mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-27 09:17:11 +00:00 
			
		
		
		
	into a utility routine, teach it how to update MachineLoopInfo, and make use of it in MachineLICM to split critical edges on demand. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106555 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			843 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs loop invariant code motion on machine instructions. We
 | |
| // attempt to remove as much code from the body of a loop as possible.
 | |
| //
 | |
| // This pass does not attempt to throttle itself to limit register pressure.
 | |
| // The register allocation phases are expected to perform rematerialization
 | |
| // to recover when register pressure is high.
 | |
| //
 | |
| // This pass is not intended to be a replacement or a complete alternative
 | |
| // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
 | |
| // constructs that are not exposed before lowering and instruction selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "machine-licm"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
 | |
| STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
 | |
| STATISTIC(NumPostRAHoisted,
 | |
|           "Number of machine instructions hoisted out of loops post regalloc");
 | |
| 
 | |
| namespace {
 | |
|   class MachineLICM : public MachineFunctionPass {
 | |
|     bool PreRegAlloc;
 | |
| 
 | |
|     const TargetMachine   *TM;
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const MachineFrameInfo *MFI;
 | |
|     MachineRegisterInfo *RegInfo;
 | |
| 
 | |
|     // Various analyses that we use...
 | |
|     AliasAnalysis        *AA;      // Alias analysis info.
 | |
|     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
 | |
|     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
 | |
| 
 | |
|     // State that is updated as we process loops
 | |
|     bool         Changed;          // True if a loop is changed.
 | |
|     bool         FirstInLoop;      // True if it's the first LICM in the loop.
 | |
|     MachineLoop *CurLoop;          // The current loop we are working on.
 | |
|     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
 | |
| 
 | |
|     BitVector AllocatableSet;
 | |
| 
 | |
|     // For each opcode, keep a list of potentail CSE instructions.
 | |
|     DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     MachineLICM() :
 | |
|       MachineFunctionPass(&ID), PreRegAlloc(true) {}
 | |
| 
 | |
|     explicit MachineLICM(bool PreRA) :
 | |
|       MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     const char *getPassName() const { return "Machine Instruction LICM"; }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual void releaseMemory() {
 | |
|       CSEMap.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// CandidateInfo - Keep track of information about hoisting candidates.
 | |
|     struct CandidateInfo {
 | |
|       MachineInstr *MI;
 | |
|       unsigned      Def;
 | |
|       int           FI;
 | |
|       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
 | |
|         : MI(mi), Def(def), FI(fi) {}
 | |
|     };
 | |
| 
 | |
|     /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
 | |
|     /// invariants out to the preheader.
 | |
|     void HoistRegionPostRA();
 | |
| 
 | |
|     /// HoistPostRA - When an instruction is found to only use loop invariant
 | |
|     /// operands that is safe to hoist, this instruction is called to do the
 | |
|     /// dirty work.
 | |
|     void HoistPostRA(MachineInstr *MI, unsigned Def);
 | |
| 
 | |
|     /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
 | |
|     /// gather register def and frame object update information.
 | |
|     void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
 | |
|                    SmallSet<int, 32> &StoredFIs,
 | |
|                    SmallVector<CandidateInfo, 32> &Candidates);
 | |
| 
 | |
|     /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
 | |
|     /// current loop.
 | |
|     void AddToLiveIns(unsigned Reg);
 | |
| 
 | |
|     /// IsLICMCandidate - Returns true if the instruction may be a suitable
 | |
|     /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
 | |
|     /// not safe to hoist it.
 | |
|     bool IsLICMCandidate(MachineInstr &I);
 | |
| 
 | |
|     /// IsLoopInvariantInst - Returns true if the instruction is loop
 | |
|     /// invariant. I.e., all virtual register operands are defined outside of
 | |
|     /// the loop, physical registers aren't accessed (explicitly or implicitly),
 | |
|     /// and the instruction is hoistable.
 | |
|     /// 
 | |
|     bool IsLoopInvariantInst(MachineInstr &I);
 | |
| 
 | |
|     /// IsProfitableToHoist - Return true if it is potentially profitable to
 | |
|     /// hoist the given loop invariant.
 | |
|     bool IsProfitableToHoist(MachineInstr &MI);
 | |
| 
 | |
|     /// HoistRegion - Walk the specified region of the CFG (defined by all
 | |
|     /// blocks dominated by the specified block, and that are in the current
 | |
|     /// loop) in depth first order w.r.t the DominatorTree. This allows us to
 | |
|     /// visit definitions before uses, allowing us to hoist a loop body in one
 | |
|     /// pass without iteration.
 | |
|     ///
 | |
|     void HoistRegion(MachineDomTreeNode *N);
 | |
| 
 | |
|     /// isLoadFromConstantMemory - Return true if the given instruction is a
 | |
|     /// load from constant memory.
 | |
|     bool isLoadFromConstantMemory(MachineInstr *MI);
 | |
| 
 | |
|     /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
 | |
|     /// the load itself could be hoisted. Return the unfolded and hoistable
 | |
|     /// load, or null if the load couldn't be unfolded or if it wouldn't
 | |
|     /// be hoistable.
 | |
|     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
 | |
| 
 | |
|     /// LookForDuplicate - Find an instruction amount PrevMIs that is a
 | |
|     /// duplicate of MI. Return this instruction if it's found.
 | |
|     const MachineInstr *LookForDuplicate(const MachineInstr *MI,
 | |
|                                      std::vector<const MachineInstr*> &PrevMIs);
 | |
| 
 | |
|     /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
 | |
|     /// the preheader that compute the same value. If it's found, do a RAU on
 | |
|     /// with the definition of the existing instruction rather than hoisting
 | |
|     /// the instruction to the preheader.
 | |
|     bool EliminateCSE(MachineInstr *MI,
 | |
|            DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
 | |
| 
 | |
|     /// Hoist - When an instruction is found to only use loop invariant operands
 | |
|     /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
|     ///
 | |
|     void Hoist(MachineInstr *MI);
 | |
| 
 | |
|     /// InitCSEMap - Initialize the CSE map with instructions that are in the
 | |
|     /// current loop preheader that may become duplicates of instructions that
 | |
|     /// are hoisted out of the loop.
 | |
|     void InitCSEMap(MachineBasicBlock *BB);
 | |
| 
 | |
|     /// getCurPreheader - Get the preheader for the current loop, splitting
 | |
|     /// a critical edge if needed.
 | |
|     MachineBasicBlock *getCurPreheader();
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineLICM::ID = 0;
 | |
| static RegisterPass<MachineLICM>
 | |
| X("machinelicm", "Machine Loop Invariant Code Motion");
 | |
| 
 | |
| FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
 | |
|   return new MachineLICM(PreRegAlloc);
 | |
| }
 | |
| 
 | |
| /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
 | |
| /// loop that has a unique predecessor.
 | |
| static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
 | |
|   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
 | |
|     if (L->getLoopPredecessor())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (PreRegAlloc)
 | |
|     DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
 | |
|   else
 | |
|     DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
 | |
| 
 | |
|   Changed = FirstInLoop = false;
 | |
|   TM = &MF.getTarget();
 | |
|   TII = TM->getInstrInfo();
 | |
|   TRI = TM->getRegisterInfo();
 | |
|   MFI = MF.getFrameInfo();
 | |
|   RegInfo = &MF.getRegInfo();
 | |
|   AllocatableSet = TRI->getAllocatableSet(MF);
 | |
| 
 | |
|   // Get our Loop information...
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   DT  = &getAnalysis<MachineDominatorTree>();
 | |
|   AA  = &getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I){
 | |
|     CurLoop = *I;
 | |
|     CurPreheader = 0;
 | |
| 
 | |
|     // If this is done before regalloc, only visit outer-most preheader-sporting
 | |
|     // loops.
 | |
|     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop))
 | |
|       continue;
 | |
| 
 | |
|     if (!PreRegAlloc)
 | |
|       HoistRegionPostRA();
 | |
|     else {
 | |
|       // CSEMap is initialized for loop header when the first instruction is
 | |
|       // being hoisted.
 | |
|       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
 | |
|       FirstInLoop = true;
 | |
|       HoistRegion(N);
 | |
|       CSEMap.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// InstructionStoresToFI - Return true if instruction stores to the
 | |
| /// specified frame.
 | |
| static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
 | |
|   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | |
|          oe = MI->memoperands_end(); o != oe; ++o) {
 | |
|     if (!(*o)->isStore() || !(*o)->getValue())
 | |
|       continue;
 | |
|     if (const FixedStackPseudoSourceValue *Value =
 | |
|         dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | |
|       if (Value->getFrameIndex() == FI)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
 | |
| /// gather register def and frame object update information.
 | |
| void MachineLICM::ProcessMI(MachineInstr *MI,
 | |
|                             unsigned *PhysRegDefs,
 | |
|                             SmallSet<int, 32> &StoredFIs,
 | |
|                             SmallVector<CandidateInfo, 32> &Candidates) {
 | |
|   bool RuledOut = false;
 | |
|   bool HasNonInvariantUse = false;
 | |
|   unsigned Def = 0;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isFI()) {
 | |
|       // Remember if the instruction stores to the frame index.
 | |
|       int FI = MO.getIndex();
 | |
|       if (!StoredFIs.count(FI) &&
 | |
|           MFI->isSpillSlotObjectIndex(FI) &&
 | |
|           InstructionStoresToFI(MI, FI))
 | |
|         StoredFIs.insert(FI);
 | |
|       HasNonInvariantUse = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | |
|            "Not expecting virtual register!");
 | |
| 
 | |
|     if (!MO.isDef()) {
 | |
|       if (Reg && PhysRegDefs[Reg])
 | |
|         // If it's using a non-loop-invariant register, then it's obviously not
 | |
|         // safe to hoist.
 | |
|         HasNonInvariantUse = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (MO.isImplicit()) {
 | |
|       ++PhysRegDefs[Reg];
 | |
|       for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
 | |
|         ++PhysRegDefs[*AS];
 | |
|       if (!MO.isDead())
 | |
|         // Non-dead implicit def? This cannot be hoisted.
 | |
|         RuledOut = true;
 | |
|       // No need to check if a dead implicit def is also defined by
 | |
|       // another instruction.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // FIXME: For now, avoid instructions with multiple defs, unless
 | |
|     // it's a dead implicit def.
 | |
|     if (Def)
 | |
|       RuledOut = true;
 | |
|     else
 | |
|       Def = Reg;
 | |
| 
 | |
|     // If we have already seen another instruction that defines the same
 | |
|     // register, then this is not safe.
 | |
|     if (++PhysRegDefs[Reg] > 1)
 | |
|       // MI defined register is seen defined by another instruction in
 | |
|       // the loop, it cannot be a LICM candidate.
 | |
|       RuledOut = true;
 | |
|     for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
 | |
|       if (++PhysRegDefs[*AS] > 1)
 | |
|         RuledOut = true;
 | |
|   }
 | |
| 
 | |
|   // Only consider reloads for now and remats which do not have register
 | |
|   // operands. FIXME: Consider unfold load folding instructions.
 | |
|   if (Def && !RuledOut) {
 | |
|     int FI = INT_MIN;
 | |
|     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
 | |
|         (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
 | |
|       Candidates.push_back(CandidateInfo(MI, Def, FI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
 | |
| /// invariants out to the preheader.
 | |
| void MachineLICM::HoistRegionPostRA() {
 | |
|   unsigned NumRegs = TRI->getNumRegs();
 | |
|   unsigned *PhysRegDefs = new unsigned[NumRegs];
 | |
|   std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
 | |
| 
 | |
|   SmallVector<CandidateInfo, 32> Candidates;
 | |
|   SmallSet<int, 32> StoredFIs;
 | |
| 
 | |
|   // Walk the entire region, count number of defs for each register, and
 | |
|   // collect potential LICM candidates.
 | |
|   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *BB = Blocks[i];
 | |
|     // Conservatively treat live-in's as an external def.
 | |
|     // FIXME: That means a reload that're reused in successor block(s) will not
 | |
|     // be LICM'ed.
 | |
|     for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
 | |
|            E = BB->livein_end(); I != E; ++I) {
 | |
|       unsigned Reg = *I;
 | |
|       ++PhysRegDefs[Reg];
 | |
|       for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
 | |
|         ++PhysRegDefs[*AS];
 | |
|     }
 | |
| 
 | |
|     for (MachineBasicBlock::iterator
 | |
|            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
 | |
|       MachineInstr *MI = &*MII;
 | |
|       ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now evaluate whether the potential candidates qualify.
