mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113914 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			565 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			565 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TYPE_H
 | |
| #define LLVM_TYPE_H
 | |
| 
 | |
| #include "llvm/AbstractTypeUser.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class DerivedType;
 | |
| class PointerType;
 | |
| class IntegerType;
 | |
| class TypeMapBase;
 | |
| class raw_ostream;
 | |
| class Module;
 | |
| class LLVMContext;
 | |
| 
 | |
| /// This file contains the declaration of the Type class.  For more "Type" type
 | |
| /// stuff, look in DerivedTypes.h.
 | |
| ///
 | |
| /// The instances of the Type class are immutable: once they are created,
 | |
| /// they are never changed.  Also note that only one instance of a particular
 | |
| /// type is ever created.  Thus seeing if two types are equal is a matter of
 | |
| /// doing a trivial pointer comparison. To enforce that no two equal instances
 | |
| /// are created, Type instances can only be created via static factory methods 
 | |
| /// in class Type and in derived classes.
 | |
| /// 
 | |
| /// Once allocated, Types are never free'd, unless they are an abstract type
 | |
| /// that is resolved to a more concrete type.
 | |
| /// 
 | |
| /// Types themself don't have a name, and can be named either by:
 | |
| /// - using SymbolTable instance, typically from some Module,
 | |
| /// - using convenience methods in the Module class (which uses module's 
 | |
| ///    SymbolTable too).
 | |
| ///
 | |
| /// Opaque types are simple derived types with no state.  There may be many
 | |
| /// different Opaque type objects floating around, but two are only considered
 | |
| /// identical if they are pointer equals of each other.  This allows us to have
 | |
| /// two opaque types that end up resolving to different concrete types later.
 | |
| ///
 | |
| /// Opaque types are also kinda weird and scary and different because they have
 | |
| /// to keep a list of uses of the type.  When, through linking, parsing, or
 | |
| /// bitcode reading, they become resolved, they need to find and update all
 | |
| /// users of the unknown type, causing them to reference a new, more concrete
 | |
| /// type.  Opaque types are deleted when their use list dwindles to zero users.
 | |
| ///
 | |
| /// @brief Root of type hierarchy
 | |
| class Type : public AbstractTypeUser {
 | |
| public:
 | |
|   //===-------------------------------------------------------------------===//
 | |
|   /// Definitions of all of the base types for the Type system.  Based on this
 | |
|   /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
 | |
|   /// Note: If you add an element to this, you need to add an element to the
 | |
|   /// Type::getPrimitiveType function, or else things will break!
 | |
|   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
 | |
|   ///
 | |
|   enum TypeID {
 | |
|     // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
 | |
|     VoidTyID = 0,    ///<  0: type with no size
 | |
|     FloatTyID,       ///<  1: 32 bit floating point type
 | |
|     DoubleTyID,      ///<  2: 64 bit floating point type
 | |
|     X86_FP80TyID,    ///<  3: 80 bit floating point type (X87)
 | |
|     FP128TyID,       ///<  4: 128 bit floating point type (112-bit mantissa)
 | |
|     PPC_FP128TyID,   ///<  5: 128 bit floating point type (two 64-bits)
 | |
|     LabelTyID,       ///<  6: Labels
 | |
|     MetadataTyID,    ///<  7: Metadata
 | |
|     X86_MMXTyID,     ///<  8: MMX vectors (64 bits)
 | |
| 
 | |
|     // Derived types... see DerivedTypes.h file...
 | |
|     // Make sure FirstDerivedTyID stays up to date!!!
 | |
|     IntegerTyID,     ///<  9: Arbitrary bit width integers
 | |
|     FunctionTyID,    ///< 10: Functions
 | |
|     StructTyID,      ///< 11: Structures
 | |
|     ArrayTyID,       ///< 12: Arrays
 | |
|     PointerTyID,     ///< 13: Pointers
 | |
|     OpaqueTyID,      ///< 14: Opaque: type with unknown structure
 | |
|     VectorTyID,      ///< 15: SIMD 'packed' format, or other vector type
 | |
| 
 | |
|     NumTypeIDs,                         // Must remain as last defined ID
 | |
|     LastPrimitiveTyID = X86_MMXTyID,
 | |
|     FirstDerivedTyID = IntegerTyID
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   TypeID   ID : 8;    // The current base type of this type.
 | |
|   bool     Abstract : 1;  // True if type contains an OpaqueType
 | |
|   unsigned SubclassData : 23; //Space for subclasses to store data
 | |
| 
 | |
|   /// RefCount - This counts the number of PATypeHolders that are pointing to
 | |
|   /// this type.  When this number falls to zero, if the type is abstract and
 | |
|   /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
 | |
|   /// derived types.
 | |
|   ///
 | |
|   mutable unsigned RefCount;
 | |
| 
 | |
|   /// Context - This refers to the LLVMContext in which this type was uniqued.
 | |
|   LLVMContext &Context;
 | |
|   friend class LLVMContextImpl;
 | |
| 
 | |
|   const Type *getForwardedTypeInternal() const;
 | |
| 
 | |
|   // Some Type instances are allocated as arrays, some aren't. So we provide
 | |
|   // this method to get the right kind of destruction for the type of Type.
 | |
|   void destroy() const; // const is a lie, this does "delete this"!
 | |
| 
 | |
| protected:
 | |
|   explicit Type(LLVMContext &C, TypeID id) :
 | |
|                              ID(id), Abstract(false), SubclassData(0),
 | |
|                              RefCount(0), Context(C),
 | |
|                              ForwardType(0), NumContainedTys(0),
 | |
|                              ContainedTys(0) {}
 | |
|   virtual ~Type() {
 | |
|     assert(AbstractTypeUsers.empty() && "Abstract types remain");
 | |
|   }
 | |
| 
 | |
|   /// Types can become nonabstract later, if they are refined.
 | |
|   ///
 | |
|   inline void setAbstract(bool Val) { Abstract = Val; }
 | |
| 
 | |
|   unsigned getRefCount() const { return RefCount; }
 | |
| 
 | |
|   unsigned getSubclassData() const { return SubclassData; }
 | |
|   void setSubclassData(unsigned val) { SubclassData = val; }
 | |
| 
 | |
|   /// ForwardType - This field is used to implement the union find scheme for
 | |
|   /// abstract types.  When types are refined to other types, this field is set
 | |
|   /// to the more refined type.  Only abstract types can be forwarded.
 | |
|   mutable const Type *ForwardType;
 | |
| 
 | |
| 
 | |
|   /// AbstractTypeUsers - Implement a list of the users that need to be notified
 | |
|   /// if I am a type, and I get resolved into a more concrete type.
 | |
|   ///
 | |
|   mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
 | |
| 
 | |
|   /// NumContainedTys - Keeps track of how many PATypeHandle instances there
 | |
|   /// are at the end of this type instance for the list of contained types. It
 | |
|   /// is the subclasses responsibility to set this up. Set to 0 if there are no
 | |
|   /// contained types in this type.
 | |
|   unsigned NumContainedTys;
 | |
| 
 | |
|   /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained 
 | |
|   /// by this Type.  For example, this includes the arguments of a function 
 | |
|   /// type, the elements of a structure, the pointee of a pointer, the element
 | |
|   /// type of an array, etc.  This pointer may be 0 for types that don't 
 | |
|   /// contain other types (Integer, Double, Float).  In general, the subclass 
 | |
|   /// should arrange for space for the PATypeHandles to be included in the 
 | |
|   /// allocation of the type object and set this pointer to the address of the 
 | |
|   /// first element. This allows the Type class to manipulate the ContainedTys 
 | |
|   /// without understanding the subclass's placement for this array.  keeping 
 | |
|   /// it here also allows the subtype_* members to be implemented MUCH more 
 | |
|   /// efficiently, and dynamically very few types do not contain any elements.
 | |
|   PATypeHandle *ContainedTys;
 | |
| 
 | |
| public:
 | |
|   void print(raw_ostream &O) const;
 | |
| 
 | |
|   /// @brief Debugging support: print to stderr
 | |
|   void dump() const;
 | |
| 
 | |
|   /// @brief Debugging support: print to stderr (use type names from context
 | |
|   /// module).
 | |
|   void dump(const Module *Context) const;
 | |
| 
 | |
|   /// getContext - Fetch the LLVMContext in which this type was uniqued.
 | |
|   LLVMContext &getContext() const { return Context; }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Property accessors for dealing with types... Some of these virtual methods
 | |
|   // are defined in private classes defined in Type.cpp for primitive types.
 | |
|   //
 | |
| 
 | |
|   /// getDescription - Return the string representation of the type.
 | |
|   std::string getDescription() const;
 | |
| 
 | |
|   /// getTypeID - Return the type id for the type.  This will return one
 | |
|   /// of the TypeID enum elements defined above.
 | |
|   ///
 | |
|   inline TypeID getTypeID() const { return ID; }
 | |
| 
 | |
|   /// isVoidTy - Return true if this is 'void'.
 | |
|   bool isVoidTy() const { return ID == VoidTyID; }
 | |
| 
 | |
|   /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
 | |
|   bool isFloatTy() const { return ID == FloatTyID; }
 | |
|   
 | |
|   /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
 | |
|   bool isDoubleTy() const { return ID == DoubleTyID; }
 | |
| 
 | |
|   /// isX86_FP80Ty - Return true if this is x86 long double.
 | |
|   bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
 | |
| 
 | |
|   /// isFP128Ty - Return true if this is 'fp128'.
 | |
|   bool isFP128Ty() const { return ID == FP128TyID; }
 | |
| 
 | |
|   /// isPPC_FP128Ty - Return true if this is powerpc long double.
 | |
|   bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
 | |
| 
 | |
|   /// isFloatingPointTy - Return true if this is one of the five floating point
 | |
|   /// types
 | |
|   bool isFloatingPointTy() const { return ID == FloatTyID || ID == DoubleTyID ||
 | |
|       ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
 | |
| 
 | |
|   /// isX86_MMXTy - Return true if this is X86 MMX.
 | |
|   bool isX86_MMXTy() const { return ID == X86_MMXTyID; }
 | |
| 
 | |
|   /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
 | |
|   ///
 | |
|   bool isFPOrFPVectorTy() const;
 | |
|  
 | |
|   /// isLabelTy - Return true if this is 'label'.
 | |
|   bool isLabelTy() const { return ID == LabelTyID; }
 | |
| 
 | |
|   /// isMetadataTy - Return true if this is 'metadata'.
 | |
|   bool isMetadataTy() const { return ID == MetadataTyID; }
 | |
| 
 | |
|   /// isIntegerTy - True if this is an instance of IntegerType.
 | |
|   ///
 | |
|   bool isIntegerTy() const { return ID == IntegerTyID; } 
 | |
| 
 | |
|   /// isIntegerTy - Return true if this is an IntegerType of the given width.
 | |
|   bool isIntegerTy(unsigned Bitwidth) const;
 | |
| 
 | |
|   /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
 | |
|   /// integer types.
 | |
|   ///
 | |
|   bool isIntOrIntVectorTy() const;
 | |
|   
 | |
|   /// isFunctionTy - True if this is an instance of FunctionType.
 | |
|   ///
 | |
|   bool isFunctionTy() const { return ID == FunctionTyID; }
 | |
| 
 | |
|   /// isStructTy - True if this is an instance of StructType.
 | |
|   ///
 | |
|   bool isStructTy() const { return ID == StructTyID; }
 | |
| 
 | |
|   /// isArrayTy - True if this is an instance of ArrayType.
 | |
|   ///
 | |
|   bool isArrayTy() const { return ID == ArrayTyID; }
 | |
| 
 | |
|   /// isPointerTy - True if this is an instance of PointerType.
 | |
|   ///
 | |
|   bool isPointerTy() const { return ID == PointerTyID; }
 | |
| 
 | |
|   /// isOpaqueTy - True if this is an instance of OpaqueType.
 | |
|   ///
 | |
|   bool isOpaqueTy() const { return ID == OpaqueTyID; }
 | |
| 
 | |
|   /// isVectorTy - True if this is an instance of VectorType.
 | |
|   ///
 | |
|   bool isVectorTy() const { return ID == VectorTyID; }
 | |
| 
 | |
|   /// isAbstract - True if the type is either an Opaque type, or is a derived
 | |
|   /// type that includes an opaque type somewhere in it.
 | |
|   ///
 | |
|   inline bool isAbstract() const { return Abstract; }
 | |
| 
 | |
|   /// canLosslesslyBitCastTo - Return true if this type could be converted 
 | |
|   /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts 
 | |
|   /// are valid for types of the same size only where no re-interpretation of 
 | |
|   /// the bits is done.
 | |
|   /// @brief Determine if this type could be losslessly bitcast to Ty
 | |
|   bool canLosslesslyBitCastTo(const Type *Ty) const;
 | |
| 
 | |
| 
 | |
|   /// Here are some useful little methods to query what type derived types are
 | |
|   /// Note that all other types can just compare to see if this == Type::xxxTy;
 | |
|   ///
 | |
|   inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
 | |
|   inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
 | |
| 
 | |
|   /// isFirstClassType - Return true if the type is "first class", meaning it
 | |
|   /// is a valid type for a Value.
 | |
|   ///
 | |
|   inline bool isFirstClassType() const {
 | |
|     // There are more first-class kinds than non-first-class kinds, so a
 | |
|     // negative test is simpler than a positive one.
 | |
|     return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
 | |
|   }
 | |
| 
 | |
|   /// isSingleValueType - Return true if the type is a valid type for a
 | |
|   /// virtual register in codegen.  This includes all first-class types
 | |
|   /// except struct and array types.
 | |
|   ///
 | |
|   inline bool isSingleValueType() const {
 | |
|     return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
 | |
|             ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
 | |
|   }
 | |
| 
 | |
|   /// isAggregateType - Return true if the type is an aggregate type. This
 | |
|   /// means it is valid as the first operand of an insertvalue or
 | |
|   /// extractvalue instruction. This includes struct and array types, but
 | |
|   /// does not include vector types.
 | |
|   ///
 | |
|   inline bool isAggregateType() const {
 | |
|     return ID == StructTyID || ID == ArrayTyID;
 | |
|   }
 | |
| 
 | |
|   /// isSized - Return true if it makes sense to take the size of this type.  To
 | |
|   /// get the actual size for a particular target, it is reasonable to use the
 | |
|   /// TargetData subsystem to do this.
 | |
|   ///
 | |
|   bool isSized() const {
 | |
|     // If it's a primitive, it is always sized.
 | |
|     if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID ||
 | |
|         ID == X86_MMXTyID)
 | |
|       return true;
 | |
|     // If it is not something that can have a size (e.g. a function or label),
 | |
|     // it doesn't have a size.
 | |
|     if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
 | |
|       return false;
 | |
|     // If it is something that can have a size and it's concrete, it definitely
 | |
|     // has a size, otherwise we have to try harder to decide.
 | |
|     return !isAbstract() || isSizedDerivedType();
 | |
|   }
 | |
| 
 | |
|   /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
 | |
|   /// primitive type.  These are fixed by LLVM and are not target dependent.
 | |
|   /// This will return zero if the type does not have a size or is not a
 | |
|   /// primitive type.
 | |
|   ///
 | |
|   /// Note that this may not reflect the size of memory allocated for an
 | |
|   /// instance of the type or the number of bytes that are written when an
 | |
|   /// instance of the type is stored to memory. The TargetData class provides
 | |
|   /// additional query functions to provide this information.
 | |
|   ///
 | |
|   unsigned getPrimitiveSizeInBits() const;
 | |
| 
 | |
|   /// getScalarSizeInBits - If this is a vector type, return the
 | |
|   /// getPrimitiveSizeInBits value for the element type. Otherwise return the
 | |
|   /// getPrimitiveSizeInBits value for this type.
 | |
|   unsigned getScalarSizeInBits() const;
 | |
| 
 | |
|   /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
 | |
|   /// is only valid on floating point types.  If the FP type does not
 | |
|   /// have a stable mantissa (e.g. ppc long double), this method returns -1.
 | |
|   int getFPMantissaWidth() const;
 | |
| 
 | |
|   /// getForwardedType - Return the type that this type has been resolved to if
 | |
|   /// it has been resolved to anything.  This is used to implement the
 | |
|   /// union-find algorithm for type resolution, and shouldn't be used by general
 | |
|   /// purpose clients.
 | |
|   const Type *getForwardedType() const {
 | |
|     if (!ForwardType) return 0;
 | |
|     return getForwardedTypeInternal();
 | |
|   }
 | |
| 
 | |
|   /// getVAArgsPromotedType - Return the type an argument of this type
 | |
|   /// will be promoted to if passed through a variable argument
 | |
|   /// function.
 | |
|   const Type *getVAArgsPromotedType(LLVMContext &C) const; 
 | |
| 
 | |
|   /// getScalarType - If this is a vector type, return the element type,
 | |
|   /// otherwise return this.
 | |
|   const Type *getScalarType() const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Type Iteration support
 | |
|   //
 | |
|   typedef PATypeHandle *subtype_iterator;
 | |
|   subtype_iterator subtype_begin() const { return ContainedTys; }
 | |
|   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
 | |
| 
 | |
|   /// getContainedType - This method is used to implement the type iterator
 | |
|   /// (defined a the end of the file).  For derived types, this returns the
 | |
|   /// types 'contained' in the derived type.
 | |
|   ///
 | |
|   const Type *getContainedType(unsigned i) const {
 | |
|     assert(i < NumContainedTys && "Index out of range!");
 | |
|     return ContainedTys[i].get();
 | |
|   }
 | |
| 
 | |
|   /// getNumContainedTypes - Return the number of types in the derived type.
 | |
|   ///
 | |
|   unsigned getNumContainedTypes() const { return NumContainedTys; }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Static members exported by the Type class itself.  Useful for getting
 | |
|   // instances of Type.
 | |
|   //
 | |
| 
 | |
|   /// getPrimitiveType - Return a type based on an identifier.
 | |
|   static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // These are the builtin types that are always available...
 | |
|   //
 | |
|   static const Type *getVoidTy(LLVMContext &C);
 | |
|   static const Type *getLabelTy(LLVMContext &C);
 | |
|   static const Type *getFloatTy(LLVMContext &C);
 | |
|   static const Type *getDoubleTy(LLVMContext &C);
 | |
|   static const Type *getMetadataTy(LLVMContext &C);
 | |
|   static const Type *getX86_FP80Ty(LLVMContext &C);
 | |
|   static const Type *getFP128Ty(LLVMContext &C);
 | |
|   static const Type *getPPC_FP128Ty(LLVMContext &C);
 | |
|   static const Type *getX86_MMXTy(LLVMContext &C);
 | |
|   static const IntegerType *getIntNTy(LLVMContext &C, unsigned N);
 | |
|   static const IntegerType *getInt1Ty(LLVMContext &C);
 | |
|   static const IntegerType *getInt8Ty(LLVMContext &C);
 | |
|   static const IntegerType *getInt16Ty(LLVMContext &C);
 | |
|   static const IntegerType *getInt32Ty(LLVMContext &C);
 | |
|   static const IntegerType *getInt64Ty(LLVMContext &C);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Convenience methods for getting pointer types with one of the above builtin
 | |
|   // types as pointee.
 | |
|   //
 | |
|   static const PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getIntNPtrTy(LLVMContext &C, unsigned N,
 | |
|                                          unsigned AS = 0);
 | |
|   static const PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
|   static const PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
 | |
| 
 | |
|   /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|   static inline bool classof(const Type *) { return true; }
 | |
| 
 | |
|   void addRef() const {
 | |
|     assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
 | |
|     ++RefCount;
 | |
|   }
 | |
| 
 | |
|   void dropRef() const {
 | |
|     assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
 | |
|     assert(RefCount && "No objects are currently referencing this object!");
 | |
| 
 | |
|     // If this is the last PATypeHolder using this object, and there are no
 | |
|     // PATypeHandles using it, the type is dead, delete it now.
 | |
|     if (--RefCount == 0 && AbstractTypeUsers.empty())
 | |
|       this->destroy();
 | |
|   }
 | |
|   
 | |
|   /// addAbstractTypeUser - Notify an abstract type that there is a new user of
 | |
|   /// it.  This function is called primarily by the PATypeHandle class.
