mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Change name of -sched option and DEBUG_TYPE to pre-RA-sched; adjust testcases. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@39816 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			945 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			945 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Evan Cheng and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements bottom-up and top-down register pressure reduction list
 | 
						|
// schedulers, using standard algorithms.  The basic approach uses a priority
 | 
						|
// queue of available nodes to schedule.  One at a time, nodes are taken from
 | 
						|
// the priority queue (thus in priority order), checked for legality to
 | 
						|
// schedule, and emitted if legal.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-RA-sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <climits>
 | 
						|
#include <queue>
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  burrListDAGScheduler("list-burr",
 | 
						|
                       "  Bottom-up register reduction list scheduling",
 | 
						|
                       createBURRListDAGScheduler);
 | 
						|
static RegisterScheduler
 | 
						|
  tdrListrDAGScheduler("list-tdrr",
 | 
						|
                       "  Top-down register reduction list scheduling",
 | 
						|
                       createTDRRListDAGScheduler);
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleDAGRRList - The actual register reduction list scheduler
 | 
						|
/// implementation.  This supports both top-down and bottom-up scheduling.
 | 
						|
///
 | 
						|
 | 
						|
class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
 | 
						|
private:
 | 
						|
  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | 
						|
  /// it is top-down.
 | 
						|
  bool isBottomUp;
 | 
						|
  
 | 
						|
  /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
  ///
 | 
						|
  SchedulingPriorityQueue *AvailableQueue;
 | 
						|
 | 
						|
public:
 | 
						|
  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
 | 
						|
                  const TargetMachine &tm, bool isbottomup,
 | 
						|
                  SchedulingPriorityQueue *availqueue)
 | 
						|
    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
 | 
						|
      AvailableQueue(availqueue) {
 | 
						|
    }
 | 
						|
 | 
						|
  ~ScheduleDAGRRList() {
 | 
						|
    delete AvailableQueue;
 | 
						|
  }
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
private:
 | 
						|
  void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
 | 
						|
  void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
 | 
						|
  void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ListScheduleTopDown();
 | 
						|
  void ListScheduleBottomUp();
 | 
						|
  void CommuteNodesToReducePressure();
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
/// Schedule - Schedule the DAG using list scheduling.
 | 
						|
void ScheduleDAGRRList::Schedule() {
 | 
						|
  DOUT << "********** List Scheduling **********\n";
 | 
						|
  
 | 
						|
  // Build scheduling units.
 | 
						|
  BuildSchedUnits();
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(&DAG));
 | 
						|
  CalculateDepths();
 | 
						|
  CalculateHeights();
 | 
						|
 | 
						|
  AvailableQueue->initNodes(SUnitMap, SUnits);
 | 
						|
 | 
						|
  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | 
						|
  if (isBottomUp)
 | 
						|
    ListScheduleBottomUp();
 | 
						|
  else
 | 
						|
    ListScheduleTopDown();
 | 
						|
  
 | 
						|
  AvailableQueue->releaseState();
 | 
						|
 | 
						|
  CommuteNodesToReducePressure();
 | 
						|
  
 | 
						|
  DOUT << "*** Final schedule ***\n";
 | 
						|
  DEBUG(dumpSchedule());
 | 
						|
  DOUT << "\n";
 | 
						|
  
 | 
						|
  // Emit in scheduled order
 | 
						|
  EmitSchedule();
 | 
						|
}
 | 
						|
 | 
						|
/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
 | 
						|
/// it is not the last use of its first operand, add it to the CommuteSet if
 | 
						|
/// possible. It will be commuted when it is translated to a MI.
 | 
						|
void ScheduleDAGRRList::CommuteNodesToReducePressure() {
 | 
						|
  SmallPtrSet<SUnit*, 4> OperandSeen;
 | 
						|
  for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
 | 
						|
    SUnit *SU = Sequence[i];
 | 
						|
    if (!SU) continue;
 | 
						|
    if (SU->isCommutable) {
 | 
						|
      unsigned Opc = SU->Node->getTargetOpcode();
 | 
						|
      unsigned NumRes = CountResults(SU->Node);
 | 
						|
      unsigned NumOps = CountOperands(SU->Node);
 | 
						|
      for (unsigned j = 0; j != NumOps; ++j) {
 | 
						|
        if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        SDNode *OpN = SU->Node->getOperand(j).Val;
 | 
						|
        SUnit *OpSU = SUnitMap[OpN];
 | 
						|
        if (OpSU && OperandSeen.count(OpSU) == 1) {
 | 
						|
          // Ok, so SU is not the last use of OpSU, but SU is two-address so
 | 
						|
          // it will clobber OpSU. Try to commute SU if no other source operands
 | 
						|
          // are live below.
 | 
						|
          bool DoCommute = true;
 | 
						|
          for (unsigned k = 0; k < NumOps; ++k) {
 | 
						|
            if (k != j) {
 | 
						|
              OpN = SU->Node->getOperand(k).Val;
 | 
						|
              OpSU = SUnitMap[OpN];
 | 
						|
              if (OpSU && OperandSeen.count(OpSU) == 1) {
 | 
						|
                DoCommute = false;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (DoCommute)
 | 
						|
            CommuteSet.insert(SU->Node);
 | 
						|
        }
 | 
						|
 | 
						|
        // Only look at the first use&def node for now.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (!I->second)
 | 
						|
        OperandSeen.insert(I->first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Bottom-Up Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | 
						|
/// the Available queue is the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
 | 
						|
                                    unsigned CurCycle) {
 | 
						|
  // FIXME: the distance between two nodes is not always == the predecessor's
 | 
						|
  // latency. For example, the reader can very well read the register written
 | 
						|
  // by the predecessor later than the issue cycle. It also depends on the
 | 
						|
  // interrupt model (drain vs. freeze).
 | 
						|
  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | 
						|
 | 
						|
  if (!isChain)
 | 
						|
    PredSU->NumSuccsLeft--;
 | 
						|
  else
 | 
						|
    PredSU->NumChainSuccsLeft--;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
 | 
						|
    cerr << "*** List scheduling failed! ***\n";
 | 
						|
    PredSU->dump(&DAG);
 | 
						|
    cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
 | 
						|
    // EntryToken has to go last!  Special case it here.
 | 
						|
    if (PredSU->Node->getOpcode() != ISD::EntryToken) {
 | 
						|
      PredSU->isAvailable = true;
 | 
						|
      AvailableQueue->push(PredSU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its predecessors. If a predecessor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  // Bottom up: release predecessors
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ReleasePred(I->first, I->second, CurCycle);
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
/// isReady - True if node's lower cycle bound is less or equal to the current
 | 
						|
/// scheduling cycle. Always true if all nodes have uniform latency 1.
 | 
						|
static inline bool isReady(SUnit *SU, unsigned CurCycle) {
 | 
						|
  return SU->CycleBound <= CurCycle;
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGRRList::ListScheduleBottomUp() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  // Add root to Available queue.
 | 
						|
  AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back. Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    SUnit *CurNode = AvailableQueue->pop();
 | 
						|
    while (CurNode && !isReady(CurNode, CurCycle)) {
 | 
						|
      NotReady.push_back(CurNode);
 | 
						|
      CurNode = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    AvailableQueue->push_all(NotReady);
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (CurNode != NULL)
 | 
						|
      ScheduleNodeBottomUp(CurNode, CurCycle);
 | 
						|
    CurCycle++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add entry node last
 | 
						|
  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
 | 
						|
    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | 
						|
    Sequence.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the order if it is bottom up.
 | 
						|
  std::reverse(Sequence.begin(), Sequence.end());
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the PendingQueue if the count reaches zero.
 | 
						|
void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
 | 
						|
                                    unsigned CurCycle) {
 | 
						|
  // FIXME: the distance between two nodes is not always == the predecessor's
 | 
						|
  // latency. For example, the reader can very well read the register written
 | 
						|
  // by the predecessor later than the issue cycle. It also depends on the
 | 
						|
  // interrupt model (drain vs. freeze).
 | 
						|
  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
 | 
						|
 | 
						|
  if (!isChain)
 | 
						|
    SuccSU->NumPredsLeft--;
 | 
						|
  else
 | 
						|
    SuccSU->NumChainPredsLeft--;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
 | 
						|
    cerr << "*** List scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(&DAG);
 | 
						|
    cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
 | 
						|
    SuccSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(SuccSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  // Top down: release successors
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ReleaseSucc(I->first, I->second, CurCycle);
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGRRList::ListScheduleTopDown() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | 
						|
 | 
						|
  // All leaves to Available queue.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | 
						|
      AvailableQueue->push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit the entry node first.
 | 
						|
  ScheduleNodeTopDown(Entry, CurCycle);
 | 
						|
  CurCycle++;
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back. Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    SUnit *CurNode = AvailableQueue->pop();
 | 
						|
    while (CurNode && !isReady(CurNode, CurCycle)) {
 | 
						|
      NotReady.push_back(CurNode);
 | 
						|
      CurNode = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    AvailableQueue->push_all(NotReady);
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (CurNode != NULL)
 | 
						|
      ScheduleNodeTopDown(CurNode, CurCycle);
 | 
						|
    CurCycle++;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (!SUnits[i].isScheduled) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                RegReductionPriorityQueue Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | 
						|
// to reduce register pressure.
 | 
						|
// 
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class RegReductionPriorityQueue;
 | 
						|
  
 | 
						|
  /// Sorting functions for the Available queue.
 | 
						|
  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | 
						|
    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
 | 
						|
  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | 
						|
    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
static inline bool isCopyFromLiveIn(const SUnit *SU) {
 | 
						|
  SDNode *N = SU->Node;
 | 
						|
  return N->getOpcode() == ISD::CopyFromReg &&
 | 
						|
    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class VISIBILITY_HIDDEN RegReductionPriorityQueue
 | 
						|
   : public SchedulingPriorityQueue {
 | 
						|
    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
 | 
						|
 | 
						|
  public:
 | 
						|
    RegReductionPriorityQueue() :
 | 
						|
    Queue(SF(this)) {}
 | 
						|
    
 | 
						|
    virtual void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
 | 
						|
                           std::vector<SUnit> &sunits) {}
 | 
						|
    virtual void releaseState() {}
 | 
						|
    
 | 
						|
    virtual unsigned getNodePriority(const SUnit *SU) const {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    void push(SUnit *U) {
 | 
						|
      Queue.push(U);
 | 
						|
    }
 | 
						|
    void push_all(const std::vector<SUnit *> &Nodes) {
 | 
						|
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | 
						|
        Queue.push(Nodes[i]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    SUnit *pop() {
 | 
						|
      if (empty()) return NULL;
 | 
						|
      SUnit *V = Queue.top();
 | 
						|
      Queue.pop();
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template<class SF>
 | 
						|
  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
 | 
						|
   : public RegReductionPriorityQueue<SF> {
 | 
						|
    // SUnitMap SDNode to SUnit mapping (n -> 1).
 | 
						|
    DenseMap<SDNode*, SUnit*> *SUnitMap;
 | 
						|
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<unsigned> SethiUllmanNumbers;
 | 
						|
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
  public:
 | 
						|
    BURegReductionPriorityQueue(const TargetInstrInfo *tii)
 | 
						|
      : TII(tii) {}
 | 
						|
 | 
						|
    void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
 | 
						|
                   std::vector<SUnit> &sunits) {
 | 
						|
      SUnitMap = &sumap;
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Add pseudo dependency edges for two-address nodes.
 | 
						|
      AddPseudoTwoAddrDeps();
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculateSethiUllmanNumbers();
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNodePriority(const SUnit *SU) const {
 | 
						|
      assert(SU->NodeNum < SethiUllmanNumbers.size());
 | 
						|
      unsigned Opc = SU->Node->getOpcode();
 | 
						|
      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
 | 
						|
        // CopyFromReg should be close to its def because it restricts
 | 
						|
        // allocation choices. But if it is a livein then perhaps we want it
 | 
						|
        // closer to its uses so it can be coalesced.
 | 
						|
        return 0xffff;
 | 
						|
      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | 
						|
        // CopyToReg should be close to its uses to facilitate coalescing and
 | 
						|
        // avoid spilling.
 | 
						|
        return 0;
 | 
						|
      else if (SU->NumSuccs == 0)
 | 
						|
        // If SU does not have a use, i.e. it doesn't produce a value that would
 | 
						|
        // be consumed (e.g. store), then it terminates a chain of computation.
 | 
						|
        // Give it a large SethiUllman number so it will be scheduled right
 | 
						|
        // before its predecessors that it doesn't lengthen their live ranges.
 | 
						|
        return 0xffff;
 | 
						|
      else if (SU->NumPreds == 0)
 | 
						|
        // If SU does not have a def, schedule it close to its uses because it
 | 
						|
        // does not lengthen any live ranges.
 | 
						|
        return 0;
 | 
						|
      else
 | 
						|
        return SethiUllmanNumbers[SU->NodeNum];
 | 
						|
    }
 | 
						|
 | 
						|
    bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
 | 
						|
      unsigned Opc = SU1->Node->getTargetOpcode();
 | 
						|
      unsigned NumRes = ScheduleDAG::CountResults(SU1->Node);
 | 
						|
      unsigned NumOps = ScheduleDAG::CountOperands(SU1->Node);
 | 
						|
      for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
        if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) == -1)
 | 
						|
          continue;
 | 
						|
        if (SU1->Node->getOperand(i).isOperand(SU2->Node))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    bool canClobber(SUnit *SU, SUnit *Op);
 | 
						|
    void AddPseudoTwoAddrDeps();
 | 
						|
    void CalculateSethiUllmanNumbers();
 | 
						|
    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  template<class SF>
 | 
						|
  class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
 | 
						|
    // SUnitMap SDNode to SUnit mapping (n -> 1).
 | 
						|
    DenseMap<SDNode*, SUnit*> *SUnitMap;
 | 
						|
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<unsigned> SethiUllmanNumbers;
 | 
						|
 | 
						|
  public:
 | 
						|
    TDRegReductionPriorityQueue() {}
 | 
						|
 | 
						|
    void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
 | 
						|
                   std::vector<SUnit> &sunits) {
 | 
						|
      SUnitMap = &sumap;
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculateSethiUllmanNumbers();
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNodePriority(const SUnit *SU) const {
 | 
						|
      assert(SU->NodeNum < SethiUllmanNumbers.size());
 | 
						|
      return SethiUllmanNumbers[SU->NodeNum];
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void CalculateSethiUllmanNumbers();
 | 
						|
    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// closestSucc - Returns the scheduled cycle of the successor which is
 | 
						|
/// closet to the current cycle.
 | 
						|
static unsigned closestSucc(const SUnit *SU) {
 | 
						|
  unsigned MaxCycle = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned Cycle = I->first->Cycle;
 | 
						|
    // If there are bunch of CopyToRegs stacked up, they should be considered
 | 
						|
    // to be at the same position.
 | 
						|
    if (I->first->Node->getOpcode() == ISD::CopyToReg)
 | 
						|
      Cycle = closestSucc(I->first)+1;
 | 
						|
    if (Cycle > MaxCycle)
 | 
						|
      MaxCycle = Cycle;
 | 
						|
  }
 | 
						|
  return MaxCycle;
 | 
						|
}
 | 
						|
 | 
						|
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | 
						|
/// for scratch registers. Live-in operands and live-out results don't count
 | 
						|
/// since they are "fixed".
 | 
						|
static unsigned calcMaxScratches(const SUnit *SU) {
 | 
						|
  unsigned Scratches = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->second) continue;  // ignore chain preds
 | 
						|
    if (I->first->Node->getOpcode() != ISD::CopyFromReg)
 | 
						|
      Scratches++;
 | 
						|
  }
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->second) continue;  // ignore chain succs
 | 
						|
    if (I->first->Node->getOpcode() != ISD::CopyToReg)
 | 
						|
      Scratches += 10;
 | 
						|
  }
 | 
						|
  return Scratches;
 | 
						|
}
 | 
						|
 | 
						|
// Bottom up
 | 
						|
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  // There used to be a special tie breaker here that looked for
 | 
						|
  // two-address instructions and preferred the instruction with a
 | 
						|
  // def&use operand.  The special case triggered diagnostics when
 | 
						|
  // _GLIBCXX_DEBUG was enabled because it broke the strict weak
 | 
						|
  // ordering that priority_queue requires. It didn't help much anyway
 | 
						|
  // because AddPseudoTwoAddrDeps already covers many of the cases
 | 
						|
  // where it would have applied.  In addition, it's counter-intuitive
 | 
						|
  // that a tie breaker would be the first thing attempted.  There's a
 | 
						|
  // "real" tie breaker below that is the operation of last resort.
 | 
						|
  // The fact that the "special tie breaker" would trigger when there
 | 
						|
  // wasn't otherwise a tie is what broke the strict weak ordering
 | 
						|
  // constraint.
 | 
						|
 | 
						|
  unsigned LPriority = SPQ->getNodePriority(left);
 | 
						|
  unsigned RPriority = SPQ->getNodePriority(right);
 | 
						|
  if (LPriority > RPriority)
 | 
						|
    return true;
 | 
						|
  else if (LPriority == RPriority) {
 | 
						|
    // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | 
						|
    // e.g.
 | 
						|
    // t1 = op t2, c1
 | 
						|
    // t3 = op t4, c2
 | 
						|
    //
 | 
						|
    // and the following instructions are both ready.
 | 
						|
    // t2 = op c3
 | 
						|
    // t4 = op c4
 | 
						|
    //
 | 
						|
    // Then schedule t2 = op first.
 | 
						|
    // i.e.
 | 
						|
    // t4 = op c4
 | 
						|
    // t2 = op c3
 | 
						|
    // t1 = op t2, c1
 | 
						|
    // t3 = op t4, c2
 | 
						|
    //
 | 
						|
    // This creates more short live intervals.
 | 
						|
    unsigned LDist = closestSucc(left);
 | 
						|
    unsigned RDist = closestSucc(right);
 | 
						|
    if (LDist < RDist)
 | 
						|
      return true;
 | 
						|
    else if (LDist == RDist) {
 | 
						|
      // Intuitively, it's good to push down instructions whose results are
 | 
						|
      // liveout so their long live ranges won't conflict with other values
 | 
						|
      // which are needed inside the BB. Further prioritize liveout instructions
 | 
						|
      // by the number of operands which are calculated within the BB.
 | 
						|
      unsigned LScratch = calcMaxScratches(left);
 | 
						|
      unsigned RScratch = calcMaxScratches(right);
 | 
						|
      if (LScratch > RScratch)
 | 
						|
        return true;
 | 
						|
      else if (LScratch == RScratch)
 | 
						|
        if (left->Height > right->Height)
 | 
						|
          return true;
 | 
						|
        else if (left->Height == right->Height)
 | 
						|
          if (left->Depth < right->Depth)
 | 
						|
            return true;
 | 
						|
          else if (left->Depth == right->Depth)
 | 
						|
            if (left->CycleBound > right->CycleBound) 
 | 
						|
              return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This is probably too slow!
 | 
						|
static void isReachable(SUnit *SU, SUnit *TargetSU,
 | 
						|
                        SmallPtrSet<SUnit*, 32> &Visited, bool &Reached) {
 | 
						|
  if (Reached) return;
 | 
						|
  if (SU == TargetSU) {
 | 
						|
    Reached = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!Visited.insert(SU)) return;
 | 
						|
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
 | 
						|
       ++I)
 | 
						|
    isReachable(I->first, TargetSU, Visited, Reached);
 | 
						|
}
 | 
						|
 | 
						|
static bool isReachable(SUnit *SU, SUnit *TargetSU) {
 | 
						|
  SmallPtrSet<SUnit*, 32> Visited;
 | 
						|
  bool Reached = false;
 | 
						|
  isReachable(SU, TargetSU, Visited, Reached);
 | 
						|
  return Reached;
 | 
						|
}
 | 
						|
 | 
						|
template<class SF>
 | 
						|
bool BURegReductionPriorityQueue<SF>::canClobber(SUnit *SU, SUnit *Op) {
 | 
						|
  if (SU->isTwoAddress) {
 | 
						|
    unsigned Opc = SU->Node->getTargetOpcode();
 | 
						|
    unsigned NumRes = ScheduleDAG::CountResults(SU->Node);
 | 
						|
    unsigned NumOps = ScheduleDAG::CountOperands(SU->Node);
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
 | 
						|
        SDNode *DU = SU->Node->getOperand(i).Val;
 | 
						|
        if (Op == (*SUnitMap)[DU])
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | 
						|
/// it as a def&use operand. Add a pseudo control edge from it to the other
 | 
						|
/// node (if it won't create a cycle) so the two-address one will be scheduled
 | 
						|
/// first (lower in the schedule).
 | 
						|
template<class SF>
 | 
						|
void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | 
						|
    SUnit *SU = (SUnit *)&((*SUnits)[i]);
 | 
						|
    if (!SU->isTwoAddress)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDNode *Node = SU->Node;
 | 
						|
    if (!Node->isTargetOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Opc = Node->getTargetOpcode();
 | 
						|
    unsigned NumRes = ScheduleDAG::CountResults(Node);
 | 
						|
    unsigned NumOps = ScheduleDAG::CountOperands(Node);
 | 
						|
    for (unsigned j = 0; j != NumOps; ++j) {
 | 
						|
      if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
 | 
						|
        SDNode *DU = SU->Node->getOperand(j).Val;
 | 
						|
        SUnit *DUSU = (*SUnitMap)[DU];
 | 
						|
        if (!DUSU) continue;
 | 
						|
        for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
 | 
						|
             I != E; ++I) {
 | 
						|
          if (I->second) continue;
 | 
						|
          SUnit *SuccSU = I->first;
 | 
						|
          if (SuccSU != SU &&
 | 
						|
              (!canClobber(SuccSU, DUSU) ||
 | 
						|
               (!SU->isCommutable && SuccSU->isCommutable))){
 | 
						|
            if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) {
 | 
						|
              DOUT << "Adding an edge from SU # " << SU->NodeNum
 | 
						|
                   << " to SU #" << SuccSU->NodeNum << "\n";
 | 
						|
              if (SU->addPred(SuccSU, true))
 | 
						|
                SU->NumChainPredsLeft++;
 | 
						|
              if (SuccSU->addSucc(SU, true))
 | 
						|
                SuccSU->NumChainSuccsLeft++;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
template<class SF>
 | 
						|
unsigned BURegReductionPriorityQueue<SF>::
 | 
						|
CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | 
						|
  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Extra = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->second) continue;  // ignore chain preds
 | 
						|
    SUnit *PredSU = I->first;
 | 
						|
    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | 
						|
    if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
      SethiUllmanNumber = PredSethiUllman;
 | 
						|
      Extra = 0;
 | 
						|
    } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | 
						|
      Extra++;
 | 
						|
  }
 | 
						|
 | 
						|
  SethiUllmanNumber += Extra;
 | 
						|
 | 
						|
  if (SethiUllmanNumber == 0)
 | 
						|
    SethiUllmanNumber = 1;
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | 
						|
/// scheduling units.
 | 
						|
template<class SF>
 | 
						|
void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
 | 
						|
  unsigned Sum = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SUnit *SuccSU = I->first;
 | 
						|
    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | 
						|
         EE = SuccSU->Preds.end(); II != EE; ++II) {
 | 
						|
      SUnit *PredSU = II->first;
 | 
						|
      if (!PredSU->isScheduled)
 | 
						|
        Sum++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Top down
 | 
						|
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  unsigned LPriority = SPQ->getNodePriority(left);
 | 
						|
  unsigned RPriority = SPQ->getNodePriority(right);
 | 
						|
  bool LIsTarget = left->Node->isTargetOpcode();
 | 
						|
  bool RIsTarget = right->Node->isTargetOpcode();
 | 
						|
  bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | 
						|
  bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | 
						|
  unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
 | 
						|
  unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
 | 
						|
 | 
						|
  if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | 
						|
    return false;
 | 
						|
  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Special tie breaker: if two nodes share a operand, the one that use it
 | 
						|
  // as a def&use operand is preferred.
 | 
						|
  if (LIsTarget && RIsTarget) {
 | 
						|
    if (left->isTwoAddress && !right->isTwoAddress) {
 | 
						|
      SDNode *DUNode = left->Node->getOperand(0).Val;
 | 
						|
      if (DUNode->isOperand(right->Node))
 | 
						|
        RBonus += 2;
 | 
						|
    }
 | 
						|
    if (!left->isTwoAddress && right->isTwoAddress) {
 | 
						|
      SDNode *DUNode = right->Node->getOperand(0).Val;
 | 
						|
      if (DUNode->isOperand(left->Node))
 | 
						|
        LBonus += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (LIsFloater)
 | 
						|
    LBonus -= 2;
 | 
						|
  if (RIsFloater)
 | 
						|
    RBonus -= 2;
 | 
						|
  if (left->NumSuccs == 1)
 | 
						|
    LBonus += 2;
 | 
						|
  if (right->NumSuccs == 1)
 | 
						|
    RBonus += 2;
 | 
						|
 | 
						|
  if (LPriority+LBonus < RPriority+RBonus)
 | 
						|
    return true;
 | 
						|
  else if (LPriority == RPriority)
 | 
						|
    if (left->Depth < right->Depth)
 | 
						|
      return true;
 | 
						|
    else if (left->Depth == right->Depth)
 | 
						|
      if (left->NumSuccsLeft > right->NumSuccsLeft)
 | 
						|
        return true;
 | 
						|
      else if (left->NumSuccsLeft == right->NumSuccsLeft)
 | 
						|
        if (left->CycleBound > right->CycleBound) 
 | 
						|
          return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
template<class SF>
 | 
						|
unsigned TDRegReductionPriorityQueue<SF>::
 | 
						|
CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | 
						|
  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Opc = SU->Node->getOpcode();
 | 
						|
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | 
						|
    SethiUllmanNumber = 0xffff;
 | 
						|
  else if (SU->NumSuccsLeft == 0)
 | 
						|
    // If SU does not have a use, i.e. it doesn't produce a value that would
 | 
						|
    // be consumed (e.g. store), then it terminates a chain of computation.
 | 
						|
    // Give it a small SethiUllman number so it will be scheduled right before
 | 
						|
    // its predecessors that it doesn't lengthen their live ranges.
 | 
						|
    SethiUllmanNumber = 0;
 | 
						|
  else if (SU->NumPredsLeft == 0 &&
 | 
						|
           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | 
						|
    SethiUllmanNumber = 0xffff;
 | 
						|
  else {
 | 
						|
    int Extra = 0;
 | 
						|
    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->second) continue;  // ignore chain preds
 | 
						|
      SUnit *PredSU = I->first;
 | 
						|
      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | 
						|
      if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
        SethiUllmanNumber = PredSethiUllman;
 | 
						|
        Extra = 0;
 | 
						|
      } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | 
						|
        Extra++;
 | 
						|
    }
 | 
						|
 | 
						|
    SethiUllmanNumber += Extra;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | 
						|
/// scheduling units.
 | 
						|
template<class SF>
 | 
						|
void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
 | 
						|
                                                    SelectionDAG *DAG,
 | 
						|
                                                    MachineBasicBlock *BB) {
 | 
						|
  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
 | 
						|
  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
 | 
						|
                           new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII));
 | 
						|
}
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
 | 
						|
                                                    SelectionDAG *DAG,
 | 
						|
                                                    MachineBasicBlock *BB) {
 | 
						|
  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
 | 
						|
                              new TDRegReductionPriorityQueue<td_ls_rr_sort>());
 | 
						|
}
 | 
						|
 |