 | |
|   // 1. Check if the candidate defined register is defined by another
 | |
|   //    instruction in the loop.
 | |
|   // 2. If the candidate is a load from stack slot (always true for now),
 | |
|   //    check if the slot is stored anywhere in the loop.
 | |
|   for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
 | |
|     if (Candidates[i].FI != INT_MIN &&
 | |
|         StoredFIs.count(Candidates[i].FI))
 | |
|       continue;
 | |
| 
 | |
|     if (PhysRegDefs[Candidates[i].Def] == 1) {
 | |
|       bool Safe = true;
 | |
|       MachineInstr *MI = Candidates[i].MI;
 | |
|       for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
 | |
|         const MachineOperand &MO = MI->getOperand(j);
 | |
|         if (!MO.isReg() || MO.isDef() || !MO.getReg())
 | |
|           continue;
 | |
|         if (PhysRegDefs[MO.getReg()]) {
 | |
|           // If it's using a non-loop-invariant register, then it's obviously
 | |
|           // not safe to hoist.
 | |
|           Safe = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (Safe)
 | |
|         HoistPostRA(MI, Candidates[i].Def);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   delete[] PhysRegDefs;
 | |
| }
 | |
| 
 | |
| /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
 | |
| /// loop, and make sure it is not killed by any instructions in the loop.
 | |
| void MachineLICM::AddToLiveIns(unsigned Reg) {
 | |
|   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *BB = Blocks[i];
 | |
|     if (!BB->isLiveIn(Reg))
 | |
|       BB->addLiveIn(Reg);
 | |
|     for (MachineBasicBlock::iterator
 | |
|            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
 | |
|       MachineInstr *MI = &*MII;
 | |
|       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
 | |
|         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
 | |
|           MO.setIsKill(false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HoistPostRA - When an instruction is found to only use loop invariant
 | |
| /// operands that is safe to hoist, this instruction is called to do the
 | |
| /// dirty work.
 | |
| void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
 | |
|   MachineBasicBlock *Preheader = getCurPreheader();
 | |
|   if (!Preheader) return;
 | |
| 
 | |
|   // Now move the instructions to the predecessor, inserting it before any
 | |
|   // terminator instructions.
 | |
|   DEBUG({
 | |
|       dbgs() << "Hoisting " << *MI;
 | |
|       if (Preheader->getBasicBlock())
 | |
|         dbgs() << " to MachineBasicBlock "
 | |
|                << Preheader->getName();
 | |
|       if (MI->getParent()->getBasicBlock())
 | |
|         dbgs() << " from MachineBasicBlock "
 | |
|                << MI->getParent()->getName();
 | |
|       dbgs() << "\n";
 | |
|     });
 | |
| 
 | |
|   // Splice the instruction to the preheader.
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
 | |
| 
 | |
|   // Add register to livein list to all the BBs in the current loop since a 
 | |
|   // loop invariant must be kept live throughout the whole loop. This is
 | |
|   // important to ensure later passes do not scavenge the def register.
 | |
|   AddToLiveIns(Def);
 | |
| 
 | |
|   ++NumPostRAHoisted;
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
 | |
| /// dominated by the specified block, and that are in the current loop) in depth
 | |
| /// first order w.r.t the DominatorTree. This allows us to visit definitions
 | |
| /// before uses, allowing us to hoist a loop body in one pass without iteration.
 | |
| ///
 | |
| void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
 | |
|   assert(N != 0 && "Null dominator tree node?");
 | |
|   MachineBasicBlock *BB = N->getBlock();
 | |
| 
 | |
|   // If this subregion is not in the top level loop at all, exit.
 | |
|   if (!CurLoop->contains(BB)) return;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator
 | |
|          MII = BB->begin(), E = BB->end(); MII != E; ) {
 | |
|     MachineBasicBlock::iterator NextMII = MII; ++NextMII;
 | |
|     Hoist(&*MII);
 | |
|     MII = NextMII;
 | |
|   }
 | |
| 
 | |
|   const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
 | |
|   for (unsigned I = 0, E = Children.size(); I != E; ++I)
 | |
|     HoistRegion(Children[I]);
 | |
| }
 | |
| 
 | |
| /// IsLICMCandidate - Returns true if the instruction may be a suitable
 | |
| /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
 | |
| /// not safe to hoist it.
 | |
| bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
 | |
|   if (I.isImplicitDef())
 | |
|     return false;
 | |
| 
 | |
|   const TargetInstrDesc &TID = I.getDesc();
 | |
|   
 | |
|   // Ignore stuff that we obviously can't hoist.
 | |
|   if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
 | |
|       TID.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   if (TID.mayLoad()) {
 | |
|     // Okay, this instruction does a load. As a refinement, we allow the target
 | |
|     // to decide whether the loaded value is actually a constant. If so, we can
 | |
|     // actually use it as a load.
 | |
|     if (!I.isInvariantLoad(AA))
 | |
|       // FIXME: we should be able to hoist loads with no other side effects if
 | |
|       // there are no other instructions which can change memory in this loop.
 | |
|       // This is a trivial form of alias analysis.
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IsLoopInvariantInst - Returns true if the instruction is loop
 | |
| /// invariant. I.e., all virtual register operands are defined outside of the
 | |
| /// loop, physical registers aren't accessed explicitly, and there are no side
 | |
| /// effects that aren't captured by the operands or other flags.
 | |
| /// 
 | |
| bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
 | |
|   if (!IsLICMCandidate(I))
 | |
|     return false;
 | |
| 
 | |
|   // The instruction is loop invariant if all of its operands are.
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = I.getOperand(i);
 | |
| 
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
| 
 | |
|     // Don't hoist an instruction that uses or defines a physical register.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse()) {
 | |
|         // If the physreg has no defs anywhere, it's just an ambient register
 | |
|         // and we can freely move its uses. Alternatively, if it's allocatable,
 | |
|         // it could get allocated to something with a def during allocation.
 | |
|         if (!RegInfo->def_empty(Reg))
 | |
|           return false;
 | |
|         if (AllocatableSet.test(Reg))
 | |
|           return false;
 | |
|         // Check for a def among the register's aliases too.
 | |
|         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|           unsigned AliasReg = *Alias;
 | |
|           if (!RegInfo->def_empty(AliasReg))
 | |
|             return false;
 | |
|           if (AllocatableSet.test(AliasReg))
 | |
|             return false;
 | |
|         }
 | |
|         // Otherwise it's safe to move.
 | |
|         continue;
 | |
|       } else if (!MO.isDead()) {
 | |
|         // A def that isn't dead. We can't move it.
 | |
|         return false;
 | |
|       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
 | |
|         // If the reg is live into the loop, we can't hoist an instruction
 | |
|         // which would clobber it.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!MO.isUse())
 | |
|       continue;
 | |
| 
 | |
|     assert(RegInfo->getVRegDef(Reg) &&
 | |
|            "Machine instr not mapped for this vreg?!");
 | |
| 
 | |
|     // If the loop contains the definition of an operand, then the instruction
 | |
|     // isn't loop invariant.
 | |
|     if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we got this far, the instruction is loop invariant!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// HasPHIUses - Return true if the specified register has any PHI use.
 | |
| static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
 | |
|   for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
 | |
|          UE = RegInfo->use_end(); UI != UE; ++UI) {
 | |
|     MachineInstr *UseMI = &*UI;
 | |
|     if (UseMI->isPHI())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isLoadFromConstantMemory - Return true if the given instruction is a
 | |
| /// load from constant memory. Machine LICM will hoist these even if they are
 | |
| /// not re-materializable.
 | |
| bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
 | |
|   if (!MI->getDesc().mayLoad()) return false;
 | |
|   if (!MI->hasOneMemOperand()) return false;
 | |
|   MachineMemOperand *MMO = *MI->memoperands_begin();
 | |
|   if (MMO->isVolatile()) return false;
 | |
|   if (!MMO->getValue()) return false;
 | |
|   const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
 | |
|   if (PSV) {
 | |
|     MachineFunction &MF = *MI->getParent()->getParent();
 | |
|     return PSV->isConstant(MF.getFrameInfo());
 | |
|   } else {
 | |
|     return AA->pointsToConstantMemory(MMO->getValue());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IsProfitableToHoist - Return true if it is potentially profitable to hoist
 | |
| /// the given loop invariant.
 | |
| bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
 | |
|   // FIXME: For now, only hoist re-materilizable instructions. LICM will
 | |
|   // increase register pressure. We want to make sure it doesn't increase
 | |
|   // spilling.
 | |
|   // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
 | |
|   // these tend to help performance in low register pressure situation. The
 | |
|   // trade off is it may cause spill in high pressure situation. It will end up
 | |
|   // adding a store in the loop preheader. But the reload is no more expensive.
 | |
|   // The side benefit is these loads are frequently CSE'ed.
 | |
|   if (!TII->isTriviallyReMaterializable(&MI, AA)) {
 | |
|     if (!isLoadFromConstantMemory(&MI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If result(s) of this instruction is used by PHIs, then don't hoist it.
 | |
|   // The presence of joins makes it difficult for current register allocator
 | |
|   // implementation to perform remat.
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     if (HasPHIUses(MO.getReg(), RegInfo))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
 | |
|   // If not, we may be able to unfold a load and hoist that.
 | |
|   // First test whether the instruction is loading from an amenable
 | |
|   // memory location.
 | |
|   if (!isLoadFromConstantMemory(MI))
 | |
|     return 0;
 | |
| 
 | |
|   // Next determine the register class for a temporary register.
 | |
|   unsigned LoadRegIndex;
 | |
|   unsigned NewOpc =
 | |
|     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
 | |
|                                     /*UnfoldLoad=*/true,
 | |
|                                     /*UnfoldStore=*/false,
 | |
|                                     &LoadRegIndex);
 | |
|   if (NewOpc == 0) return 0;
 | |
|   const TargetInstrDesc &TID = TII->get(NewOpc);
 | |
|   if (TID.getNumDefs() != 1) return 0;
 | |
|   const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
 | |
|   // Ok, we're unfolding. Create a temporary register and do the unfold.
 | |
|   unsigned Reg = RegInfo->createVirtualRegister(RC);
 | |
| 
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   SmallVector<MachineInstr *, 2> NewMIs;
 | |
|   bool Success =
 | |
|     TII->unfoldMemoryOperand(MF, MI, Reg,
 | |
|                              /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
 | |
|                              NewMIs);
 | |
|   (void)Success;
 | |
|   assert(Success &&
 | |
|          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
 | |
|          "succeeded!");
 | |
|   assert(NewMIs.size() == 2 &&
 | |
|          "Unfolded a load into multiple instructions!");
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MBB->insert(MI, NewMIs[0]);
 | |
|   MBB->insert(MI, NewMIs[1]);
 | |
|   // If unfolding produced a load that wasn't loop-invariant or profitable to
 | |
|   // hoist, discard the new instructions and bail.
 | |
|   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
 | |
|     NewMIs[0]->eraseFromParent();
 | |
|     NewMIs[1]->eraseFromParent();
 | |
|     return 0;
 | |
|   }
 | |
|   // Otherwise we successfully unfolded a load that we can hoist.
 | |
|   MI->eraseFromParent();
 | |
|   return NewMIs[0];
 | |
| }
 | |
| 
 | |
| void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
 | |
|   for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
 | |
|     const MachineInstr *MI = &*I;
 | |
|     // FIXME: For now, only hoist re-materilizable instructions. LICM will
 | |
|     // increase register pressure. We want to make sure it doesn't increase
 | |
|     // spilling.
 | |
|     if (TII->isTriviallyReMaterializable(MI, AA)) {
 | |
|       unsigned Opcode = MI->getOpcode();
 | |
|       DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | |
|         CI = CSEMap.find(Opcode);
 | |
|       if (CI != CSEMap.end())
 | |
|         CI->second.push_back(MI);
 | |
|       else {
 | |
|         std::vector<const MachineInstr*> CSEMIs;
 | |
|         CSEMIs.push_back(MI);
 | |
|         CSEMap.insert(std::make_pair(Opcode, CSEMIs));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const MachineInstr*
 | |
| MachineLICM::LookForDuplicate(const MachineInstr *MI,
 | |
|                               std::vector<const MachineInstr*> &PrevMIs) {
 | |
|   for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
 | |
|     const MachineInstr *PrevMI = PrevMIs[i];
 | |
|     if (TII->produceSameValue(MI, PrevMI))
 | |
|       return PrevMI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool MachineLICM::EliminateCSE(MachineInstr *MI,
 | |
|           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
 | |
|   if (CI == CSEMap.end())
 | |
|     return false;
 | |
| 
 | |
|   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
 | |
|     DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
 | |
| 
 | |
|     // Replace virtual registers defined by MI by their counterparts defined
 | |
|     // by Dup.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
| 
 | |
|       // Physical registers may not differ here.
 | |
|       assert((!MO.isReg() || MO.getReg() == 0 ||
 | |
|               !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
 | |
|               MO.getReg() == Dup->getOperand(i).getReg()) &&
 | |
|              "Instructions with different phys regs are not identical!");
 | |
| 
 | |
|       if (MO.isReg() && MO.isDef() &&
 | |
|           !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | |
|         RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
 | |
|         RegInfo->clearKillFlags(Dup->getOperand(i).getReg());
 | |
|       }
 | |
|     }
 | |
|     MI->eraseFromParent();
 | |
|     ++NumCSEed;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Hoist - When an instruction is found to use only loop invariant operands
 | |
| /// that are safe to hoist, this instruction is called to do the dirty work.
 | |
| ///
 | |
| void MachineLICM::Hoist(MachineInstr *MI) {
 | |
|   MachineBasicBlock *Preheader = getCurPreheader();
 | |
|   if (!Preheader) return;
 | |
| 
 | |
|   // First check whether we should hoist this instruction.
 | |
|   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
 | |
|     // If not, try unfolding a hoistable load.
 | |
|     MI = ExtractHoistableLoad(MI);
 | |
|     if (!MI) return;
 | |
|   }
 | |
| 
 | |
|   // Now move the instructions to the predecessor, inserting it before any
 | |
|   // terminator instructions.
 | |
|   DEBUG({
 | |
|       dbgs() << "Hoisting " << *MI;
 | |
|       if (Preheader->getBasicBlock())
 | |
|         dbgs() << " to MachineBasicBlock "
 | |
|                << Preheader->getName();
 | |
|       if (MI->getParent()->getBasicBlock())
 | |
|         dbgs() << " from MachineBasicBlock "
 | |
|                << MI->getParent()->getName();
 | |
|       dbgs() << "\n";
 | |
|     });
 | |
| 
 | |
|   // If this is the first instruction being hoisted to the preheader,
 | |
|   // initialize the CSE map with potential common expressions.
 | |
|   if (FirstInLoop) {
 | |
|     InitCSEMap(Preheader);
 | |
|     FirstInLoop = false;
 | |
|   }
 | |
| 
 | |
|   // Look for opportunity to CSE the hoisted instruction.
 | |
|   unsigned Opcode = MI->getOpcode();
 | |
|   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
 | |
|     CI = CSEMap.find(Opcode);
 | |
|   if (!EliminateCSE(MI, CI)) {
 | |
|     // Otherwise, splice the instruction to the preheader.
 | |
|     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
 | |
| 
 | |
|     // Clear the kill flags of any register this instruction defines,
 | |
|     // since they may need to be live throughout the entire loop
 | |
|     // rather than just live for part of it.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isDef() && !MO.isDead())
 | |
|         RegInfo->clearKillFlags(MO.getReg());
 | |
|     }
 | |
| 
 | |
|     // Add to the CSE map.
 | |
|     if (CI != CSEMap.end())
 | |
|       CI->second.push_back(MI);
 | |
|     else {
 | |
|       std::vector<const MachineInstr*> CSEMIs;
 | |
|       CSEMIs.push_back(MI);
 | |
|       CSEMap.insert(std::make_pair(Opcode, CSEMIs));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ++NumHoisted;
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *MachineLICM::getCurPreheader() {
 | |
|   // Determine the block to which to hoist instructions. If we can't find a
 | |
|   // suitable loop predecessor, we can't do any hoisting.
 | |
| 
 | |
|   // If we've tried to get a preheader and failed, don't try again.
 | |
|   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
 | |
|     return 0;
 | |
| 
 | |
|   if (!CurPreheader) {
 | |
|     CurPreheader = CurLoop->getLoopPreheader();
 | |
|     if (!CurPreheader) {
 | |
|       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
 | |
|       if (!Pred) {
 | |
|         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
 | |
|       if (!CurPreheader) {
 | |
|         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return CurPreheader;
 | |
| }
 |