 | |
|   ///
 | |
|   void addAbstractTypeUser(AbstractTypeUser *U) const;
 | |
|   
 | |
|   /// removeAbstractTypeUser - Notify an abstract type that a user of the class
 | |
|   /// no longer has a handle to the type.  This function is called primarily by
 | |
|   /// the PATypeHandle class.  When there are no users of the abstract type, it
 | |
|   /// is annihilated, because there is no way to get a reference to it ever
 | |
|   /// again.
 | |
|   ///
 | |
|   void removeAbstractTypeUser(AbstractTypeUser *U) const;
 | |
| 
 | |
|   /// getPointerTo - Return a pointer to the current type.  This is equivalent
 | |
|   /// to PointerType::get(Foo, AddrSpace).
 | |
|   const PointerType *getPointerTo(unsigned AddrSpace = 0) const;
 | |
| 
 | |
| private:
 | |
|   /// isSizedDerivedType - Derived types like structures and arrays are sized
 | |
|   /// iff all of the members of the type are sized as well.  Since asking for
 | |
|   /// their size is relatively uncommon, move this operation out of line.
 | |
|   bool isSizedDerivedType() const;
 | |
| 
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
| protected:
 | |
|   // PromoteAbstractToConcrete - This is an internal method used to calculate
 | |
|   // change "Abstract" from true to false when types are refined.
 | |
|   void PromoteAbstractToConcrete();
 | |
|   friend class TypeMapBase;
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
 | |
| // These are defined here because they MUST be inlined, yet are dependent on
 | |
| // the definition of the Type class.
 | |
| //
 | |
| inline void PATypeHandle::addUser() {
 | |
|   assert(Ty && "Type Handle has a null type!");
 | |
|   if (Ty->isAbstract())
 | |
|     Ty->addAbstractTypeUser(User);
 | |
| }
 | |
| inline void PATypeHandle::removeUser() {
 | |
|   if (Ty->isAbstract())
 | |
|     Ty->removeAbstractTypeUser(User);
 | |
| }
 | |
| 
 | |
| // Define inline methods for PATypeHolder.
 | |
| 
 | |
| /// get - This implements the forwarding part of the union-find algorithm for
 | |
| /// abstract types.  Before every access to the Type*, we check to see if the
 | |
| /// type we are pointing to is forwarding to a new type.  If so, we drop our
 | |
| /// reference to the type.
 | |
| ///
 | |
| inline Type* PATypeHolder::get() const {
 | |
|   if (Ty == 0) return 0;
 | |
|   const Type *NewTy = Ty->getForwardedType();
 | |
|   if (!NewTy) return const_cast<Type*>(Ty);
 | |
|   return *const_cast<PATypeHolder*>(this) = NewTy;
 | |
| }
 | |
| 
 | |
| inline void PATypeHolder::addRef() {
 | |
|   if (Ty && Ty->isAbstract())
 | |
|     Ty->addRef();
 | |
| }
 | |
| 
 | |
| inline void PATypeHolder::dropRef() {
 | |
|   if (Ty && Ty->isAbstract())
 | |
|     Ty->dropRef();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Provide specializations of GraphTraits to be able to treat a type as a
 | |
| // graph of sub types...
 | |
| 
 | |
| template <> struct GraphTraits<Type*> {
 | |
|   typedef Type NodeType;
 | |
|   typedef Type::subtype_iterator ChildIteratorType;
 | |
| 
 | |
|   static inline NodeType *getEntryNode(Type *T) { return T; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) {
 | |
|     return N->subtype_begin();
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) {
 | |
|     return N->subtype_end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<const Type*> {
 | |
|   typedef const Type NodeType;
 | |
|   typedef Type::subtype_iterator ChildIteratorType;
 | |
| 
 | |
|   static inline NodeType *getEntryNode(const Type *T) { return T; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) {
 | |
|     return N->subtype_begin();
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) {
 | |
|     return N->subtype_end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct isa_impl<PointerType, Type> {
 | |
|   static inline bool doit(const Type &Ty) {
 | |
|     return Ty.getTypeID() == Type::PointerTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| raw_ostream &operator<<(raw_ostream &OS, const Type &T);
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |