, "F2", [F2, F3]>,
 | |
| DwarfRegNum<[34]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The last two registers shown above (<tt>D0</tt> and <tt>D1</tt>) are
 | |
| double-precision floating-point registers that are aliases for pairs of
 | |
| single-precision floating-point sub-registers. In addition to aliases, the
 | |
| sub-register and super-register relationships of the defined register are in
 | |
| fields of a register's TargetRegisterDesc.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="RegisterClassDef">Defining a Register Class</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The <tt>RegisterClass</tt> class (specified in <tt>Target.td</tt>) is used to
 | |
| define an object that represents a group of related registers and also defines
 | |
| the default allocation order of the registers. A target description file
 | |
| <tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register
 | |
| classes using the following class:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class RegisterClass<string namespace,
 | |
| list<ValueType> regTypes, int alignment, dag regList> {
 | |
|   string Namespace = namespace;
 | |
|   list<ValueType> RegTypes = regTypes;
 | |
|   int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
 | |
|   int Alignment = alignment;
 | |
| 
 | |
|   // CopyCost is the cost of copying a value between two registers
 | |
|   // default value 1 means a single instruction
 | |
|   // A negative value means copying is extremely expensive or impossible
 | |
|   int CopyCost = 1;  
 | |
|   dag MemberList = regList;
 | |
|   
 | |
|   // for register classes that are subregisters of this class
 | |
|   list<RegisterClass> SubRegClassList = [];  
 | |
|   
 | |
|   code MethodProtos = [{}];  // to insert arbitrary code
 | |
|   code MethodBodies = [{}];
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>To define a RegisterClass, use the following 4 arguments:</p>
 | |
| 
 | |
| <ul>
 | |
| <li>The first argument of the definition is the name of the namespace.</li>
 | |
| 
 | |
| <li>The second argument is a list of <tt>ValueType</tt> register type values
 | |
|     that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined
 | |
|     values include integer types (such as <tt>i16</tt>, <tt>i32</tt>,
 | |
|     and <tt>i1</tt> for Boolean), floating-point types
 | |
|     (<tt>f32</tt>, <tt>f64</tt>), and vector types (for example, <tt>v8i16</tt>
 | |
|     for an <tt>8 x i16</tt> vector). All registers in a <tt>RegisterClass</tt>
 | |
|     must have the same <tt>ValueType</tt>, but some registers may store vector
 | |
|     data in different configurations. For example a register that can process a
 | |
|     128-bit vector may be able to handle 16 8-bit integer elements, 8 16-bit
 | |
|     integers, 4 32-bit integers, and so on. </li>
 | |
| 
 | |
| <li>The third argument of the <tt>RegisterClass</tt> definition specifies the
 | |
|     alignment required of the registers when they are stored or loaded to
 | |
|     memory.</li>
 | |
| 
 | |
| <li>The final argument, <tt>regList</tt>, specifies which registers are in this
 | |
|     class. If an alternative allocation order method is not specified, then
 | |
|     <tt>regList</tt> also defines the order of allocation used by the register
 | |
|     allocator. Besides simply listing registers with <tt>(add R0, R1, ...)</tt>,
 | |
|     more advanced set operators are available. See
 | |
|     <tt>include/llvm/Target/Target.td</tt> for more information.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined:
 | |
| <tt>FPRegs</tt>, <tt>DFPRegs</tt>, and <tt>IntRegs</tt>. For all three register
 | |
| classes, the first argument defines the namespace with the string
 | |
| '<tt>SP</tt>'. <tt>FPRegs</tt> defines a group of 32 single-precision
 | |
| floating-point registers (<tt>F0</tt> to <tt>F31</tt>); <tt>DFPRegs</tt> defines
 | |
| a group of 16 double-precision registers
 | |
| (<tt>D0-D15</tt>).
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| // F0, F1, F2, ..., F31
 | |
| def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
 | |
| 
 | |
| def DFPRegs : RegisterClass<"SP", [f64], 64,
 | |
|                             (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
 | |
|                                  D9, D10, D11, D12, D13, D14, D15)>;
 | |
|  
 | |
| def IntRegs : RegisterClass<"SP", [i32], 32,
 | |
|     (add L0, L1, L2, L3, L4, L5, L6, L7,
 | |
|          I0, I1, I2, I3, I4, I5,
 | |
|          O0, O1, O2, O3, O4, O5, O7,
 | |
|          G1,
 | |
|          // Non-allocatable regs:
 | |
|          G2, G3, G4,
 | |
|          O6,        // stack ptr
 | |
|          I6,        // frame ptr
 | |
|          I7,        // return address
 | |
|          G0,        // constant zero
 | |
|          G5, G6, G7 // reserved for kernel
 | |
|     )>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output files
 | |
| that are intended for inclusion in other source code that you write.
 | |
| <tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>,
 | |
| which should be included in the header file for the implementation of the SPARC
 | |
| register implementation that you write (<tt>SparcRegisterInfo.h</tt>). In
 | |
| <tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called
 | |
| <tt>SparcGenRegisterInfo</tt> that uses <tt>TargetRegisterInfo</tt> as its
 | |
| base. It also specifies types, based upon the defined register
 | |
| classes: <tt>DFPRegsClass</tt>, <tt>FPRegsClass</tt>, and <tt>IntRegsClass</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| <tt>SparcRegisterInfo.td</tt> also generates <tt>SparcGenRegisterInfo.inc</tt>,
 | |
| which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC
 | |
| register implementation. The code below shows only the generated integer
 | |
| registers and associated register classes. The order of registers
 | |
| in <tt>IntRegs</tt> reflects the order in the definition of <tt>IntRegs</tt> in
 | |
| the target description file.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>  // IntRegs Register Class...
 | |
|   static const unsigned IntRegs[] = {
 | |
|     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
 | |
|     SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
 | |
|     SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
 | |
|     SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
 | |
|     SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
 | |
|     SP::G6, SP::G7, 
 | |
|   };
 | |
| 
 | |
|   // IntRegsVTs Register Class Value Types...
 | |
|   static const MVT::ValueType IntRegsVTs[] = {
 | |
|     MVT::i32, MVT::Other
 | |
|   };
 | |
| 
 | |
| namespace SP {   // Register class instances
 | |
|   DFPRegsClass    DFPRegsRegClass;
 | |
|   FPRegsClass     FPRegsRegClass;
 | |
|   IntRegsClass    IntRegsRegClass;
 | |
| ...
 | |
|   // IntRegs Sub-register Classess...
 | |
|   static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
 | |
|     NULL
 | |
|   };
 | |
| ...
 | |
|   // IntRegs Super-register Classess...
 | |
|   static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
 | |
|     NULL
 | |
|   };
 | |
| ...
 | |
|   // IntRegs Register Class sub-classes...
 | |
|   static const TargetRegisterClass* const IntRegsSubclasses [] = {
 | |
|     NULL
 | |
|   };
 | |
| ...
 | |
|   // IntRegs Register Class super-classes...
