mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	and since this is what std::map and std::set do. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112701 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			509 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			509 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the DenseMap class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_DENSEMAP_H
 | |
| #define LLVM_ADT_DENSEMAP_H
 | |
| 
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/PointerLikeTypeTraits.h"
 | |
| #include "llvm/Support/type_traits.h"
 | |
| #include "llvm/ADT/DenseMapInfo.h"
 | |
| #include <iterator>
 | |
| #include <new>
 | |
| #include <utility>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstring>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template<typename KeyT, typename ValueT,
 | |
|          typename KeyInfoT = DenseMapInfo<KeyT>,
 | |
|          typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
 | |
| class DenseMapIterator;
 | |
| 
 | |
| template<typename KeyT, typename ValueT,
 | |
|          typename KeyInfoT = DenseMapInfo<KeyT>,
 | |
|          typename ValueInfoT = DenseMapInfo<ValueT> >
 | |
| class DenseMap {
 | |
|   typedef std::pair<KeyT, ValueT> BucketT;
 | |
|   unsigned NumBuckets;
 | |
|   BucketT *Buckets;
 | |
| 
 | |
|   unsigned NumEntries;
 | |
|   unsigned NumTombstones;
 | |
| public:
 | |
|   typedef KeyT key_type;
 | |
|   typedef ValueT mapped_type;
 | |
|   typedef BucketT value_type;
 | |
| 
 | |
|   DenseMap(const DenseMap &other) {
 | |
|     NumBuckets = 0;
 | |
|     CopyFrom(other);
 | |
|   }
 | |
| 
 | |
|   explicit DenseMap(unsigned NumInitBuckets = 64) {
 | |
|     init(NumInitBuckets);
 | |
|   }
 | |
| 
 | |
|   template<typename InputIt>
 | |
|   DenseMap(const InputIt &I, const InputIt &E) {
 | |
|     init(64);
 | |
|     insert(I, E);
 | |
|   }
 | |
|   
 | |
|   ~DenseMap() {
 | |
|     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | |
|     for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | |
|       if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
 | |
|           !KeyInfoT::isEqual(P->first, TombstoneKey))
 | |
|         P->second.~ValueT();
 | |
|       P->first.~KeyT();
 | |
|     }
 | |
| #ifndef NDEBUG
 | |
|     memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
 | |
| #endif
 | |
|     operator delete(Buckets);
 | |
|   }
 | |
| 
 | |
|   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
 | |
|   typedef DenseMapIterator<KeyT, ValueT,
 | |
|                            KeyInfoT, ValueInfoT, true> const_iterator;
 | |
|   inline iterator begin() {
 | |
|     // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
 | |
|     return empty() ? end() : iterator(Buckets, Buckets+NumBuckets);
 | |
|   }
 | |
|   inline iterator end() {
 | |
|     return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
 | |
|   }
 | |
|   inline const_iterator begin() const {
 | |
|     return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets);
 | |
|   }
 | |
|   inline const_iterator end() const {
 | |
|     return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
 | |
|   }
 | |
| 
 | |
|   bool empty() const { return NumEntries == 0; }
 | |
|   unsigned size() const { return NumEntries; }
 | |
| 
 | |
|   /// Grow the densemap so that it has at least Size buckets. Does not shrink
 | |
|   void resize(size_t Size) { grow(Size); }
 | |
| 
 | |
|   void clear() {
 | |
|     if (NumEntries == 0 && NumTombstones == 0) return;
 | |
|     
 | |
|     // If the capacity of the array is huge, and the # elements used is small,
 | |
|     // shrink the array.
 | |
|     if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
 | |
|       shrink_and_clear();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | |
|     for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | |
|       if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
 | |
|         if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
 | |
|           P->second.~ValueT();
 | |
|           --NumEntries;
 | |
|         }
 | |
|         P->first = EmptyKey;
 | |
|       }
 | |
|     }
 | |
|     assert(NumEntries == 0 && "Node count imbalance!");
 | |
|     NumTombstones = 0;
 | |
|   }
 | |
| 
 | |
|   /// count - Return true if the specified key is in the map.
 | |
|   bool count(const KeyT &Val) const {
 | |
|     BucketT *TheBucket;
 | |
|     return LookupBucketFor(Val, TheBucket);
 | |
|   }
 | |
| 
 | |
|   iterator find(const KeyT &Val) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return iterator(TheBucket, Buckets+NumBuckets);
 | |
|     return end();
 | |
|   }
 | |
|   const_iterator find(const KeyT &Val) const {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return const_iterator(TheBucket, Buckets+NumBuckets);
 | |
|     return end();
 | |
|   }
 | |
| 
 | |
|   /// lookup - Return the entry for the specified key, or a default
 | |
|   /// constructed value if no such entry exists.
