mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191715 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			263 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass which will find  instructions  which
 | |
| // can be re-written as LEA instructions in order to reduce pipeline
 | |
| // delays for some models of the Intel Atom family.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-fixup-LEAs"
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumLEAs, "Number of LEA instructions created");
 | |
| 
 | |
| namespace {
 | |
|   class FixupLEAPass : public MachineFunctionPass {
 | |
|     enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
 | |
|     static char ID;
 | |
|     /// \brief Loop over all of the instructions in the basic block
 | |
|     /// replacing applicable instructions with LEA instructions,
 | |
|     /// where appropriate.
 | |
|     bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
 | |
| 
 | |
|     virtual const char *getPassName() const { return "X86 Atom LEA Fixup";}
 | |
| 
 | |
|     /// \brief Given a machine register, look for the instruction
 | |
|     /// which writes it in the current basic block. If found,
 | |
|     /// try to replace it with an equivalent LEA instruction.
 | |
|     /// If replacement succeeds, then also process the the newly created
 | |
|     /// instruction.
 | |
|     void  seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I,
 | |
|                       MachineFunction::iterator MFI);
 | |
| 
 | |
|     /// \brief Given a memory access or LEA instruction
 | |
|     /// whose address mode uses a base and/or index register, look for
 | |
|     /// an opportunity to replace the instruction which sets the base or index
 | |
|     /// register with an equivalent LEA instruction.
 | |
|     void processInstruction(MachineBasicBlock::iterator& I,
 | |
|                             MachineFunction::iterator MFI);
 | |
| 
 | |
|     /// \brief Determine if an instruction references a machine register
 | |
|     /// and, if so, whether it reads or writes the register.
 | |
|     RegUsageState usesRegister(MachineOperand& p,
 | |
|                                MachineBasicBlock::iterator I);
 | |
| 
 | |
|     /// \brief Step backwards through a basic block, looking
 | |
|     /// for an instruction which writes a register within 
 | |
|     /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
 | |
|     MachineBasicBlock::iterator searchBackwards(MachineOperand& p,
 | |
|                                                 MachineBasicBlock::iterator& I,
 | |
|                                                 MachineFunction::iterator MFI);
 | |
| 
 | |
|     /// \brief if an instruction can be converted to an 
 | |
|     /// equivalent LEA, insert the new instruction into the basic block
 | |
|     /// and return a pointer to it. Otherwise, return zero.
 | |
|     MachineInstr* postRAConvertToLEA(MachineFunction::iterator &MFI,
 | |
|                                      MachineBasicBlock::iterator &MBBI) const;
 | |
| 
 | |
|   public:
 | |
|     FixupLEAPass() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     /// \brief Loop over all of the basic blocks,
 | |
|     /// replacing instructions by equivalent LEA instructions
 | |
|     /// if needed and when possible.
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|   private:
 | |
|     MachineFunction *MF;
 | |
|     const TargetMachine *TM;
 | |
|     const TargetInstrInfo *TII; // Machine instruction info.
 | |
| 
 | |
|   };
 | |
|   char FixupLEAPass::ID = 0;
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
 | |
|                                  MachineBasicBlock::iterator &MBBI) const {
 | |
|   MachineInstr* MI = MBBI;
 | |
|   MachineInstr* NewMI;
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::MOV32rr: 
 | |
|   case X86::MOV64rr: {
 | |
|     const MachineOperand& Src = MI->getOperand(1);
 | |
|     const MachineOperand& Dest = MI->getOperand(0);
 | |
|     NewMI = BuildMI(*MF, MI->getDebugLoc(),
 | |
|       TII->get( MI->getOpcode() == X86::MOV32rr ? X86::LEA32r : X86::LEA64r))
 | |
|       .addOperand(Dest)
 | |
|       .addOperand(Src).addImm(1).addReg(0).addImm(0).addReg(0);
 | |
|     MFI->insert(MBBI, NewMI);   // Insert the new inst
 | |
|     return NewMI;
 | |
|   }
 | |
|   case X86::ADD64ri32:
 | |
|   case X86::ADD64ri8:
 | |
|   case X86::ADD64ri32_DB:
 | |
|   case X86::ADD64ri8_DB:
 | |
|   case X86::ADD32ri:
 | |
|   case X86::ADD32ri8:
 | |
|   case X86::ADD32ri_DB:
 | |
|   case X86::ADD32ri8_DB:
 | |
|   case X86::ADD16ri:
 | |
|   case X86::ADD16ri8:
 | |
|   case X86::ADD16ri_DB:
 | |
|   case X86::ADD16ri8_DB:
 | |
|     if (!MI->getOperand(2).isImm()) {
 | |
|       // convertToThreeAddress will call getImm()
 | |
|       // which requires isImm() to be true
 | |
|       return 0;
 | |
|     }
 | |
|     break;
 | |
|   case X86::ADD16rr:
 | |
|   case X86::ADD16rr_DB:
 | |
|     if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
 | |
|       // if src1 != src2, then convertToThreeAddress will
 | |
|       // need to create a Virtual register, which we cannot do
 | |
|       // after register allocation.
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return TII->convertToThreeAddress(MFI, MBBI, 0);
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86FixupLEAs() {
 | |
|   return new FixupLEAPass();
 | |
| }
 | |
| 
 | |
| bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
 | |
|   MF = &Func;
 | |
|   TM = &MF->getTarget();
 | |
|   TII = TM->getInstrInfo();
 | |
| 
 | |
|   DEBUG(dbgs() << "Start X86FixupLEAs\n";);
 | |
|   // Process all basic blocks.
 | |
|   for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
 | |
|     processBasicBlock(Func, I);
 | |
|   DEBUG(dbgs() << "End X86FixupLEAs\n";);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FixupLEAPass::RegUsageState FixupLEAPass::usesRegister(MachineOperand& p,
 | |
|                                 MachineBasicBlock::iterator I) {
 | |
|   RegUsageState RegUsage = RU_NotUsed;
 | |
|   MachineInstr* MI = I;
 | |
| 
 | |
|   for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
 | |
|     MachineOperand& opnd = MI->getOperand(i);
 | |
|     if (opnd.isReg() && opnd.getReg() == p.getReg()){
 | |
|       if (opnd.isDef())
 | |
|         return RU_Write;
 | |
|       RegUsage = RU_Read;
 | |
|     }
 | |
|   }
 | |
|   return RegUsage;
 | |
| }
 | |
| 
 | |
| /// getPreviousInstr - Given a reference to an instruction in a basic
 | |
| /// block, return a reference to the previous instruction in the block,
 | |
| /// wrapping around to the last instruction of the block if the block
 | |
| /// branches to itself.
 | |
| static inline bool getPreviousInstr(MachineBasicBlock::iterator& I,
 | |
|                                     MachineFunction::iterator MFI) {
 | |
|   if (I == MFI->begin()) {
 | |
|     if (MFI->isPredecessor(MFI)) {
 | |
|       I = --MFI->end();
 | |
|       return true;
 | |
|     }
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
|   --I;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator FixupLEAPass::searchBackwards(MachineOperand& p,
 | |
|                                    MachineBasicBlock::iterator& I,
 | |
|                                    MachineFunction::iterator MFI) {
 | |
|   int InstrDistance = 1;
 | |
|   MachineBasicBlock::iterator CurInst;
 | |
|   static const int INSTR_DISTANCE_THRESHOLD = 5;
 | |
| 
 | |
|   CurInst = I;
 | |
|   bool Found;
 | |
|   Found = getPreviousInstr(CurInst, MFI);
 | |
|   while( Found && I != CurInst) {
 | |
|     if (CurInst->isCall() || CurInst->isInlineAsm())
 | |
|       break;
 | |
|     if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
 | |
|       break; // too far back to make a difference
 | |
|     if (usesRegister(p, CurInst) == RU_Write){
 | |
|       return CurInst;
 | |
|     }
 | |
|     InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
 | |
|     Found = getPreviousInstr(CurInst, MFI);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::processInstruction(MachineBasicBlock::iterator& I,
 | |
|                                       MachineFunction::iterator MFI) {
 | |
|   // Process a load, store, or LEA instruction.
 | |
|   MachineInstr *MI = I;
 | |
|   int opcode = MI->getOpcode();
 | |
|   const MCInstrDesc& Desc = MI->getDesc();
 | |
|   int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
 | |
|   if (AddrOffset >= 0) {
 | |
|     AddrOffset += X86II::getOperandBias(Desc);
 | |
|     MachineOperand& p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
 | |
|     if (p.isReg() && p.getReg() != X86::ESP) {
 | |
|       seekLEAFixup(p, I, MFI);
 | |
|     }
 | |
|     MachineOperand& q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
 | |
|     if (q.isReg() && q.getReg() != X86::ESP) {
 | |
|       seekLEAFixup(q, I, MFI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::seekLEAFixup(MachineOperand& p,
 | |
|                                 MachineBasicBlock::iterator& I,
 | |
|                                 MachineFunction::iterator MFI) {
 | |
|   MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
 | |
|   if (MBI) {
 | |
|     MachineInstr* NewMI = postRAConvertToLEA(MFI, MBI);
 | |
|     if (NewMI) {
 | |
|       ++NumLEAs;
 | |
|       DEBUG(dbgs() << "Candidate to replace:"; MBI->dump(););
 | |
|       // now to replace with an equivalent LEA...
 | |
|       DEBUG(dbgs() << "Replaced by: "; NewMI->dump(););
 | |
|       MFI->erase(MBI);
 | |
|       MachineBasicBlock::iterator J =
 | |
|                              static_cast<MachineBasicBlock::iterator> (NewMI);
 | |
|       processInstruction(J, MFI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
 | |
|                                      MachineFunction::iterator MFI) {
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I)
 | |
|     processInstruction(I, MFI);
 | |
|   return false;
 | |
| }
 |