 | |
|   static const TargetRegisterClass* const IntRegsSuperclasses [] = {
 | |
|     NULL
 | |
|   };
 | |
| 
 | |
|   IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 
 | |
|     IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 
 | |
|     IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The register allocators will avoid using reserved registers, and callee saved
 | |
| registers are not used until all the volatile registers have been used.  That
 | |
| is usually good enough, but in some cases it may be necessary to provide custom
 | |
| allocation orders.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="implementRegister">Implement a subclass of</a> 
 | |
|   <a href="CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The final step is to hand code portions of <tt>XXXRegisterInfo</tt>, which
 | |
| implements the interface described in <tt>TargetRegisterInfo.h</tt>. These
 | |
| functions return <tt>0</tt>, <tt>NULL</tt>, or <tt>false</tt>, unless
 | |
| overridden. Here is a list of functions that are overridden for the SPARC
 | |
| implementation in <tt>SparcRegisterInfo.cpp</tt>:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>getCalleeSavedRegs</tt> — Returns a list of callee-saved registers
 | |
|     in the order of the desired callee-save stack frame offset.</li>
 | |
| 
 | |
| <li><tt>getReservedRegs</tt> — Returns a bitset indexed by physical
 | |
|     register numbers, indicating if a particular register is unavailable.</li>
 | |
| 
 | |
| <li><tt>hasFP</tt> — Return a Boolean indicating if a function should have
 | |
|     a dedicated frame pointer register.</li>
 | |
| 
 | |
| <li><tt>eliminateCallFramePseudoInstr</tt> — If call frame setup or
 | |
|     destroy pseudo instructions are used, this can be called to eliminate
 | |
|     them.</li>
 | |
| 
 | |
| <li><tt>eliminateFrameIndex</tt> — Eliminate abstract frame indices from
 | |
|     instructions that may use them.</li>
 | |
| 
 | |
| <li><tt>emitPrologue</tt> — Insert prologue code into the function.</li>
 | |
| 
 | |
| <li><tt>emitEpilogue</tt> — Insert epilogue code into the function.</li>
 | |
| </ul>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="InstructionSet">Instruction Set</a>
 | |
| </h2>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| During the early stages of code generation, the LLVM IR code is converted to a
 | |
| <tt>SelectionDAG</tt> with nodes that are instances of the <tt>SDNode</tt> class
 | |
| containing target instructions. An <tt>SDNode</tt> has an opcode, operands, type
 | |
| requirements, and operation properties. For example, is an operation
 | |
| commutative, does an operation load from memory. The various operation node
 | |
| types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
 | |
| file (values of the <tt>NodeType</tt> enum in the <tt>ISD</tt> namespace).
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| TableGen uses the following target description (<tt>.td</tt>) input files to
 | |
| generate much of the code for instruction definition:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>Target.td</tt> — Where the <tt>Instruction</tt>, <tt>Operand</tt>,
 | |
|     <tt>InstrInfo</tt>, and other fundamental classes are defined.</li>
 | |
| 
 | |
| <li><tt>TargetSelectionDAG.td</tt>— Used by <tt>SelectionDAG</tt>
 | |
|     instruction selection generators, contains <tt>SDTC*</tt> classes (selection
 | |
|     DAG type constraint), definitions of <tt>SelectionDAG</tt> nodes (such as
 | |
|     <tt>imm</tt>, <tt>cond</tt>, <tt>bb</tt>, <tt>add</tt>, <tt>fadd</tt>,
 | |
|     <tt>sub</tt>), and pattern support (<tt>Pattern</tt>, <tt>Pat</tt>,
 | |
|     <tt>PatFrag</tt>, <tt>PatLeaf</tt>, <tt>ComplexPattern</tt>.</li>
 | |
| 
 | |
| <li><tt>XXXInstrFormats.td</tt> — Patterns for definitions of
 | |
|     target-specific instructions.</li>
 | |
| 
 | |
| <li><tt>XXXInstrInfo.td</tt> — Target-specific definitions of instruction
 | |
|     templates, condition codes, and instructions of an instruction set. For
 | |
|     architecture modifications, a different file name may be used. For example,
 | |
|     for Pentium with SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and
 | |
|     for Pentium with MMX, this file is <tt>X86InstrMMX.td</tt>.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| There is also a target-specific <tt>XXX.td</tt> file, where <tt>XXX</tt> is the
 | |
| name of the target. The <tt>XXX.td</tt> file includes the other <tt>.td</tt>
 | |
| input files, but its contents are only directly important for subtargets.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| You should describe a concrete target-specific class <tt>XXXInstrInfo</tt> that
 | |
| represents machine instructions supported by a target machine.
 | |
| <tt>XXXInstrInfo</tt> contains an array of <tt>XXXInstrDescriptor</tt> objects,
 | |
| each of which describes one instruction. An instruction descriptor defines:</p>
 | |
| 
 | |
| <ul>
 | |
| <li>Opcode mnemonic</li>
 | |
| 
 | |
| <li>Number of operands</li>
 | |
| 
 | |
| <li>List of implicit register definitions and uses</li>
 | |
| 
 | |
| <li>Target-independent properties (such as memory access, is commutable)</li>
 | |
| 
 | |
| <li>Target-specific flags </li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a base
 | |
| for more complex instruction classes.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>class Instruction {
 | |
|   string Namespace = "";
 | |
|   dag OutOperandList;       // An dag containing the MI def operand list.
 | |
|   dag InOperandList;        // An dag containing the MI use operand list.
 | |
|   string AsmString = "";    // The .s format to print the instruction with.
 | |
|   list<dag> Pattern;  // Set to the DAG pattern for this instruction
 | |
|   list<Register> Uses = []; 
 | |
|   list<Register> Defs = [];
 | |
|   list<Predicate> Predicates = [];  // predicates turned into isel match code
 | |
|   ... remainder not shown for space ...
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| A <tt>SelectionDAG</tt> node (<tt>SDNode</tt>) should contain an object
 | |
| representing a target-specific instruction that is defined
 | |
| in <tt>XXXInstrInfo.td</tt>. The instruction objects should represent
 | |
| instructions from the architecture manual of the target machine (such as the
 | |
| SPARC Architecture Manual for the SPARC target).
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| A single instruction from the architecture manual is often modeled as multiple
 | |
| target instructions, depending upon its operands. For example, a manual might
 | |
| describe an add instruction that takes a register or an immediate operand. An
 | |
| LLVM target could model this with two instructions named <tt>ADDri</tt> and
 | |
| <tt>ADDrr</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| You should define a class for each instruction category and define each opcode
 | |
| as a subclass of the category with appropriate parameters such as the fixed
 | |
| binary encoding of opcodes and extended opcodes. You should map the register
 | |
| bits to the bits of the instruction in which they are encoded (for the
 | |
| JIT). Also you should specify how the instruction should be printed when the
 | |
| automatic assembly printer is used.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| As is described in the SPARC Architecture Manual, Version 8, there are three
 | |
| major 32-bit formats for instructions. Format 1 is only for the <tt>CALL</tt>
 | |
| instruction. Format 2 is for branch on condition codes and <tt>SETHI</tt> (set
 | |
| high bits of a register) instructions.  Format 3 is for other instructions.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Each of these formats has corresponding classes in <tt>SparcInstrFormat.td</tt>.
 | |
| <tt>InstSP</tt> is a base class for other instruction classes. Additional base
 | |
| classes are specified for more precise formats: for example
 | |
| in <tt>SparcInstrFormat.td</tt>, <tt>F2_1</tt> is for <tt>SETHI</tt>,
 | |
| and <tt>F2_2</tt> is for branches. There are three other base
 | |
| classes: <tt>F3_1</tt> for register/register operations, <tt>F3_2</tt> for
 | |
| register/immediate operations, and <tt>F3_3</tt> for floating-point
 | |
| operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for
 | |
| synthetic SPARC instructions.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| <tt>SparcInstrInfo.td</tt> largely consists of operand and instruction
 | |
| definitions for the SPARC target. In <tt>SparcInstrInfo.td</tt>, the following
 | |
| target description file entry, <tt>LDrr</tt>, defines the Load Integer
 | |
| instruction for a Word (the <tt>LD</tt> SPARC opcode) from a memory address to a
 | |
| register. The first parameter, the value 3 (<tt>11<sub>2</sub></tt>), is the
 | |
| operation value for this category of operation. The second parameter
 | |
| (<tt>000000<sub>2</sub></tt>) is the specific operation value
 | |
| for <tt>LD</tt>/Load Word. The third parameter is the output destination, which
 | |
| is a register operand and defined in the <tt>Register</tt> target description
 | |
| file (<tt>IntRegs</tt>).
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
 | |
|                  "ld [$addr], $dst",
 | |
|                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The fourth parameter is the input source, which uses the address
 | |
| operand <tt>MEMrr</tt> that is defined earlier in <tt>SparcInstrInfo.td</tt>:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def MEMrr : Operand<i32> {
 | |
|   let PrintMethod = "printMemOperand";
 | |
|   let MIOperandInfo = (ops IntRegs, IntRegs);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The fifth parameter is a string that is used by the assembly printer and can be
 | |
| left as an empty string until the assembly printer interface is implemented. The
 | |
| sixth and final parameter is the pattern used to match the instruction during
 | |
| the SelectionDAG Select Phase described in
 | |
| (<a href="CodeGenerator.html">The LLVM
 | |
| Target-Independent Code Generator</a>).  This parameter is detailed in the next
 | |
| section, <a href="#InstructionSelector">Instruction Selector</a>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Instruction class definitions are not overloaded for different operand types, so
 | |
| separate versions of instructions are needed for register, memory, or immediate
 | |
| value operands. For example, to perform a Load Integer instruction for a Word
 | |
| from an immediate operand to a register, the following instruction class is
 | |
| defined:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
 | |
|                  "ld [$addr], $dst",
 | |
|                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Writing these definitions for so many similar instructions can involve a lot of
 | |
| cut and paste. In td files, the <tt>multiclass</tt> directive enables the
 | |
| creation of templates to define several instruction classes at once (using
 | |
| the <tt>defm</tt> directive). For example in <tt>SparcInstrInfo.td</tt>, the
 | |
| <tt>multiclass</tt> pattern <tt>F3_12</tt> is defined to create 2 instruction
 | |
| classes each time <tt>F3_12</tt> is invoked:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
 | |
|   def rr  : F3_1 <2, Op3Val, 
 | |
|                  (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
 | |
|                  !strconcat(OpcStr, " $b, $c, $dst"),
 | |
|                  [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
 | |
|   def ri  : F3_2 <2, Op3Val,
 | |
|                  (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
 | |
|                  !strconcat(OpcStr, " $b, $c, $dst"),
 | |
|                  [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| So when the <tt>defm</tt> directive is used for the <tt>XOR</tt>
 | |
| and <tt>ADD</tt> instructions, as seen below, it creates four instruction
 | |
| objects: <tt>XORrr</tt>, <tt>XORri</tt>, <tt>ADDrr</tt>, and <tt>ADDri</tt>.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| defm XOR   : F3_12<"xor", 0b000011, xor>;
 | |
| defm ADD   : F3_12<"add", 0b000000, add>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>SparcInstrInfo.td</tt> also includes definitions for condition codes that
 | |
| are referenced by branch instructions. The following definitions
 | |
| in <tt>SparcInstrInfo.td</tt> indicate the bit location of the SPARC condition
 | |
| code. For example, the 10<sup>th</sup> bit represents the 'greater than'
 | |
| condition for integers, and the 22<sup>nd</sup> bit represents the 'greater
 | |
| than' condition for floats.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def ICC_NE  : ICC_VAL< 9>;  // Not Equal
 | |
| def ICC_E   : ICC_VAL< 1>;  // Equal
 | |
| def ICC_G   : ICC_VAL<10>;  // Greater
 | |
| ...
 | |
| def FCC_U   : FCC_VAL<23>;  // Unordered
 | |
| def FCC_G   : FCC_VAL<22>;  // Greater
 | |
| def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
 | |
| ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| (Note that <tt>Sparc.h</tt> also defines enums that correspond to the same SPARC
 | |
| condition codes. Care must be taken to ensure the values in <tt>Sparc.h</tt>
 | |
| correspond to the values in <tt>SparcInstrInfo.td</tt>. I.e.,
 | |
| <tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)
 | |
| </p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="operandMapping">Instruction Operand Mapping</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The code generator backend maps instruction operands to fields in the
 | |
| instruction.  Operands are assigned to unbound fields in the instruction in the
 | |
| order they are defined. Fields are bound when they are assigned a value.  For
 | |
| example, the Sparc target defines the <tt>XNORrr</tt> instruction as
 | |
| a <tt>F3_1</tt> format instruction having three operands.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def XNORrr  : F3_1<2, 0b000111,
 | |
|                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
 | |
|                    "xnor $b, $c, $dst",
 | |
|                    [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class
 | |
| for <tt>F3_1</tt> is <tt>InstSP</tt>.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
 | |
|   field bits<32> Inst;
 | |
|   let Namespace = "SP";
 | |
|   bits<2> op;
 | |
|   let Inst{31-30} = op;       
 | |
|   dag OutOperandList = outs;
 | |
|   dag InOperandList = ins;
 | |
|   let AsmString   = asmstr;
 | |
|   let Pattern = pattern;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p><tt>InstSP</tt> leaves the <tt>op</tt> field unbound.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
 | |
|     : InstSP<outs, ins, asmstr, pattern> {
 | |
|   bits<5> rd;
 | |
|   bits<6> op3;
 | |
|   bits<5> rs1;
 | |
|   let op{1} = 1;   // Op = 2 or 3
 | |
|   let Inst{29-25} = rd;
 | |
|   let Inst{24-19} = op3;
 | |
|   let Inst{18-14} = rs1;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>F3</tt> binds the <tt>op</tt> field and defines the <tt>rd</tt>,
 | |
| <tt>op3</tt>, and <tt>rs1</tt> fields.  <tt>F3</tt> format instructions will
 | |
| bind the operands <tt>rd</tt>, <tt>op3</tt>, and <tt>rs1</tt> fields.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
 | |
|            string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
 | |
|   bits<8> asi = 0; // asi not currently used
 | |
|   bits<5> rs2;
 | |
|   let op         = opVal;
 | |
|   let op3        = op3val;
 | |
|   let Inst{13}   = 0;     // i field = 0
 | |
|   let Inst{12-5} = asi;   // address space identifier
 | |
|   let Inst{4-0}  = rs2;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>F3_1</tt> binds the <tt>op3</tt> field and defines the <tt>rs2</tt>
 | |
| fields.  <tt>F3_1</tt> format instructions will bind the operands to the <tt>rd</tt>,
 | |
| <tt>rs1</tt>, and <tt>rs2</tt> fields. This results in the <tt>XNORrr</tt>
 | |
| instruction binding <tt>$dst</tt>, <tt>$b</tt>, and <tt>$c</tt> operands to
 | |
| the <tt>rd</tt>, <tt>rs1</tt>, and <tt>rs2</tt> fields respectively.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="implementInstr">Implement a subclass of </a>
 | |
|   <a href="CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The final step is to hand code portions of <tt>XXXInstrInfo</tt>, which
 | |
| implements the interface described in <tt>TargetInstrInfo.h</tt>. These
 | |
| functions return <tt>0</tt> or a Boolean or they assert, unless
 | |
| overridden. Here's a list of functions that are overridden for the SPARC
 | |
| implementation in <tt>SparcInstrInfo.cpp</tt>:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>isLoadFromStackSlot</tt> — If the specified machine instruction is
 | |
|     a direct load from a stack slot, return the register number of the
 | |
|     destination and the <tt>FrameIndex</tt> of the stack slot.</li>
 | |
| 
 | |
| <li><tt>isStoreToStackSlot</tt> — If the specified machine instruction is
 | |
|     a direct store to a stack slot, return the register number of the
 | |
|     destination and the <tt>FrameIndex</tt> of the stack slot.</li>
 | |
| 
 | |
| <li><tt>copyPhysReg</tt> — Copy values between a pair of physical
 | |
|     registers.</li>
 | |
| 
 | |
| <li><tt>storeRegToStackSlot</tt> — Store a register value to a stack
 | |
|     slot.</li>
 | |
| 
 | |
| <li><tt>loadRegFromStackSlot</tt> — Load a register value from a stack
 | |
|     slot.</li>
 | |
| 
 | |
| <li><tt>storeRegToAddr</tt> — Store a register value to memory.</li>
 | |
| 
 | |
| <li><tt>loadRegFromAddr</tt> — Load a register value from memory.</li>
 | |
| 
 | |
| <li><tt>foldMemoryOperand</tt> — Attempt to combine instructions of any
 | |
|     load or store instruction for the specified operand(s).</li>
 | |
| </ul>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="branchFolding">Branch Folding and If Conversion</a>
 | |
| </h3>
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| Performance can be improved by combining instructions or by eliminating
 | |
| instructions that are never reached. The <tt>AnalyzeBranch</tt> method
 | |
| in <tt>XXXInstrInfo</tt> may be implemented to examine conditional instructions
 | |
| and remove unnecessary instructions. <tt>AnalyzeBranch</tt> looks at the end of
 | |
| a machine basic block (MBB) for opportunities for improvement, such as branch
 | |
| folding and if conversion. The <tt>BranchFolder</tt> and <tt>IfConverter</tt>
 | |
| machine function passes (see the source files <tt>BranchFolding.cpp</tt> and
 | |
| <tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call
 | |
| <tt>AnalyzeBranch</tt> to improve the control flow graph that represents the
 | |
| instructions.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and X86) can
 | |
| be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since
 | |
| SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target
 | |
| implementation is shown below.