 | |
|   ValueT lookup(const KeyT &Val) const {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Val, TheBucket))
 | |
|       return TheBucket->second;
 | |
|     return ValueT();
 | |
|   }
 | |
| 
 | |
|   // Inserts key,value pair into the map if the key isn't already in the map.
 | |
|   // If the key is already in the map, it returns false and doesn't update the
 | |
|   // value.
 | |
|   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(KV.first, TheBucket))
 | |
|       return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
 | |
|                             false); // Already in map.
 | |
| 
 | |
|     // Otherwise, insert the new element.
 | |
|     TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
 | |
|     return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
 | |
|                           true);
 | |
|   }
 | |
| 
 | |
|   /// insert - Range insertion of pairs.
 | |
|   template<typename InputIt>
 | |
|   void insert(InputIt I, InputIt E) {
 | |
|     for (; I != E; ++I)
 | |
|       insert(*I);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool erase(const KeyT &Val) {
 | |
|     BucketT *TheBucket;
 | |
|     if (!LookupBucketFor(Val, TheBucket))
 | |
|       return false; // not in map.
 | |
| 
 | |
|     TheBucket->second.~ValueT();
 | |
|     TheBucket->first = getTombstoneKey();
 | |
|     --NumEntries;
 | |
|     ++NumTombstones;
 | |
|     return true;
 | |
|   }
 | |
|   void erase(iterator I) {
 | |
|     BucketT *TheBucket = &*I;
 | |
|     TheBucket->second.~ValueT();
 | |
|     TheBucket->first = getTombstoneKey();
 | |
|     --NumEntries;
 | |
|     ++NumTombstones;
 | |
|   }
 | |
| 
 | |
|   void swap(DenseMap& RHS) {
 | |
|     std::swap(NumBuckets, RHS.NumBuckets);
 | |
|     std::swap(Buckets, RHS.Buckets);
 | |
|     std::swap(NumEntries, RHS.NumEntries);
 | |
|     std::swap(NumTombstones, RHS.NumTombstones);
 | |
|   }
 | |
| 
 | |
|   value_type& FindAndConstruct(const KeyT &Key) {
 | |
|     BucketT *TheBucket;
 | |
|     if (LookupBucketFor(Key, TheBucket))
 | |
|       return *TheBucket;
 | |
| 
 | |
|     return *InsertIntoBucket(Key, ValueT(), TheBucket);
 | |
|   }
 | |
| 
 | |
|   ValueT &operator[](const KeyT &Key) {
 | |
|     return FindAndConstruct(Key).second;
 | |
|   }
 | |
| 
 | |
|   DenseMap& operator=(const DenseMap& other) {
 | |
|     CopyFrom(other);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// isPointerIntoBucketsArray - Return true if the specified pointer points
 | |
|   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
 | |
|   /// value in the DenseMap).
 | |
|   bool isPointerIntoBucketsArray(const void *Ptr) const {
 | |
|     return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
 | |
|   }
 | |
| 
 | |
|   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
 | |
|   /// array.  In conjunction with the previous method, this can be used to
 | |
|   /// determine whether an insertion caused the DenseMap to reallocate.
 | |
|   const void *getPointerIntoBucketsArray() const { return Buckets; }
 | |
| 
 | |
| private:
 | |
|   void CopyFrom(const DenseMap& other) {
 | |
|     if (NumBuckets != 0 &&
 | |
|         (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
 | |
|       const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | |
|       for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | |
|         if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
 | |
|             !KeyInfoT::isEqual(P->first, TombstoneKey))
 | |
|           P->second.~ValueT();
 | |
|         P->first.~KeyT();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NumEntries = other.NumEntries;
 | |
|     NumTombstones = other.NumTombstones;
 | |
| 
 | |
|     if (NumBuckets) {
 | |
| #ifndef NDEBUG
 | |
|       memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
 | |
| #endif
 | |
|       operator delete(Buckets);
 | |
|     }
 | |
|     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) *
 | |
|                                                  other.NumBuckets));
 | |
| 
 | |
|     if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
 | |
|       memcpy(Buckets, other.Buckets, other.NumBuckets * sizeof(BucketT));
 | |
|     else
 | |
|       for (size_t i = 0; i < other.NumBuckets; ++i) {
 | |
|         new (&Buckets[i].first) KeyT(other.Buckets[i].first);
 | |
|         if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
 | |
|             !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
 | |
|           new (&Buckets[i].second) ValueT(other.Buckets[i].second);
 | |
|       }
 | |
|     NumBuckets = other.NumBuckets;
 | |
|   }
 | |
| 
 | |
|   BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
 | |
|                             BucketT *TheBucket) {
 | |
|     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
 | |
|     // the buckets are empty (meaning that many are filled with tombstones),
 | |
|     // grow the table.