 | |
| </p>
 | |
| 
 | |
| <p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>MachineBasicBlock &MBB</tt> — The incoming block to be
 | |
|     examined.</li>
 | |
| 
 | |
| <li><tt>MachineBasicBlock *&TBB</tt> — A destination block that is
 | |
|     returned. For a conditional branch that evaluates to true, <tt>TBB</tt> is
 | |
|     the destination.</li>
 | |
| 
 | |
| <li><tt>MachineBasicBlock *&FBB</tt> — For a conditional branch that
 | |
|     evaluates to false, <tt>FBB</tt> is returned as the destination.</li>
 | |
| 
 | |
| <li><tt>std::vector<MachineOperand> &Cond</tt> — List of
 | |
|     operands to evaluate a condition for a conditional branch.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| In the simplest case, if a block ends without a branch, then it falls through to
 | |
| the successor block. No destination blocks are specified for either <tt>TBB</tt>
 | |
| or <tt>FBB</tt>, so both parameters return <tt>NULL</tt>. The start of
 | |
| the <tt>AnalyzeBranch</tt> (see code below for the ARM target) shows the
 | |
| function parameters and the code for the simplest case.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
 | |
|         MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
 | |
|         std::vector<MachineOperand> &Cond) const
 | |
| {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
 | |
|     return false;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| If a block ends with a single unconditional branch instruction, then
 | |
| <tt>AnalyzeBranch</tt> (shown below) should return the destination of that
 | |
| branch in the <tt>TBB</tt> parameter.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   if (LastOpc == ARM::B || LastOpc == ARM::tB) {
 | |
|     TBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| If a block ends with two unconditional branches, then the second branch is never
 | |
| reached. In that situation, as shown below, remove the last branch instruction
 | |
| and return the penultimate branch in the <tt>TBB</tt> parameter.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &&
 | |
|       (LastOpc == ARM::B || LastOpc == ARM::tB)) {
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     I = LastInst;
 | |
|     I->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| A block may end with a single conditional branch instruction that falls through
 | |
| to successor block if the condition evaluates to false. In that case,
 | |
| <tt>AnalyzeBranch</tt> (shown below) should return the destination of that
 | |
| conditional branch in the <tt>TBB</tt> parameter and a list of operands in
 | |
| the <tt>Cond</tt> parameter to evaluate the condition.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
 | |
|     // Block ends with fall-through condbranch.
 | |
|     TBB = LastInst->getOperand(0).getMBB();
 | |
|     Cond.push_back(LastInst->getOperand(1));
 | |
|     Cond.push_back(LastInst->getOperand(2));
 | |
|     return false;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| If a block ends with both a conditional branch and an ensuing unconditional
 | |
| branch, then <tt>AnalyzeBranch</tt> (shown below) should return the conditional
 | |
| branch destination (assuming it corresponds to a conditional evaluation of
 | |
| '<tt>true</tt>') in the <tt>TBB</tt> parameter and the unconditional branch
 | |
| destination in the <tt>FBB</tt> (corresponding to a conditional evaluation of
 | |
| '<tt>false</tt>').  A list of operands to evaluate the condition should be
 | |
| returned in the <tt>Cond</tt> parameter.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   unsigned SecondLastOpc = SecondLastInst->getOpcode();
 | |
| 
 | |
|   if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
 | |
|       (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
 | |
|     TBB =  SecondLastInst->getOperand(0).getMBB();
 | |
|     Cond.push_back(SecondLastInst->getOperand(1));
 | |
|     Cond.push_back(SecondLastInst->getOperand(2));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| For the last two cases (ending with a single conditional branch or ending with
 | |
| one conditional and one unconditional branch), the operands returned in
 | |
| the <tt>Cond</tt> parameter can be passed to methods of other instructions to
 | |
| create new branches or perform other operations. An implementation
 | |
| of <tt>AnalyzeBranch</tt> requires the helper methods <tt>RemoveBranch</tt>
 | |
| and <tt>InsertBranch</tt> to manage subsequent operations.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| <tt>AnalyzeBranch</tt> should return false indicating success in most circumstances.
 | |
| <tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to
 | |
| do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may
 | |
| return true if it encounters a terminator it cannot handle, such as an indirect
 | |
| branch.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="InstructionSelector">Instruction Selector</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| LLVM uses a <tt>SelectionDAG</tt> to represent LLVM IR instructions, and nodes
 | |
| of the <tt>SelectionDAG</tt> ideally represent native target
 | |
| instructions. During code generation, instruction selection passes are performed
 | |
| to convert non-native DAG instructions into native target-specific
 | |
| instructions. The pass described in <tt>XXXISelDAGToDAG.cpp</tt> is used to
 | |
| match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass
 | |
| may be defined (in <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG
 | |
| operations for branch instructions. Later, the code in
 | |
| <tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types not
 | |
| supported natively (legalizes) in a <tt>SelectionDAG</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| TableGen generates code for instruction selection using the following target
 | |
| description input files:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>XXXInstrInfo.td</tt> — Contains definitions of instructions in a
 | |
|     target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which
 | |
|     is included in <tt>XXXISelDAGToDAG.cpp</tt>.</li>
 | |
| 
 | |
| <li><tt>XXXCallingConv.td</tt> — Contains the calling and return value
 | |
|     conventions for the target architecture, and it generates
 | |
|     <tt>XXXGenCallingConv.inc</tt>, which is included in
 | |
|     <tt>XXXISelLowering.cpp</tt>.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| The implementation of an instruction selection pass must include a header that
 | |
| declares the <tt>FunctionPass</tt> class or a subclass of <tt>FunctionPass</tt>. In
 | |
| <tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction
 | |
| selection pass into the queue of passes to run.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The LLVM static compiler (<tt>llc</tt>) is an excellent tool for visualizing the
 | |
| contents of DAGs. To display the <tt>SelectionDAG</tt> before or after specific
 | |
| processing phases, use the command line options for <tt>llc</tt>, described
 | |
| at <a href="CodeGenerator.html#selectiondag_process">
 | |
| SelectionDAG Instruction Selection Process</a>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| To describe instruction selector behavior, you should add patterns for lowering
 | |
| LLVM code into a <tt>SelectionDAG</tt> as the last parameter of the instruction
 | |
| definitions in <tt>XXXInstrInfo.td</tt>. For example, in
 | |
| <tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and
 | |
| the last parameter describes a pattern with the store DAG operator.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
 | |
|                  "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>ADDRrr</tt> is a memory mode that is also defined in
 | |
| <tt>SparcInstrInfo.td</tt>:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The definition of <tt>ADDRrr</tt> refers to <tt>SelectADDRrr</tt>, which is a
 | |
| function defined in an implementation of the Instructor Selector (such
 | |
| as <tt>SparcISelDAGToDAG.cpp</tt>).