 | |
|     //
 | |
|     // The later case is tricky.  For example, if we had one empty bucket with
 | |
|     // tons of tombstones, failing lookups (e.g. for insertion) would have to
 | |
|     // probe almost the entire table until it found the empty bucket.  If the
 | |
|     // table completely filled with tombstones, no lookup would ever succeed,
 | |
|     // causing infinite loops in lookup.
 | |
|     ++NumEntries;
 | |
|     if (NumEntries*4 >= NumBuckets*3 ||
 | |
|         NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
 | |
|       this->grow(NumBuckets * 2);
 | |
|       LookupBucketFor(Key, TheBucket);
 | |
|     }
 | |
| 
 | |
|     // If we are writing over a tombstone, remember this.
 | |
|     if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
 | |
|       --NumTombstones;
 | |
| 
 | |
|     TheBucket->first = Key;
 | |
|     new (&TheBucket->second) ValueT(Value);
 | |
|     return TheBucket;
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const KeyT &Val) {
 | |
|     return KeyInfoT::getHashValue(Val);
 | |
|   }
 | |
|   static const KeyT getEmptyKey() {
 | |
|     return KeyInfoT::getEmptyKey();
 | |
|   }
 | |
|   static const KeyT getTombstoneKey() {
 | |
|     return KeyInfoT::getTombstoneKey();
 | |
|   }
 | |
| 
 | |
|   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
 | |
|   /// FoundBucket.  If the bucket contains the key and a value, this returns
 | |
|   /// true, otherwise it returns a bucket with an empty marker or tombstone and
 | |
|   /// returns false.
 | |
|   bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
 | |
|     unsigned BucketNo = getHashValue(Val);
 | |
|     unsigned ProbeAmt = 1;
 | |
|     BucketT *BucketsPtr = Buckets;
 | |
| 
 | |
|     // FoundTombstone - Keep track of whether we find a tombstone while probing.
 | |
|     BucketT *FoundTombstone = 0;
 | |
|     const KeyT EmptyKey = getEmptyKey();
 | |
|     const KeyT TombstoneKey = getTombstoneKey();
 | |
|     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
 | |
|            !KeyInfoT::isEqual(Val, TombstoneKey) &&
 | |
|            "Empty/Tombstone value shouldn't be inserted into map!");
 | |
| 
 | |
|     while (1) {
 | |
|       BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
 | |
|       // Found Val's bucket?  If so, return it.
 | |
|       if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
 | |
|         FoundBucket = ThisBucket;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // If we found an empty bucket, the key doesn't exist in the set.
 | |
|       // Insert it and return the default value.
 | |
|       if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
 | |
|         // If we've already seen a tombstone while probing, fill it in instead
 | |
|         // of the empty bucket we eventually probed to.
 | |
|         if (FoundTombstone) ThisBucket = FoundTombstone;
 | |
|         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // If this is a tombstone, remember it.  If Val ends up not in the map, we
 | |
|       // prefer to return it than something that would require more probing.
 | |
|       if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
 | |
|         FoundTombstone = ThisBucket;  // Remember the first tombstone found.
 | |
| 
 | |
|       // Otherwise, it's a hash collision or a tombstone, continue quadratic
 | |
|       // probing.
 | |
|       BucketNo += ProbeAmt++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void init(unsigned InitBuckets) {
 | |
|     NumEntries = 0;
 | |
|     NumTombstones = 0;
 | |
|     NumBuckets = InitBuckets;
 | |
|     assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
 | |
|            "# initial buckets must be a power of two!");
 | |
|     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
 | |
|     // Initialize all the keys to EmptyKey.
 | |
|     const KeyT EmptyKey = getEmptyKey();
 | |
|     for (unsigned i = 0; i != InitBuckets; ++i)
 | |
|       new (&Buckets[i].first) KeyT(EmptyKey);
 | |
|   }
 | |
| 
 | |
|   void grow(unsigned AtLeast) {
 | |
|     unsigned OldNumBuckets = NumBuckets;
 | |
|     BucketT *OldBuckets = Buckets;
 | |
| 
 | |
|     // Double the number of buckets.
 | |
|     while (NumBuckets < AtLeast)
 | |
|       NumBuckets <<= 1;
 | |
|     NumTombstones = 0;
 | |
|     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
 | |
| 
 | |
|     // Initialize all the keys to EmptyKey.
 | |
|     const KeyT EmptyKey = getEmptyKey();
 | |
|     for (unsigned i = 0, e = NumBuckets; i != e; ++i)
 | |
|       new (&Buckets[i].first) KeyT(EmptyKey);
 | |
| 
 | |
|     // Insert all the old elements.