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store is
 | |
| defined below:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def store : PatFrag<(ops node:$val, node:$ptr),
 | |
|                     (st node:$val, node:$ptr), [{
 | |
|   if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
 | |
|     return !ST->isTruncatingStore() && 
 | |
|            ST->getAddressingMode() == ISD::UNINDEXED;
 | |
|   return false;
 | |
| }]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the
 | |
| <tt>SelectCode</tt> method that is used to call the appropriate processing
 | |
| method for an instruction. In this example, <tt>SelectCode</tt>
 | |
| calls <tt>Select_ISD_STORE</tt> for the <tt>ISD::STORE</tt> opcode.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| SDNode *SelectCode(SDValue N) {
 | |
|   ... 
 | |
|   MVT::ValueType NVT = N.getNode()->getValueType(0);
 | |
|   switch (N.getOpcode()) {
 | |
|   case ISD::STORE: {
 | |
|     switch (NVT) {
 | |
|     default:
 | |
|       return Select_ISD_STORE(N);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The pattern for <tt>STrr</tt> is matched, so elsewhere in
 | |
| <tt>XXXGenDAGISel.inc</tt>, code for <tt>STrr</tt> is created for
 | |
| <tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method is also generated
 | |
| in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this
 | |
| instruction.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| SDNode *Select_ISD_STORE(const SDValue &N) {
 | |
|   SDValue Chain = N.getOperand(0);
 | |
|   if (Predicate_store(N.getNode())) {
 | |
|     SDValue N1 = N.getOperand(1);
 | |
|     SDValue N2 = N.getOperand(2);
 | |
|     SDValue CPTmp0;
 | |
|     SDValue CPTmp1;
 | |
| 
 | |
|     // Pattern: (st:void IntRegs:i32:$src, 
 | |
|     //           ADDRrr:i32:$addr)<<P:Predicate_store>>
 | |
|     // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
 | |
|     // Pattern complexity = 13  cost = 1  size = 0
 | |
|     if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
 | |
|         N1.getNode()->getValueType(0) == MVT::i32 &&
 | |
|         N2.getNode()->getValueType(0) == MVT::i32) {
 | |
|       return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
 | |
|     }
 | |
| ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="LegalizePhase">The SelectionDAG Legalize Phase</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The Legalize phase converts a DAG to use types and operations that are natively
 | |
| supported by the target. For natively unsupported types and operations, you need
 | |
| to add code to the target-specific XXXTargetLowering implementation to convert
 | |
| unsupported types and operations to supported ones.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| In the constructor for the <tt>XXXTargetLowering</tt> class, first use the
 | |
| <tt>addRegisterClass</tt> method to specify which types are supports and which
 | |
| register classes are associated with them. The code for the register classes are
 | |
| generated by TableGen from <tt>XXXRegisterInfo.td</tt> and placed
 | |
| in <tt>XXXGenRegisterInfo.h.inc</tt>. For example, the implementation of the
 | |
| constructor for the SparcTargetLowering class (in
 | |
| <tt>SparcISelLowering.cpp</tt>) starts with the following code:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
 | |
| addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
 | |
| addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| You should examine the node types in the <tt>ISD</tt> namespace
 | |
| (<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) and determine which
 | |
| operations the target natively supports. For operations that do <b>not</b> have
 | |
| native support, add a callback to the constructor for the XXXTargetLowering
 | |
| class, so the instruction selection process knows what to do. The TargetLowering
 | |
| class callback methods (declared in <tt>llvm/Target/TargetLowering.h</tt>) are:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>setOperationAction</tt> — General operation.</li>
 | |
| 
 | |
| <li><tt>setLoadExtAction</tt> — Load with extension.</li>
 | |
| 
 | |
| <li><tt>setTruncStoreAction</tt> — Truncating store.</li>
 | |
| 
 | |
| <li><tt>setIndexedLoadAction</tt> — Indexed load.</li>
 | |
| 
 | |
| <li><tt>setIndexedStoreAction</tt> — Indexed store.</li>
 | |
| 
 | |
| <li><tt>setConvertAction</tt> — Type conversion.</li>
 | |
| 
 | |
| <li><tt>setCondCodeAction</tt> — Support for a given condition code.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| Note: on older releases, <tt>setLoadXAction</tt> is used instead
 | |
| of <tt>setLoadExtAction</tt>.  Also, on older releases,
 | |
| <tt>setCondCodeAction</tt> may not be supported. Examine your release
 | |
| to see what methods are specifically supported.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| These callbacks are used to determine that an operation does or does not work
 | |
| with a specified type (or types). And in all cases, the third parameter is
 | |
| a <tt>LegalAction</tt> type enum value: <tt>Promote</tt>, <tt>Expand</tt>,
 | |
| <tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt>
 | |
| contains examples of all four <tt>LegalAction</tt> values.
 | |
| </p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="promote">Promote</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| For an operation without native support for a given type, the specified type may
 | |
| be promoted to a larger type that is supported. For example, SPARC does not
 | |
| support a sign-extending load for Boolean values (<tt>i1</tt> type), so
 | |
| in <tt>SparcISelLowering.cpp</tt> the third parameter below, <tt>Promote</tt>,
 | |
| changes <tt>i1</tt> type values to a large type before loading.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="expand">Expand</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| For a type without native support, a value may need to be broken down further,
 | |
| rather than promoted. For an operation without native support, a combination of
 | |
| other operations may be used to similar effect. In SPARC, the floating-point
 | |
| sine and cosine trig operations are supported by expansion to other operations,
 | |
| as indicated by the third parameter, <tt>Expand</tt>, to
 | |
| <tt>setOperationAction</tt>:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | |
| setOperationAction(ISD::FCOS, MVT::f32, Expand);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="custom">Custom</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| For some operations, simple type promotion or operation expansion may be
 | |
| insufficient. In some cases, a special intrinsic function must be implemented.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| For example, a constant value may require special treatment, or an operation may
 | |
| require spilling and restoring registers in the stack and working with register
 | |
| allocators.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type
 | |
| conversion from a floating point value to a signed integer, first the
 | |
| <tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third
 | |
| parameter:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
| </pre>
 | |
| </div>    
 | |
| 
 | |
| <p>
 | |
| In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a
 | |
| case statement should be added to indicate what function to call. In the
 | |
| following code, an <tt>FP_TO_SINT</tt> opcode will call
 | |
| the <tt>LowerFP_TO_SINT</tt> method:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
 | |
|   ...
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP
 | |
| register to convert the floating-point value to an integer.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getValueType() == MVT::i32);
 | |
|   Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
 | |
|   return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
 | |
| }
 | |
| </pre>
 | |
| </div>    
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <h4>
 | |
|   <a name="legal">Legal</a>
 | |
| </h4>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The <tt>Legal</tt> LegalizeAction enum value simply indicates that an
 | |
| operation <b>is</b> natively supported. <tt>Legal</tt> represents the default
 | |
| condition, so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action
 | |
| for <tt>CTPOP</tt> (an operation to count the bits set in an integer) is
 | |
| natively supported only for SPARC v9. The following code enables
 | |
| the <tt>Expand</tt> conversion technique for non-v9 SPARC implementations.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | |
| ...
 | |
| if (TM.getSubtarget<SparcSubtarget>().isV9())
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
 | |
|   case ISD::SETULT: return SPCC::ICC_CS;
 | |
|   case ISD::SETULE: return SPCC::ICC_LEU;
 | |
|   case ISD::SETUGT: return SPCC::ICC_GU;
 | |
|   case ISD::SETUGE: return SPCC::ICC_CC;
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="callingConventions">Calling Conventions</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt>
 | |
| uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
 | |
| <tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target
 | |
| descriptor file <tt>XXXGenCallingConv.td</tt> and generate the header
 | |
| file <tt>XXXGenCallingConv.inc</tt>, which is typically included
 | |
| in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in
 | |
| <tt>TargetCallingConv.td</tt> to specify:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li>The order of parameter allocation.</li>
 | |
| 
 | |
| <li>Where parameters and return values are placed (that is, on the stack or in
 | |
|     registers).</li>
 | |
| 
 | |
| <li>Which registers may be used.</li>
 | |
| 
 | |
| <li>Whether the caller or callee unwinds the stack.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| The following example demonstrates the use of the <tt>CCIfType</tt> and
 | |
| <tt>CCAssignToReg</tt> interfaces. If the <tt>CCIfType</tt> predicate is true
 | |
| (that is, if the current argument is of type <tt>f32</tt> or <tt>f64</tt>), then
 | |
| the action is performed. In this case, the <tt>CCAssignToReg</tt> action assigns
 | |
| the argument value to the first available register: either <tt>R0</tt>
 | |
| or <tt>R1</tt>.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>SparcCallingConv.td</tt> contains definitions for a target-specific
 | |
| return-value calling convention (RetCC_Sparc32) and a basic 32-bit C calling
 | |
| convention (<tt>CC_Sparc32</tt>). The definition of <tt>RetCC_Sparc32</tt>
 | |
| (shown below) indicates which registers are used for specified scalar return
 | |
| types. A single-precision float is returned to register <tt>F0</tt>, and a
 | |
| double-precision float goes to register <tt>D0</tt>. A 32-bit integer is
 | |
| returned in register <tt>I0</tt> or <tt>I1</tt>.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def RetCC_Sparc32 : CallingConv<[
 | |
|   CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
 | |
|   CCIfType<[f32], CCAssignToReg<[F0]>>,
 | |
|   CCIfType<[f64], CCAssignToReg<[D0]>>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The definition of <tt>CC_Sparc32</tt> in <tt>SparcCallingConv.td</tt> introduces
 | |
| <tt>CCAssignToStack</tt>, which assigns the value to a stack slot with the
 | |
| specified size and alignment. In the example below, the first parameter, 4,
 | |
| indicates the size of the slot, and the second parameter, also 4, indicates the
 | |
| stack alignment along 4-byte units. (Special cases: if size is zero, then the
 | |
| ABI size is used; if alignment is zero, then the ABI alignment is used.)
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def CC_Sparc32 : CallingConv<[
 | |
|   // All arguments get passed in integer registers if there is space.
 | |
|   CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
 | |
|   CCAssignToStack<4, 4>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>CCDelegateTo</tt> is another commonly used interface, which tries to find a
 | |
| specified sub-calling convention, and, if a match is found, it is invoked. In
 | |
| the following example (in <tt>X86CallingConv.td</tt>), the definition of
 | |
| <tt>RetCC_X86_32_C</tt> ends with <tt>CCDelegateTo</tt>. After the current value
 | |
| is assigned to the register <tt>ST0</tt> or <tt>ST1</tt>,
 | |
| the <tt>RetCC_X86Common</tt> is invoked.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def RetCC_X86_32_C : CallingConv<[
 | |
|   CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
 | |
|   CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| <tt>CCIfCC</tt> is an interface that attempts to match the given name to the
 | |
| current calling convention. If the name identifies the current calling
 | |
| convention, then a specified action is invoked. In the following example (in
 | |
| <tt>X86CallingConv.td</tt>), if the <tt>Fast</tt> calling convention is in use,
 | |
| then <tt>RetCC_X86_32_Fast</tt> is invoked. If the <tt>SSECall</tt> calling
 | |
| convention is in use, then <tt>RetCC_X86_32_SSE</tt> is invoked.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def RetCC_X86_32 : CallingConv<[
 | |
|   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
 | |
|   CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
 | |
|   CCDelegateTo<RetCC_X86_32_C>
 | |
| ]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Other calling convention interfaces include:</p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>CCIf <predicate, action></tt> — If the predicate matches,
 | |
|     apply the action.</li>
 | |
| 
 | |
| <li><tt>CCIfInReg <action></tt> — If the argument is marked with the
 | |
|     '<tt>inreg</tt>' attribute, then apply the action.</li>
 | |
| 
 | |
| <li><tt>CCIfNest <action></tt> — Inf the argument is marked with the
 | |
|     '<tt>nest</tt>' attribute, then apply the action.</li>
 | |
| 
 | |
| <li><tt>CCIfNotVarArg <action></tt> — If the current function does
 | |
|     not take a variable number of arguments, apply the action.</li>
 | |
| 
 | |
| <li><tt>CCAssignToRegWithShadow <registerList, shadowList></tt> —
 | |
|     similar to <tt>CCAssignToReg</tt>, but with a shadow list of registers.</li>
 | |
| 
 | |
| <li><tt>CCPassByVal <size, align></tt> — Assign value to a stack
 | |
|     slot with the minimum specified size and alignment.</li>
 | |
| 
 | |
| <li><tt>CCPromoteToType <type></tt> — Promote the current value to
 | |
|     the specified type.</li>
 | |
| 
 | |
| <li><tt>CallingConv <[actions]></tt> — Define each calling
 | |
|     convention that is supported.</li>
 | |
| </ul>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="assemblyPrinter">Assembly Printer</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| During the code emission stage, the code generator may utilize an LLVM pass to
 | |
| produce assembly output. To do this, you want to implement the code for a
 | |
| printer that converts LLVM IR to a GAS-format assembly language for your target
 | |
| machine, using the following steps:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li>Define all the assembly strings for your target, adding them to the
 | |
|     instructions defined in the <tt>XXXInstrInfo.td</tt> file.
 | |
|     (See <a href="#InstructionSet">Instruction Set</a>.)  TableGen will produce
 | |
|     an output file (<tt>XXXGenAsmWriter.inc</tt>) with an implementation of
 | |
|     the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li>
 | |
| 
 | |
| <li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones declaration
 | |
|     of the <tt>XXXTargetAsmInfo</tt> class (a subclass
 | |
|     of <tt>TargetAsmInfo</tt>).</li>
 | |
| 
 | |
| <li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values
 | |
|     for <tt>TargetAsmInfo</tt> properties and sometimes new implementations for
 | |
|     methods.</li>
 | |
| 
 | |
| <li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt>
 | |
|     class that performs the LLVM-to-assembly conversion.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration of the
 | |
| <tt>XXXTargetAsmInfo</tt> class for use in <tt>XXXTargetAsmInfo.cpp</tt>.
 | |
| Similarly, <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of
 | |
| <tt>XXXTargetAsmInfo</tt> replacement values that override the default values
 | |
| in <tt>TargetAsmInfo.cpp</tt>. For example in <tt>SparcTargetAsmInfo.cpp</tt>:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
 | |
|   Data16bitsDirective = "\t.half\t";
 | |
|   Data32bitsDirective = "\t.word\t";
 | |
|   Data64bitsDirective = 0;  // .xword is only supported by V9.
 | |
|   ZeroDirective = "\t.skip\t";
 | |
|   CommentString = "!";
 | |
|   ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The X86 assembly printer implementation (<tt>X86TargetAsmInfo</tt>) is an
 | |
| example where the target specific <tt>TargetAsmInfo</tt> class uses an 
 | |
| overridden methods: <tt>ExpandInlineAsm</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| A target-specific implementation of AsmPrinter is written in
 | |
| <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> class that
 | |
| converts the LLVM to printable assembly. The implementation must include the
 | |
| following headers that have declarations for the <tt>AsmPrinter</tt> and
 | |
| <tt>MachineFunctionPass</tt> classes. The <tt>MachineFunctionPass</tt> is a
 | |
| subclass of <tt>FunctionPass</tt>.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| #include "llvm/CodeGen/AsmPrinter.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h" 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| As a <tt>FunctionPass</tt>, <tt>AsmPrinter</tt> first
 | |
| calls <tt>doInitialization</tt> to set up the <tt>AsmPrinter</tt>. In
 | |
| <tt>SparcAsmPrinter</tt>, a <tt>Mangler</tt> object is instantiated to process
 | |
| variable names.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method
 | |
| (declared in <tt>MachineFunctionPass</tt>) must be implemented
 | |
| for <tt>XXXAsmPrinter</tt>. In <tt>MachineFunctionPass</tt>,
 | |
| the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>.
 | |
| Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but
 | |
| generally do the following to process each machine function:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li>Call <tt>SetupMachineFunction</tt> to perform initialization.</li>
 | |
| 
 | |
| <li>Call <tt>EmitConstantPool</tt> to print out (to the output stream) constants
 | |
|     which have been spilled to memory.</li>
 | |
| 
 | |
| <li>Call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the current
 | |
|     function.</li>
 | |
| 
 | |
| <li>Print out the label for the current function.</li>
 | |
| 
 | |
| <li>Print out the code for the function, including basic block labels and the
 | |
|     assembly for the instruction (using <tt>printInstruction</tt>)</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| The <tt>XXXAsmPrinter</tt> implementation must also include the code generated
 | |
| by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code
 | |
| in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the
 | |
| <tt>printInstruction</tt> method that may call these methods:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>printOperand</tt></li>
 | |
| 
 | |
| <li><tt>printMemOperand</tt></li>
 | |
| 
 | |
| <li><tt>printCCOperand (for conditional statements)</tt></li>
 | |
| 
 | |
| <li><tt>printDataDirective</tt></li>
 | |
| 
 | |
| <li><tt>printDeclare</tt></li>
 | |
| 
 | |
| <li><tt>printImplicitDef</tt></li>
 | |
| 
 | |
| <li><tt>printInlineAsm</tt></li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>,
 | |
| <tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are
 | |
| generally adequate for printing assembly and do not need to be
 | |
| overridden.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The <tt>printOperand</tt> method is implemented with a long switch/case
 | |
| statement for the type of operand: register, immediate, basic block, external
 | |
| symbol, global address, constant pool index, or jump table index. For an
 | |
| instruction with a memory address operand, the <tt>printMemOperand</tt> method
 | |
| should be implemented to generate the proper output. Similarly,
 | |
| <tt>printCCOperand</tt> should be used to print a conditional operand.
 | |
| </p>
 | |
| 
 | |
| <p><tt>doFinalization</tt> should be overridden in <tt>XXXAsmPrinter</tt>, and
 | |
| it should be called to shut down the assembly printer. During
 | |
| <tt>doFinalization</tt>, global variables and constants are printed to
 | |
| output.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="subtargetSupport">Subtarget Support</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| Subtarget support is used to inform the code generation process of instruction
 | |
| set variations for a given chip set.  For example, the LLVM SPARC implementation
 | |
| provided covers three major versions of the SPARC microprocessor architecture:
 | |
| Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit
 | |
| architecture), and the UltraSPARC architecture. V8 has 16 double-precision
 | |
| floating-point registers that are also usable as either 32 single-precision or 8
 | |
| quad-precision registers.  V8 is also purely big-endian. V9 has 32
 | |
| double-precision floating-point registers that are also usable as 16
 | |
| quad-precision registers, but cannot be used as single-precision registers. The
 | |
| UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
 | |
| extensions.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| If subtarget support is needed, you should implement a target-specific
 | |
| XXXSubtarget class for your architecture. This class should process the
 | |
| command-line options <tt>-mcpu=</tt> and <tt>-mattr=</tt>.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files
 | |
| to generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown
 | |
| below, the <tt>SubtargetFeature</tt> interface is defined. The first 4 string
 | |
| parameters of the <tt>SubtargetFeature</tt> interface are a feature name, an
 | |
| attribute set by the feature, the value of the attribute, and a description of
 | |
| the feature. (The fifth parameter is a list of features whose presence is
 | |
| implied, and its default value is an empty array.)
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class SubtargetFeature<string n, string a,  string v, string d,
 | |
|                        list<SubtargetFeature> i = []> {
 | |
|   string Name = n;
 | |
|   string Attribute = a;
 | |
|   string Value = v;
 | |
|   string Desc = d;
 | |
|   list<SubtargetFeature> Implies = i;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the
 | |
| following features.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
 | |
|                      "Enable SPARC-V9 instructions">;
 | |
| def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", 
 | |
|                      "V8DeprecatedInsts", "true",
 | |
|                      "Enable deprecated V8 instructions in V9 mode">;
 | |
| def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
 | |
|                      "Enable UltraSPARC Visual Instruction Set extensions">;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used to
 | |
| define particular SPARC processor subtypes that may have the previously
 | |
| described features.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| class Proc<string Name, list<SubtargetFeature> Features>
 | |
|   : Processor<Name, NoItineraries, Features>;
 | |
|  
 | |
| def : Proc<"generic",         []>;
 | |
| def : Proc<"v8",              []>;
 | |
| def : Proc<"supersparc",      []>;
 | |
| def : Proc<"sparclite",       []>;
 | |
| def : Proc<"f934",            []>;
 | |
| def : Proc<"hypersparc",      []>;
 | |
| def : Proc<"sparclite86x",    []>;
 | |
| def : Proc<"sparclet",        []>;
 | |
| def : Proc<"tsc701",          []>;
 | |
| def : Proc<"v9",              [FeatureV9]>;
 | |
| def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
 | |
| def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
 | |
| def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting
 | |
| SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
 | |
| constants to represent the CPU features and CPU subtypes, and the
 | |
| ParseSubtargetFeatures method that parses the features string that sets
 | |
| specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file
 | |
| should be included in the <tt>SparcSubtarget.cpp</tt>. The target-specific
 | |
| implementation of the XXXSubtarget method should follow this pseudocode:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
 | |
|   // Set the default features
 | |
|   // Determine default and user specified characteristics of the CPU
 | |
|   // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
 | |
|   // Perform any additional operations
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2>
 | |
|   <a name="jitSupport">JIT Support</a>
 | |
| </h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The implementation of a target machine optionally includes a Just-In-Time (JIT)
 | |
| code generator that emits machine code and auxiliary structures as binary output
 | |
| that can be written directly to memory.  To do this, implement JIT code
 | |
| generation by performing the following steps:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function
 | |
|     pass that transforms target-machine instructions into relocatable machine
 | |
|     code.</li>
 | |
| 
 | |
| <li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces for
 | |
|     target-specific code-generation activities, such as emitting machine code
 | |
|     and stubs.</li>
 | |
| 
 | |
| <li>Modify <tt>XXXTargetMachine</tt> so that it provides a
 | |
|     <tt>TargetJITInfo</tt> object through its <tt>getJITInfo</tt> method.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| There are several different approaches to writing the JIT support code. For
 | |
| instance, TableGen and target descriptor files may be used for creating a JIT
 | |
| code generator, but are not mandatory. For the Alpha and PowerPC target
 | |
| machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which
 | |
| contains the binary coding of machine instructions and the
 | |
| <tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT
 | |
| implementations do not.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the
 | |
| <tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the
 | |
| <tt>MachineCodeEmitter</tt> class containing code for several callback functions
 | |
| that write data (in bytes, words, strings, etc.) to the output stream.
 | |
| </p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="mce">Machine Code Emitter</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the <tt>Emitter</tt> class
 | |
| is implemented as a function pass (subclass
 | |
| of <tt>MachineFunctionPass</tt>). The target-specific implementation
 | |
| of <tt>runOnMachineFunction</tt> (invoked by
 | |
| <tt>runOnFunction</tt> in <tt>MachineFunctionPass</tt>) iterates through the
 | |
| <tt>MachineBasicBlock</tt> calls <tt>emitInstruction</tt> to process each
 | |
| instruction and emit binary code. <tt>emitInstruction</tt> is largely
 | |
| implemented with case statements on the instruction types defined in
 | |
| <tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>,
 | |
| the <tt>emitInstruction</tt> method is built around the following switch/case
 | |
| statements:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| switch (Desc->TSFlags & X86::FormMask) {
 | |
| case X86II::Pseudo:  // for not yet implemented instructions 
 | |
|    ...               // or pseudo-instructions
 | |
|    break;
 | |
| case X86II::RawFrm:  // for instructions with a fixed opcode value
 | |
|    ...
 | |
|    break;
 | |
| case X86II::AddRegFrm: // for instructions that have one register operand 
 | |
|    ...                 // added to their opcode
 | |
|    break;
 | |
| case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a destination (register)
 | |
|    break;
 | |
| case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a destination (memory)
 | |
|    break;
 | |
| case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a source (register)
 | |
|    break;
 | |
| case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
 | |
|    ...                 // to specify a source (memory)
 | |
|    break;
 | |
| case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on 
 | |
| case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
 | |
| case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
 | |
| case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
 | |
|    ...  
 | |
|    break;
 | |
| case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
 | |
| case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
 | |
| case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
 | |
| case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
 | |
|    ...  
 | |
|    break;
 | |
| case X86II::MRMInitReg: // for instructions whose source and
 | |
|    ...                  // destination are the same register
 | |
|    break;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| The implementations of these case statements often first emit the opcode and
 | |
| then get the operand(s). Then depending upon the operand, helper methods may be
 | |
| called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>,
 | |
| for the <tt>X86II::AddRegFrm</tt> case, the first data emitted
 | |
| (by <tt>emitByte</tt>) is the opcode added to the register operand. Then an
 | |
| object representing the machine operand, <tt>MO1</tt>, is extracted. The helper
 | |
| methods such as <tt>isImmediate</tt>,
 | |
| <tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and 
 | |
| <tt>isJumpTableIndex</tt> determine the operand
 | |
| type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such
 | |
| as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>,
 | |
| <tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>,
 | |
| and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.)
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| case X86II::AddRegFrm:
 | |
|   MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
 | |
|   
 | |
|   if (CurOp != NumOps) {
 | |
|     const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|     unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | |
|     if (MO1.isImmediate())
 | |
|       emitConstant(MO1.getImm(), Size);
 | |
|     else {
 | |
|       unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | |
|         : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | |
|       if (Opcode == X86::MOV64ri) 
 | |
|         rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
 | |
|       if (MO1.isGlobalAddress()) {
 | |
|         bool NeedStub = isa<Function>(MO1.getGlobal());
 | |
|         bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
 | |
|         emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
 | |
|                           NeedStub, isLazy);
 | |
|       } else if (MO1.isExternalSymbol())
 | |
|         emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | |
|       else if (MO1.isConstantPoolIndex())
 | |
|         emitConstPoolAddress(MO1.getIndex(), rt);
 | |
|       else if (MO1.isJumpTableIndex())
 | |
|         emitJumpTableAddress(MO1.getIndex(), rt);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the
 | |
| variable <tt>rt</tt>, which is a RelocationType enum that may be used to
 | |
| relocate addresses (for example, a global address with a PIC base offset). The
 | |
| <tt>RelocationType</tt> enum for that target is defined in the short
 | |
| target-specific <tt>XXXRelocations.h</tt> file. The <tt>RelocationType</tt> is used by
 | |
| the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to rewrite
 | |
| addresses for referenced global symbols.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| For example, <tt>X86Relocations.h</tt> specifies the following relocation types
 | |
| for the X86 addresses. In all four cases, the relocated value is added to the
 | |
| value already in memory. For <tt>reloc_pcrel_word</tt>
 | |
| and <tt>reloc_picrel_word</tt>, there is an additional initial adjustment.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| enum RelocationType {
 | |
|   reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
 | |
|   reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
 | |
|   reloc_absolute_word = 2, // absolute relocation; no additional adjustment 
 | |
|   reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <h3>
 | |
|   <a name="targetJITInfo">Target JIT Info</a>
 | |
| </h3>
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| <tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific
 | |
| code-generation activities, such as emitting machine code and stubs. At minimum,
 | |
| a target-specific version of <tt>XXXJITInfo</tt> implements the following:
 | |
| </p>
 | |
| 
 | |
| <ul>
 | |
| <li><tt>getLazyResolverFunction</tt> — Initializes the JIT, gives the
 | |
|     target a function that is used for compilation.</li>
 | |
| 
 | |
| <li><tt>emitFunctionStub</tt> — Returns a native function with a specified
 | |
|     address for a callback function.</li>
 | |
| 
 | |
| <li><tt>relocate</tt> — Changes the addresses of referenced globals, based
 | |
|     on relocation types.</li>
 | |
| 
 | |
| <li>Callback function that are wrappers to a function stub that is used when the
 | |
|     real target is not initially known.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>
 | |
| <tt>getLazyResolverFunction</tt> is generally trivial to implement. It makes the
 | |
| incoming parameter as the global <tt>JITCompilerFunction</tt> and returns the
 | |
| callback function that will be used a function wrapper. For the Alpha target
 | |
| (in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt>
 | |
| implementation is simply:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(  
 | |
|                                             JITCompilerFn F) {
 | |
|   JITCompilerFunction = F;
 | |
|   return AlphaCompilationCallback;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is a
 | |
| little more complication, because it returns a different callback function for
 | |
| processors with SSE instructions and XMM registers.
 | |
| </p>
 | |
| 
 | |
| <p>
 | |
| The callback function initially saves and later restores the callee register
 | |
| values, incoming arguments, and frame and return address. The callback function
 | |
| needs low-level access to the registers or stack, so it is typically implemented
 | |
| with assembler.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
 | |
| 
 | |
|   <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br>
 | |
|   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a>
 | |
|   <br>
 | |
|   Last modified: $Date$
 | |
| </address>
 | |
| 
 | |
| </body>
 | |
| </html>
 |