 | |
|     const KeyT TombstoneKey = getTombstoneKey();
 | |
|     for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
 | |
|       if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
 | |
|           !KeyInfoT::isEqual(B->first, TombstoneKey)) {
 | |
|         // Insert the key/value into the new table.
 | |
|         BucketT *DestBucket;
 | |
|         bool FoundVal = LookupBucketFor(B->first, DestBucket);
 | |
|         FoundVal = FoundVal; // silence warning.
 | |
|         assert(!FoundVal && "Key already in new map?");
 | |
|         DestBucket->first = B->first;
 | |
|         new (&DestBucket->second) ValueT(B->second);
 | |
| 
 | |
|         // Free the value.
 | |
|         B->second.~ValueT();
 | |
|       }
 | |
|       B->first.~KeyT();
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
 | |
| #endif
 | |
|     // Free the old table.
 | |
|     operator delete(OldBuckets);
 | |
|   }
 | |
| 
 | |
|   void shrink_and_clear() {
 | |
|     unsigned OldNumBuckets = NumBuckets;
 | |
|     BucketT *OldBuckets = Buckets;
 | |
| 
 | |
|     // Reduce the number of buckets.
 | |
|     NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
 | |
|                                  : 64;
 | |
|     NumTombstones = 0;
 | |
|     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
 | |
| 
 | |
|     // Initialize all the keys to EmptyKey.
 | |
|     const KeyT EmptyKey = getEmptyKey();
 | |
|     for (unsigned i = 0, e = NumBuckets; i != e; ++i)
 | |
|       new (&Buckets[i].first) KeyT(EmptyKey);
 | |
| 
 | |
|     // Free the old buckets.
 | |
|     const KeyT TombstoneKey = getTombstoneKey();
 | |
|     for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
 | |
|       if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
 | |
|           !KeyInfoT::isEqual(B->first, TombstoneKey)) {
 | |
|         // Free the value.
 | |
|         B->second.~ValueT();
 | |
|       }
 | |
|       B->first.~KeyT();
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
 | |
| #endif
 | |
|     // Free the old table.
 | |
|     operator delete(OldBuckets);
 | |
| 
 | |
|     NumEntries = 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename KeyT, typename ValueT,
 | |
|          typename KeyInfoT, typename ValueInfoT, bool IsConst>
 | |
| class DenseMapIterator {
 | |
|   typedef std::pair<KeyT, ValueT> Bucket;
 | |
|   typedef DenseMapIterator<KeyT, ValueT,
 | |
|                            KeyInfoT, ValueInfoT, true> ConstIterator;
 | |
|   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
 | |
| public:
 | |
|   typedef ptrdiff_t difference_type;
 | |
|   typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
 | |
|   typedef value_type *pointer;
 | |
|   typedef value_type &reference;
 | |
|   typedef std::forward_iterator_tag iterator_category;
 | |
| private:
 | |
|   pointer Ptr, End;
 | |
| public:
 | |
|   DenseMapIterator() : Ptr(0), End(0) {}
 | |
| 
 | |
|   DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) {
 | |
|     AdvancePastEmptyBuckets();
 | |
|   }
 | |
| 
 | |
|   // If IsConst is true this is a converting constructor from iterator to
 | |
|   // const_iterator and the default copy constructor is used.
 | |
|   // Otherwise this is a copy constructor for iterator.
 | |
|   DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
 | |
|                                           KeyInfoT, ValueInfoT, false>& I)
 | |
|     : Ptr(I.Ptr), End(I.End) {}
 | |
| 
 | |
|   reference operator*() const {
 | |
|     return *Ptr;
 | |
|   }
 | |
|   pointer operator->() const {
 | |
|     return Ptr;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const ConstIterator &RHS) const {
 | |
|     return Ptr == RHS.operator->();
 | |
|   }
 | |
|   bool operator!=(const ConstIterator &RHS) const {
 | |
|     return Ptr != RHS.operator->();
 | |
|   }
 | |
| 
 | |
|   inline DenseMapIterator& operator++() {  // Preincrement
 | |
|     ++Ptr;
 | |
|     AdvancePastEmptyBuckets();
 | |
|     return *this;
 | |
|   }
 | |
|   DenseMapIterator operator++(int) {  // Postincrement
 | |
|     DenseMapIterator tmp = *this; ++*this; return tmp;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void AdvancePastEmptyBuckets() {
 | |
|     const KeyT Empty = KeyInfoT::getEmptyKey();
 | |
|     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
 | |
| 
 | |
|     while (Ptr != End &&
 | |
|            (KeyInfoT::isEqual(Ptr->first, Empty) ||
 | |
|             KeyInfoT::isEqual(Ptr->first, Tombstone)))
 | |
|       ++Ptr;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |